
ZU064-05-FPR main 24 January 2019 19:52

Under consideration for publication in J. Functional Programming 1

POPLMark Reloaded:
Mechanizing Proofs by Logical Relations

ANDREAS ABEL
Department of Computer Science and Engineering, Gothenburg University, Sweden

GUILLAUME ALLAIS
iCIS, Radboud University, Nijmegen, Netherlands

ALIYA HAMEER and BRIGITTE PIENTKA
School of Computer Science, McGill University, Canada

ALBERTO MOMIGLIANO
Department of Computer Science, University of Milan, Italy

STEVEN SCHÄFER and KATHRIN STARK
Saarland Informatics Campus, Saarland University, Germany

Abstract

We propose a new collection of challenge problems in mechanizing metatheory of programming
languages for comparing and pushing the state of the art of proof assistants. In particular, we focus
on proofs using logical relations and propose establishing strong normalization of a simply-typed
lambda-calculus with a proof by Kripke-style logical relations as a benchmark. We give a modern
view of this well-understood problem by formulating our logical relation on well-typed terms. Using
this case study, we share some of the lessons learned tackling this challenge problem in different
dependently-typed proof environments. In particular, we consider the mechanization in Beluga, a
proof environment that supports higher-order abstract syntax encodings and contrast it to the de-
velopment and strategies used in general purpose proof assistants such as Coq and Agda. We hope
others will be motivated to submit solutions! The goal of this paper is to engage the community in
discussions on what support in proof environments is needed to truly bring mechanized metatheory
to the masses.

1 Introduction

Programming languages (PL) design and implementations are often tricky to get right.
To understand the subtle and complex interactions of language concepts and avoid flaws,
we must rely on rigorous language definitions and on proofs so that we can ensure that
languages are safe, robust, and trustworthy. However, writing such proofs by hand is very
often complicated and error prone, not because of any particularly challenging insights
involved, but simply because of the overhead required in keeping track of all the relevant
details and possible cases. These difficulties increase significantly when languages grow
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larger and proofs grow correspondingly longer; when working with a real-world program-
ming language, carrying out such proofs by hand becomes unmanageable and in the end it
is simply not done.

In principle, proof assistants provide a way of formalizing programming languages
definitions and writing machine-verified proofs about their properties, and they would
seem a promising solution to this problem. And in fact there is by now a significant list
of achievements in the area (Klein & Nipkow, 2006; Lee et al., 2007; Leroy, 2009; Kumar
et al., 2014). However, there is also a lot of overhead involved in setting up the necessary
infrastructure common to the design and verification of a PL model, typically for modeling
variables, substitution, typing contexts, etc. This has arguably hindered the full adoption of
this technology by the working semanticist.

Over 10 years ago, Aydemir et al. (2005) proposed as a challenge the mechanization of
part of the metatheory of F<:, which featured second-order polymorphism, subtyping, and
records. In order to understand the state of the art in the field, the problems were chosen to
emphasize aspects of programming languages that were known to be difficult to formalize:
in particular, the challenge placed most of its focus on dealing with binding structures,
such as functions, let-expressions, and pattern matching constructs. The challenge allowed
the PL community to survey existing techniques for reasoning about variable bindings and
popularized, to a certain extent, the use of proof assistants in their daily work (Pierce &
Weirich, 2012).

We believe the time is ripe to revisit the question: How close are we to a world where
every paper on programming languages is accompanied by an electronic appendix with
machine checked proofs? To do this, we need to go well beyond the original POPLMark
challenge. In this paper, we propose a new collection of benchmark problems in the mech-
anization of the metatheory of programming languages for comparing, understanding, and
especially pushing the state of the art of proof assistants. In particular, we focus on proofs
using logical relations (LR), an elegant and versatile proof technique with applications
ubiquitous in programming languages theory. Initially introduced by Tait (1967), the tech-
nique has been applied to logical problems such as strong normalization (Girard, 1972),
λ -definability (Plotkin, 1973), and the semantics of computational type theory (Werner,
1992; Geuvers, 1995). In recent years, the LR proof technique has become a staple for pro-
gramming languages researchers (see, e.g., Ahmed (2013)). There is also a long tradition
(almost a gold-standard) in using proofs by logical relations to showcase the power of a
given proof assistant; for early examples see (Altenkirch, 1993) and (Coquand, 1993).

