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Abstract. A linear syntax for natural deduction proofs in first-order in-
tuitionistic logic is presented, which has been an effective tool for teach-
ing logic. The proof checking algorithm is also given, which is the core of
the tutorial proof checker Tutch. This syntax is then extended to proofs
on the assertion level which resemble single inferences one would make
in a rigorous proof. The resulting language has only four constructs.
Checking of these proofs is decidable, and an efficient algorithm is given.

1 Introduction

Teaching formal reasoning usually starts at the foundations that logic lays for
it. Since the seminal work of Gentzen [Gen35] his natural deduction calculus
has proven an adequate formalization of human reasoning at the logical level. To
teach the formal discipline of logic to students, a computer seems to be an ideal
tool to check proofs done by students.

Several proof tutor systems are available for education purposes, like ETPS
[GRB93], ProofEasy [Bur98], the CMU Proof Tutor [SS94] or the HTML-based
alfie [vS00]. Most of these systems require the student to develop a proof by
interacting with the proof tutor. This rigid framework allows the proof tutor
system to provide detailed and helpful guidance to the student working out
a proof. However, we noticed the following drawbacks of the interactive style.
First, the student must learn numerous commands to steer the interactive in-
terface. Secondly, to remedy a mistake made early in the proof often requires
backtracking to the point of the error, losing all work since then. Finally, the
user is very restricted in his proof development by the direction the system takes
him. In practice, proofs are developed on paper where one can work on goals in
any order, mix forward and backward reasoning, erase wrong parts, and replace
them by correct steps.

? This work was carried out during a visit to the CMU in Pittsburgh (email:
abel@cs.cmu.edu). It was supported by the Graduiertenkolleg Logik in der Infor-
matik (GKLI), Munich, and the Office of Technology in Education, Carnegie Mellon
University.



In natural deduction, proofs can be developed either forward or backward.
Forward reasoning starts at the hypotheses and works down to the conclusion,
while backward reasoning begins at the conclusion and proceeds up to the hy-
potheses. These issues led us to design our Tutorial Proof Checker, Tutch1, in
the following way. Proofs are written up in an ASCII-file, which gives the user
the freedom to edit the proof with his favorite editor and in the order he chooses.
This freedom enables the user to fill gaps by combining forward and backward
steps. The proof checker is a compiler-like tool that provides feedback to the
user by pointing to remaining gaps or accepting the proof. We believe that our
approach comes closer to teaching students how to write a formal proof rather
than how to complete one in a specific tutor system.

The first prototype of Tutch was well accepted by the students and used suc-
cessfully for intuitionistic propositional logic. However, larger proofs, properties
of functional programs for example, were tedious since each step had to be a sin-
gle natural deduction inference. For practical formal reasoning this restriction
is highly unsatisfactory, so we set out to find a new notion of “single inference”
which more closely corresponds to a step one would make in a rigorous proof.

Decades ago a formal connection between proofs and programs was stated
that is today known as the Curry-Howard Isomorphism. It seems sensible to
extend this connection to the method of formal proof development. While nu-
merous high-level programming languages have been designed since the 1960s,
concerning the codification of proofs, “we seem to be stuck at the assembly
language level” [Wen99, p. 2].

In this article, we will motivate and formally define a proof syntax for first-
order logic which allows bigger steps and could be the basis for a “high-level
proving language”. We analyze the principal steps found in rigorous proofs as a
model for designing a proof language. Surprisingly, four constructs will be suffi-
cient. To our knowledge, this simplicity is novel as well as the explicit formulation
of a case construct which chains together an arbitrary number of eliminations of
disjunctions and existential quantifiers.

The remainder of this paper is organized as follows: in Sect. 2 we will present
a linear syntax for natural deduction proofs together with an algorithm for proof
checking. Then we will discuss how to enlarge the proof steps by incorporating
proof search. In Sect. 3 we will motivate and present a syntax that resembles hu-
man proof steps. In Sect. 4 an algorithm to verify these steps will be given. Sect. 5
contains experiences from using Tutch in an university course, and Sect. 6 sum-
marizes this article, points out directions of further development and discusses
some related work.

Preliminaries and Notation. We assume that the reader is familiar with the
concepts of propositions, judgments and hypothetical judgments à la Martin-Löf
and with the intuitionistic natural deduction calculus for first-order logic. We
furthermore assume familiarity with intuitionistic sequent calculi as proof search

1 Tutch is pronounced like “touch”.
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tools for natural deduction. A gentle introduction can be found in [Pfe99], and
the first presentation was given by Gentzen [Gen35].

We will denote propositions with A, B, C and L, first-order terms with r, s
and t and types with ρ, σ, τ and ι. Bold typeface indicates a vector; for example,
A denotes a vector of propositions.

2 A Linear Syntax for Natural Deduction Proofs

The most direct and intuitive way of writing natural deduction proofs is in
the form of trees. However, this is not common practice since the trees rapidly
explode in size as the propositions become less trivial. A simple solution is to
put the steps in linear form, which is common to various systems. Each proof
step is just a proposition A. The step is valid if A follows from already proven
propositions by application of a single rule.

Step S : : = A Assertion
| [H;S∗] Frame

Proof S∗ : : = A Final step
| S;S∗ Step sequence

Hypothesis H : : = A Assertion (⊃I,∨E)
| x:τ Parameter (∀I)
| x:τ, A(x) Constraint (∃E)

Table 1. Linear Proof Syntax.

Another problem with proof trees is the slight ambiguity involving hypothe-
ses. For example, a hypothesis discharged by an implication introduction is can-
celled only at the leaves of the current subtree—not at all leaves. This is a
common source of errors for students; it is easy to construct a proof tree that
looks “right” but suffers from such subtle flaws. Thus, we decided to scope as-
sumptions explicitly by using brackets [...], which form a frame. For instance,
in [A;. . . C] . . ., the hypothesis A may occur anywhere in the proof starting at
the semicolon ; and ending at the right bracket ], but not in the parts following
the closing bracket. These considerations motivate the grammar for proofs given
in Table 1. The final step of a proof must always be an assertion A; this is the
proposition that is proven.

2.1 Judgments and Proof Checking

A proof step containing an assertion A establishes the judgment “A is true”,
written `A. The evidence of this judgment is given by a rule of the natural
deduction calculus. In most cases, this will involve truth of other propositions,
like the truth of A and B in the rule ∧I.

` A ` B
` A ∧B ∧I

` ∃x:τ.A(x) x:τ,A(x) ` C
` C ∃E
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The following four rules involve hypothetical judgments: ⊃I, ∀I, ∨E and ∃E . For
instance, the second premise of rule ∃E (see above) is the hypothetical judgment:
“under the assumption of the truth of A(x) with some witness x, the assertion
C is true”. In Tutch, hypothetical judgments are proven by frames; this one in
particular is represented by the frame [x : τ,A;. . . C].

We will refer to the list of already proven non-hypothetical and hypothetical
judgments by ∆. Then we can write all one-step inferences of the natural deduc-
tion calculus as axioms. For example, the rule ∧I becomes ∆,`A,`B ⇒ A∧B.
The complete list of axioms is given in Table 2.

Judgments

∆⇒ A A follows from ∆ by application of one rule.
∆ II S∗ : C S∗ is a valid proof of C.