The core idea of logical relations is straightforward: say we want to use LR for proving
that all well-typed terms have a property P; then we define, by recursion on types, a
relational model for those types. Thus, for instance, (well-typed) terms at function type
take logically related arguments to related results, while (well-typed) pairs consist of com-
ponents that are related pairwise. Logical relations are a powerful proof technique that
particularly applies to reasoning about open programs. In this paper, we concentrate on
Kripke-style LR (Mitchell & Moggi, 1991): we may think of the context in which an open
term is meaningful as a world and then consider the term in all possible context/world
extensions. Kripke-style LR, using different notions of what a “world” is, have gained
popularity in recent years, in particular to establish semantic properties about secure com-
pilation (Ahmed, 2004; Turon et al., 2013; Neis et al., 2015; Hur & Dreyer, 2011; Devriese
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et al., 2017). They also play an essential role in analyzing the meta-theoretic properties of
dependently typed systems (Urban et al., 2011; Abel et al., 2018).

In general LR proofs may be difficult to mechanize as they require a careful set-up
for reasoning about open terms, modeling contexts of assumptions and context exten-
sions, using recursive definitions, and reasoning about (simultaneous) substitutions. As
Altenkirch (1993) remarked:

“I discovered that the core part of the proof (here proving lemmas about CR
[reducibility candidates]) is fairly straightforward and only requires a good

understanding of the paper version. However, in completing the proof I observed that in
certain places I had to invest much more work than expected, e.g., proving lemmas about

substitution and weakening.”
In practice, developing logical relation proofs for realistic languages can require an

almost heroic mechanization effort in existing general-purpose proof assistants.
We propose the benchmark of establishing strong normalization of the simply-typed λ -

calculus (STLC), extended to disjoint sums, with a proof by Kripke-style logical relations.
We make three main contributions:

Contribution 1: A tutorial on strong normalization proof(s) using logical relations
We give a modular tutorial proof of strong normalization for STLC via logical relations.
Following Goguen (1995), we define reduction in a type-directed manner, as this simplifies
the analysis and eventual formalization of the metatheory and it is a common technique
found in dependently-typed systems.

We motivate our choice of this challenge in Section 2 before moving on to our exposition
of the problem in Section 3. We start (Section 3.2) by relating the traditional approach of
describing normalization using the accessibility relation, that is the well-founded part of
the reduction relation, with the “modern” view of describing the set of (strongly) normal-
izing terms inductively (van Raamsdonk & Severi, 1995; Joachimski & Matthes, 2003). In
Section 3.6, we prove strong normalization of STLC using the latter inductive definition
and then (Section 3.7) we extend the challenge to disjoint sums and briefly mention other
extensions in Section 3.8. We omit most of the proof details from the main text, but we
give the proofs of all lemmas and theorems in detail in the accompanying appendix.

Contribution 2: Challenge problem(s) These challenge problems seek to highlight var-
ious aspects that commonly arise when mechanizing PL semantics and its metatheory
in a proof assistant, only some of which have been covered by the original POPLMark
challenge: What are the costs/benefits of a certain variable binding representation? Do
we represent well-typed terms extrinsically, that is with a separate typing judgment, or
intrinsically, exploiting some form of dependent types in the logical framework? Is there
built-in support for (simultaneous) substitutions and their equational theory? If not, how do
we support working with substitutions? How do we reason about contexts of assumptions
and their structural properties, such as exchange, weakening, and strengthening? Is it con-
venient to use notions such as renaming and weakening substitutions to witness relations
among contexts? What is the support for more sophisticated versions of induction, such
as well-founded or lexicographic? How hard is it to represent well-founded (Noetherian)
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inductive definitions such as accessibility relations? Is it problematic to deal with recursive
definitions that are not strictly positive, but are recursively defined based on the structure of
types? The answers to these questions can help us to guide our mechanizations and avoid
some possible pitfalls.

Contribution 3: Lessons learned We have tackled the challenge problem(s) in different
dependently-typed proof environments using a variety of techniques: higher-order abstract
syntax and first-class contexts, substitutions and renamings in Beluga (Section 4.1); well-
typed de Bruijn encoding in Coq (Section 4.2); and well-typed de Bruijn encoding in Agda
using the generic-syntax library of (Allais et al., 2018) (Section 4.3). The formalizations
can be browsed at https://poplmark-reloaded.github.io and downloaded from
https://github.com/poplmark-reloaded/poplmark-reloaded.

In all these systems, we have mechanized the soundness of the inductive definition of
strong normalization with regard to the one in terms of accessibility, and then the strong
normalization proof for STLC. We have also completed the extension to disjoint sums. Just
as a software testing suite only makes the grade if it finds bugs, a benchmark ought to stress
the limitations of the technology underlying current proof assistants, and we comment
for each mechanization on some of the critical lessons learned; in particular, we discuss
how the benchmark highlighted shortcomings in each of the systems we have employed.
Further, we summarize and compare how we deal with some of the key challenges in these
systems (Section 5).