One-step inferences

∆, (A ` B)⇒ A ⊃ B
⊃I

∆,` A ⊃ B,`A⇒ B
⊃E

∆,`A,`B ⇒ A ∧ B ∧I
∆,`A ∧ B ⇒ A

∧E1
∆,`A ∧ B ⇒ B

∧E2

∆,`A⇒ A ∨ B
∨I1

∆,`B ⇒ A ∨ B
∨I2

∆,`A ∨ B,A ` C,B ` C ⇒ C
∨E

∆⇒ > >I ∆, x:τ ` A⇒ ∀x:τ.A ∀I ∆,`∀x:τ.A⇒ [t/x]A
∀E

∆,`⊥ ⇒ C
⊥E

∆,`[t/x]A⇒ ∃x:τ.A
∃I

∆,`∃x:τ.A, (x:τ, A ` C)⇒ C
∃E

Proof checking

∆⇒ C

∆ II C : C
final

∆⇒ A ∆,`A II S∗ : C

∆ II A;S∗ : C
line

∆,`H II S∗1 : A ∆, (H ` A) II S∗2 : C

∆ II [H;S∗1 ];S
∗
2 : C

frame

Table 2. Tutch Proof Checking.

Validity of a proof can be checked by the following procedure: a proof step
is valid when the assertion A it states follows by a one-step inference. Before we
check the next step, we add `A to the list of established judgments ∆. In case
the step is a frame, we temporarily add its hypotheses to ∆, prove the frame,
and then add its conclusion A to ∆ to check the remainder of the proof. A formal
description is given in Table 2.

2.2 Enlarging the proof steps

In essence, Tutch is a guided forward reasoner; it is a forward reasoner since it
accumulates proven judgments in ∆ and works forward towards the goal, and it
is guided by the proof plan S∗. The proof “plan” is very precise in our case since
every step must be given. We can weaken this requirement and allow the omission
of steps; then the judgment ∆ ⇒ A must be replaced by another one which
implements proof search. The primary candidate for this is the intuitionistic
sequent calculus ∆ =⇒ A.
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In its most general formulation the sequent calculus is very non-deterministic
which makes proof search rather ineffective. A complete strategy that cuts down
the search space considerably is to alternate phases of invertible steps and non-
invertible steps. This strategy of focusing proofs has been formulated by Andreoli
[And92] for linear logic and adapted to intuitionistic linear logic [Pfe99]. We
distinguish four classes of rules.

1. Invertible right rules: ⊃R, ∀R and ∧R. These introduce new hypotheses or
parameters, or split the conclusion (the goal), respectively. The axiom >R
can be added to this group since truth is isomorphic to an empty conjunction.

2. Invertible left rules: ∨L, ∃L and ∧L, perform case distinction, witness ex-
traction, and hypothesis splitting. Since absurdity can be seen as the empty
disjunction, the axiom ⊥L fits into this class as well.

3. Non-invertible right rules: ∨R1, ∨R2 and ∃R. These rules involve decisions
and can be chained together with ∧R, >R and ⊥L to complete a goal. We
call this strategy finishing.

4. Non-invertible left rules: ⊃L, ∀L, ∧L1 and ∧L2. They are chained together
in the focusing strategy. To solve the current goal we pick one hypothesis
which has the form of a lemma, i.e., it has leading universal quantifiers and
conditions, and we instantiate them to solve the goal. If we succeed, we
continue by proving the conditions.

Note that rules for conjunction appear in all four groups and can be treated as
invertible or non-invertible.

Even under application of strategies the general provability problem ∆ =⇒ A
is undecidable. Since we desire efficient proof checking we have to limit to size
of the steps in the proof plan. In the next section we will investigate what is
considered to be a “human” proof step and how to formalize it to obtain a new
proof grammar, which gives a reasonable size limit on steps.

3 Towards Human Proof Steps

Once the student has mastered the logic and proceeds to proofs of mathematical
theorems or properties of programs, it is no longer feasible to formalize these
proofs as a sequence of one-step inferences in the natural deduction calculus.
In mathematical practice, the proof steps are larger in most cases. Following
the analysis of Huang [Hua94], justifications are provided at three levels: the
logical level, the assertion level, and the proof level. The aforementioned system
operates at the logical level; however, humans apply logical rules implicitly “in
the background”. An explicit reference to them interrupts rather than supports
the flow of reasoning. In mathematical proofs, humans provide justifications on
the assertion level—by citing axioms, definitions, or theorems—or on the proof
level. Justifications on the proof level such as “by analogy” are hard to verify by
machine and their formalization is still an open problem.

The contribution of this paper is to give a simple proof language that allows
steps at the assertion level. However, there are two important differences. First,
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our work is carried out in the context of intuitionistic logic. Second, we also
combine the invertible rules into bigger steps, introducing multiple hypotheses
or cases at once. Our proof language will be an extension of our linear syntax,
and we will be careful not to lose the clear structure we have developed. In
particular, we will continue to be explicit about hypotheses; all assumptions and
parameters that are used in the proof must be declared prior to their usage.

axiom indNat : P (0) ⊃ (∀x:nat. P (x) ⊃ P (s(x))) ⊃ ∀n:nat.P (n);
axiom eq0 : 0 = 0;
axiom eqS : ∀x:nat.∀y:nat. x = y ⊃ s(x) = s(y);

assertion proof splitNat : ∀x:nat. 0 = x ∨ ∃y:nat.s(y) = x ≡
assume x:nat in

% Induction on x:nat

% Base case: x = 0
0 = 0 by axiom eq0 ;

% Step case: x = s(x′)
assume x′:nat, 0 = x′ ∨ ∃y:nat.s(y) = x′ in

0 = s(x′) ∨ ∃y:nat.s(y) = s(x′) by

case 0 = x′ ∨ ∃y:nat.s(y) = x′ of
0 = x′ −→ s(0) = s(x′) by axiom eqS
|| y:nat where s(y) = x′ −→ s(s(y)) = s(x′) by axiom eqS

end
end;

0 = x ∨ ∃y:nat.s(y) = x by axiom indNat
end;

Fig. 1. Example: ∀x:nat . 0 = x ∨ ∃y:nat .s(y) = x

The key question that guided our design is: “What is considered a single
proof step in mathematical practice?” We identified the following steps:

1. Introduction of new hypotheses (“assume”, “let”) and parameters (“fix”).
2. Application of an axiom, a definition, a lemma or a theorem.
3. Application of a local lemma.
4. Use of a special inference rule for a special area of mathematics.
5. Distinguishing cases.
6. Initiating mathematical induction.
7. Reference to the induction hypothesis.

Since we restrict ourselves to first-order logic for now, we do not treat induction
explicitly; step 6 is the application of an induction axiom and subsumed under
step 2; step 7 is a special case of step 3. Special inference rules (step 4), often
incorporated into a theorem prover by tactics, are not treated in our simple
approach but in more advanced systems like Isabelle [Pau90] and Theorema
[BJK+97].

6



For each of the remaining steps we introduce a syntax. The resulting grammar
for assertion level proofs is the following:

Step S : : = assumeH1, . . . , Hn in S∗ end
| C by case A ofK1 −→ S∗1 || . . . ||Kn −→ S∗n end

| A by lemma l
| triv A

Proof S∗ : : = S | S;S∗

Hypothesis H : : = A | x:τ
Constraint K : : = 〈x1:τ1, . . . , xm:τm〉A

The triv construct justifies a proposition that follows “trivially” by application
of some logical rules or a local lemma. The case syntax formalizes case distinc-
tion and existential elimination. As in mathematical practice we allow parallel
case splitting of a list of formulas A. The cases are given by equally long lists of
constraints K1, . . . , Kn where n is the number of cases. For disjunction elimi-
nation, these constraints will simply be propositions and the list of parameters
x : τ will be empty. In case of existential elimination, x : τ will contain new pa-
rameters which stand for the witnesses of the existential assertion. Disjunction
and existential elimination can go hand in hand as demonstrated in the example
below. For just existential eliminations, we introduce the syntactic sugarobtainx1:τ1, . . . , xm:τm where A in S∗

end

 for

case∃x1:τ1 . . .∃xm:τm.A of
x1:τ1, . . . , xm:τm where A −→ S∗

end


Note that x:τ where A is the external syntax for the constraint 〈x:τ 〉A. Further-
more we drop the keyword triv and use “%” to introduce a line of comment in
the external syntax. Fig. 1 exemplifies our proof language by formally proving
in Heyting Arithmetic that each natural number x is either 0 or y + 1 for some
number y.

4 Proof Checking

In this section, we give a formal system for verifying “human step” proofs. We
present the system in the form of seven judgments listed in Table 3. These can
be interpreted operationally and yield an effective decision procedure for the
validity of proofs. More precisely, a proof S∗ can be checked in O(|S∗|2) worst-
case time modulo the time spent on unification and lookup of lemmata and
already proven propositions.

The validity of an assertion level proof is verified by checking each step in
two contexts, Λ (available lemmata) and ∆ (already proven assertions). A step
proving assertion A is verified by using the strategies given in Table 3. Before
proceeding to the next step, we add A to ∆. A formal description of the algorithm
is given in the first section of of Table 4.
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Contexts

Λ Collection of available lemmata L.
∆ Already proven assertions A and introduced parameters x:τ .

Proof Checking

Λ|∆ .. S∗ : C The step sequence S∗ proves C.
Λ|∆ . S : C The step S proves C.

Strategies

∆ =⇒F C Finishing: Proving C by right rules.
∆;A� C Focusing: Proving C as a consequence of A.
∆;L =⇒L C Lemma: Proving C by lemma L.
K′ �C K Cases: Determining case splitting of the formulas in K with constraints K′.
K′ �C K Cases: Proving case covering on constraint K′.

Table 3. Judgments.

4.1 Strategies

As discussed in the previous section, the steps we consider are: introducing new
hypotheses, applying a lemma, distinguishing cases, or a series of “trivial” logical
inferences, which motivates the four constructs (assume, case, lemma, triv).
One logical rule is always available: hypotheses in form of conjunctions can be
split at any time (∧L). In other words, on the left, “A ∧ B” is isomorphic to
“A,B”. All the other rules are invoked by specific strategies. Each kind of step
determines a strategy as described below and treated formally in Table 4.

assume This strategy takes a goal of the form A ⊃ C, adds the hypothesis A
to ∆, and simplifies the goal to C. This corresponds to ⊃R in the sequent
calculus. Analogously, in case of ∀x:τ.A, it introduces x:τ as a new param-
eter (∀R). Several introductions may be chained together. Note that each
hypothesis and parameter must be explicitly named and in the order it is to
be introduced.

triv A step is considered trivial if the assertion C it states is an immediate
consequence of already established assertions in ∆. That is, C follows by
contradiction (⊥L) or application of right rules like ∨R1, ∨R2, ∧R and ∃R.
This strategy is called goal-directed. Another “trivial” step—in the sense
that no special justification is provided—is the application of a “local lemma”
(see below).

lemma As a proof step, two kinds of lemmata L can be applied: either a globally
available lemma from Λ, which must be referenced by its name l; or one
established inside the current proof in an earlier step (called a local lemma),
which is applied anonymously and chosen non-deterministically from ∆. In
both cases, L is passed to the =⇒L strategy.

case To check a proof of C by case distinction over A, we first determine that
the subproof S∗i for each provided clause concludes in a proposition Ci

from which the goal C immediately follows. Finally, we check that the given
constraints Ki for the clauses adequately cover the possible cases induced
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Sequences and Splitting Conjunctions

Λ|∆ . S : C

Λ|∆ .. S : C
final

Λ|∆ . S : A Λ|∆,A .. S∗ : C

Λ|∆ .. S;S∗ : C
step

Λ|∆,A,B . S : C

Λ|∆,A ∧ B . S : C
∧L

Introducing Hypotheses

Λ|∆,A . assumeH in S∗ end : C

Λ|∆ . assumeA,H in S∗ end : A ⊃ C
assumeA

Λ|∆ .. S∗ : C

Λ|∆ . assume in S∗ end : C
assume−

Λ|∆, x:τ . assumeH in S∗ end : A

Λ|∆ . assume x:τ,H in S∗ end : ∀x:τ.A
assumex

Proof by Filling

∆ =⇒F C

Λ|∆ . triv C : C
fill

Lemma Application

∆;L =⇒L C

Λ, l:L|∆ . C by lemma l : C
lemma

∆;L =⇒L C

Λ|∆,L . triv C : C
local

Proof by Cases

Λ|∆,A, pKiq .. S∗i : Ci ∆,A, pKiq, Ci =⇒F C (for all i. 1 ≤ i ≤ n) 〈〉A�C K

Λ|∆,A . C by case A of K1 −→ S∗1 || . . . || Kn −→ S∗n end : C
cases

where pKq is defined as follows:

p〈〉Aq = A
p〈a:τ, b:σ〉Aq = a:τ, p〈b:σ〉Aq

Table 4. Proof Checking.

by A. The case construct guides forward reasoning along the left rules ∨L,
⊥L, and ∃L. This can be extended to parallel case distinction over a list of
propositions A in a straightforward manner.

4.2 Finishing

Finishing (=⇒F ) is used to verify a series of “trivial” logical steps, as well as an
auxiliary judgment to complete the verification of other kind of steps. As shown
in Table 5, finishing consists of primarily right rules (with ⊥L being the special
case). This corresponds to seeing whether we can break up the goal into pieces
that we have proven already. Also, notice that no new hypotheses are added to
∆ while finishing; the ⊃RF rule does not introduce the premise A, and ∀RF
does not introduce x:τ as new parameter so that x cannot become a witness for
an existential in C.

The rule ∃RF involves “guessing” a witness t, which can be implemented
by introducing a unification variable X for t and solving for X at the initial
sequents. This requires first-order unification for which efficient algorithms are
known.
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∆,C =⇒F C
initF

∆ =⇒F >
>R

∆,⊥ =⇒F C
⊥LF

∆ =⇒F A

∆ =⇒F A ∨ B ∨R1
F

∆ =⇒F B

∆ =⇒F A ∨ B ∨R2
F

∆ =⇒F [t/x]A

∆ =⇒F ∃x:τ.A
∃RF

∆ =⇒F A ∆ =⇒F B

∆ =⇒F A ∧ B ∧R
∆ =⇒F B

∆ =⇒F A ⊃ B
⊃RF

∆ =⇒F C

∆ =⇒F ∀x:τ.C
∀RF

∆,A,B =⇒F C

∆,A ∧ B =⇒F C
∧LF

Table 5. Finishing.

4.3 Focusing and Lemma Application

The focusing strategy � is designed to capture the idea that in mathematical
practice, one instantiates all universal quantifiers and all preconditions at once
when applying a lemma. We contrast this with individual applications of ⊃L or
∀L in the sequent calculus. For instance, consider ∆ to be:

∀x:τ.∀y:σ.P (x, y) ⊃ Q(x, y) ⊃ R(x, y)

Suppose we choose the first assertion and choose a parameter t, now ∆ is:

∀x:τ.∀y:σ.P (x, y) ⊃ Q(x, y) ⊃ R(x, y), ∀y:σ.P (t, y) ⊃ Q(t, y) ⊃ R(t, y)

Clearly, the number of possible choices grows quickly. Focusing allows the in-
stantiation of all parameters and all preconditions of a lemma to occur at once
as detailed in Table 6. This formulation is adapted from the discussion presented
in [Pfe99]. Notice that the postcondition of an implication and the kernel of a
universal quantification continues to be focused upon corresponding to repeated
application of ⊃L or ∀L rules. The precondition of an implication may be verified
by finishing.

The =⇒L strategy sets up the focusing procedure to apply a lemma L. For
this strategy, we allow the introduction of hypotheses (⊃RL) and parameters
(∀RL) into ∆. Note that due to the anatomy of the focusing procedure on L,
these new hypotheses can only be used to verify preconditions of the lemma by
finishing. This design allows us, for example, to prove A∧B ⊃ C in one step by
applying lemma A ⊃ (B ⊃ C), but we cannot derive A ⊃ A without introducing
hypothesis A.

4.4 Proving by Cases

For case distinctions, the verification is divided into two phases: determining the
split tree of the formula A the case distinction is over (�C), called the split
formula, and checking that the stated cases cover the leaves of split tree (�C).

The left hand side of both judgments is of the form 〈x:τ 〉A. The list x:τ
contains the free existential variables of A. During the split phase, a disjunction
in the split formula A creates two branches in the split tree (∨L), and leading
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Focusing

∆;C � C
init�

∆;B � C ∆ =⇒F A

∆;A ⊃ B � C
⊃L

∆; [t/x]A� C

∆; ∀x:τ.A� C
∀L

∆;A� C

∆;A ∧ B � C
∧L1
�

∆;B � C

∆;A ∧ B � C
∧L2
�

Lemma Application

∆,A;L =⇒L B

∆;L =⇒L A ⊃ B
⊃RL

∆, x:τ ;L =⇒L A

∆;L =⇒L ∀x:τ.A
∀RL

∆,A,B;L =⇒L C

∆,A ∧ B;L =⇒L C
∧LL

∆;L� C

∆;L =⇒L C
focus

Table 6. Focusing and Lemma Application.

existential quantifications in A are removed (∃L). Splitting absurdity succeeds
immediately (⊥LC).

After completing the splitting, every leaf of the split tree has to be covered by
one of the given cases which are provided as constraints K1, . . . , Kn (rule cover).
A constraint Ki ≡ 〈a:σ〉C consists of a kernel C and a list of parameters a:σ
which appear in the ith clause of the case construct and are explicitly declared
in the where statement. Basically, a constraint 〈a:σ〉C covers a leaf 〈x:τ 〉A if
there is a parameter a for each existential variable x that is actually free in A
(rules init�C , strengthen, and name). The ∧L rules allow the constraint to be
weaker than the leaf, that is, to “forget” preconditions that are unnecessary for
proof of the case.

Case Splitting

〈x:τ〉⊥�C K
⊥LC

〈x:τ〉A�C K 〈x:τ〉B �C K

〈x:τ〉A ∨ B �C K
∨L

〈x:τ , y:σ〉A�C K

〈x:τ〉∃y:σ.A�C K
∃L

K′ �C Ki (for some i . 1 ≤ i ≤ n)

K′ �C K1, . . . Ki, . . . Kn
cover

Case Covering

〈〉C �C 〈〉C
init�C

〈x:τ , z:ρ〉A �C 〈a:σ〉C (y 6∈ FV(A))

〈x:τ , y:ι, z:ρ〉A �C 〈a:σ〉C
strengthen

〈x:τ〉[b/y]A �C 〈a:σ〉C
〈x:τ , y:ρ〉A �C 〈a:σ, b:ρ〉C

name
〈x:τ〉A �C 〈a:σ〉C
〈x:τ〉A ∧ B �C 〈a:σ〉C

∧L1
C

〈x:τ〉B �C 〈a:σ〉C
〈x:τ〉A ∧ B �C 〈a:σ〉C

∧L2
C

Table 7. Case Splitting and Covering.
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5 Evaluation

After the technical discussion, we present some practical experiences with the
proof checker Tutch. So far, only the version presented in Sect. 2 which allows
one-step logical inferences has been tested by students. It was used in the under-
graduate course Constructive Logic in Fall 2000 at Carnegie Mellon University.
In the midterm evaluation, Tutch got positive feedbacks: 15 out of 26 found
Tutch to be very helpful for doing the assignments (5 out of 5 points), only one
student found it not helpful at all (1 point). The average score was 4.28. Us-
ability of Tutch was rated 3.96 in the average. This rating is surprisingly high,
given that Tutch had a simple Unix command line interface and had to be in-
voked every time a proof was to be verified. We credit the good feedback to our
concept to treat proving like programming and proof development like program
development. In particular, our proof language is designed after the example of
structured programming languages like PASCAL or SML.

In the introduction, we listed some drawbacks of interactive proof tutors:

1. The student has to learn how to steer the interactive interface.
2. Mistakes can only be corrected by backtracking.
3. The system directs the proof development.

Our tutor Tutch avoids these drawbacks as argued in the following.

1. The interface of Tutch is almost trivial; in our case, what the student has to
learn is the proof language. Because of its simplicity, that was unproblematic
for the students so far.

2. A main advantage of writing proofs like programs is that the student does not
edit a proof script containing commands which steer the interactive prover,
but the proof itself. Thus, mistakes in proofs can be corrected easily. For
example, forgotten steps can be inserted at the required place directly. In the
case of proof scripts, insertion of a command usually causes the subsequent
commands to fail, since the proof state they are supposed to manipulate has
changed.

3. Proving in a proof language gives the students the freedom a programmer has
in developing software: He can edit his program at any point, work bottom-
up or top-down. In contrast, interactive provers often restrict development
to the current proof state or force the user to input his proof via a structure
editor. It can be very frustrating for a student that the proof step he wants
to take is blocked by the system even if it is the wrong step in the current
situation. We think it is better to give the student the freedom to try his
solution and then learn what his mistake was rather than blocking wrong
attempts from the beginning without giving the student a chance to see why.

An area where Tutch definitely has to improve is error messages. In the course
evaluation the students gave Tutch an average of 3.68 points (out of 5) for its
feedback on mistakes. But how to give good error messages is a topic of research
itself.
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6 Conclusion

We have presented a syntax for proof that resembles human steps and still is
efficiently verifiable. We presume this system as presented here will be applicable
in the educational context immediately and will be a nice addition to Tutch. Yet
it is work in progress, and requires some extensions to become a more convenient
and natural proof language. First, a syntax for the prominent proof method of
induction has to be added. Secondly, equational reasoning must be supported
adequately; in particular, it should be possible to write down a chain of equations
without citing transitivity at each step.

The guiding principles for our design are proof-theoretic properties of the un-
derlying logic, particular the distinctions between invertible and non-invertible
rules, the distinctions between left and right rules, and focusing. This means
our design is likely to be applicable to a rich variety of systems for which fo-
cusing system can be designed (including classical logic [Hua94], classical linear
logic [And92], intuitionistic linear logic, modal logics, temporal logics, and oth-
ers).

Related Work. Lamport gives general guidelines on how to structure rigorous
proofs in [Lam93]. Comparable to our linear proof syntax with frames given
in Sect. 2 is the Block Calculus by Dahn and Wolf [DW94] based on classical
first-order logic.

Pioneering work in the area of human-readable machine-verifiable proofs has
been done in the Mizar project [Rud92]. The Mizar language has been derived
from common language used in mathematical proofs and therefore is very rich.
We tried to find a minimum of concepts. Closest to our work is Wenzel’s formal
proof language for the tactic-based theorem prover Isabelle, called Isar [Wen99].
His approach is very flexible: he provides a simple meta-logical framework that
lays the foundation for reasoning in any logic and adds special constructs for
forward and backward reasoning in natural deduction. He provides statements
analogous to our assume that handles invertible right rules, but has no counter-
part of our case construct that chains invertible left rules.

A related area is the research on proof verbalization: how to generate a
human-readable output of a computer-generated proof. Huang [Hua94] inves-
tigated what humans would regard as a single step at the assertion level. His
results flowed into our design of the justification by lemma; the PROVERB sys-
tem [HF97] implements his ideas.

Acknowledgments. We thank the students of the course 15-399 (Fall 2000) at
Carnegie Mellon University for enduring the shortcomings of Tutch.
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