We hope that our benchmark will serve as a baseline for measuring the progress in
developing proof environments and/or libraries, and that others will be motivated to submit
solutions. At the same time, we want to emphasize that this benchmark is but one dimen-
sion along which we can evaluate and compare proof assistants, and there are many other
aspects for which we should aim to craft additional challenges (especially for problems
that deal with resources, state, coinduction, etc.). We will deem this paper a success if we
manage to engage the community in discussing what support proof environments should
provide to truly bring mechanized metatheory to the masses.

2 Motivation

A natural question one might ask upon reading the description of the benchmark is, why
this specific problem? Certainly, starting a conversation about proof assistant support for
mechanizing logical relations proofs is a worthy goal, given their recent ubiquity in pro-
gramming languages research; still, why restrict ourselves to an elementary property such
as strong normalization, and on such a small calculus as the STLC? And why resort to
Kripke LR for its normalization, when, after all, this can be established by more elementary
syntactical means, for example using hereditary substitutions (Watkins et al., 2002)?

We would like to stress that this problem is a benchmark, as opposed to a grand chal-
lenge (Hoare, 2003), with the aim of providing a common ground for comparison between
proof assistants while pushing the baseline further than the original POPLMark challenge.
At the same time, strong normalization, even restricted to the STLC, is trickier than it
looks; one can easily get it wrong, especially since there are no detailed textbook descrip-

https://poplmark-reloaded.github.io
https://github.com/poplmark-reloaded/poplmark-reloaded
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tions. With this in mind, we have chosen a challenge problem that satisfies two major
criteria:

• The problem should be easily accessible, while still being worthwhile. In order to
effectively engage the PL community, the challenge problem should be one that is
easily understood and acted upon. It should be small enough in scale that it can
be mechanized in a reasonable amount of time, and ideally it should be doable
by a graduate student1. We would like the problem to be a suitable way to get
acquainted with a particular proof assistant and with mechanizing a particular proof
technique. Strong normalization of the lambda calculus, being a fundamental and
widely-studied problem, fits all these criteria well, and keeping to the STLC keeps
the problem size small while still exhibiting the technical challenges we wish to
emphasize that arise in more complex proofs. This motivates also the use of a Kripke-
style proof, since this a technique that cannot be avoided in other more advanced
settings, such as equivalence checking (Crary, 2005) or more generally studying the
metatheory of dependently typed systems (Abel et al., 2018).

• The problem should serve as a means to survey the state of the art, compare proof
assistants, and encourage development to make them more robust. There are, of
course, other problems that may meet our accessibility criterion: for instance prov-
ing parametricity properties for System F; or mechanizing properties of systems
where resources play a significant role. The former, however, requires impredicativ-
ity, which would heavily limit the scope of our comparison; in fact, proof assistants
such as Agda and Beluga do not support it, thus making the problem unsuitable as a
benchmark. The latter (as an example see the termination proof in (Morrisett et al.,
2005), where the presented system involves linear types and memory management)
involves reasoning with structures such as heaps, and requires users to implement
their own infrastructure, as existing systems do not typically provide any specific
support for heaps. In this case, we would be comparing the user’s cleverness in
representing the relevant structures more than the features of the systems themselves,
and this would not provide a useful basis for comparison of the features of existing
proof assistants. By choosing the problem of strong normalization, with contexts as
Kripke worlds, we wish instead to highlight aspects of mechanizing metatheory that
have seen a lot of growth in the past several years, and for which there exists a variety
of different approaches.

This paper seeks to pose and hopefully answer the question: How far have we come
since the original POPLMark challenge? In their proposal, Aydemir et al. identified four
key features that they wished their challenge problem to emphasize: binding, complex
inductions, experimentation, and component reuse. We focus here on pushing the baseline
in the first two of these areas:

• Binding. A central issue in the POPLMark challenge was reasoning about vari-
able binding. In the past decade, significant progress has been made in implement-
ing libraries and tools for working with binders in general-purpose proof assistants

1 In fact, this is exactly what happened with Sebastian Sturm’s master thesis (Sturm, 2018), where
he gives a solution of the benchmark in F*.
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such as Coq and Agda, (e.g., (Chlipala, 2008; Aydemir & Weirich, 2010; Felty
& Momigliano, 2012; Lee et al., 2012; Schäfer et al., 2014)), exploring different
foundations (see, e.g., (Licata & Harper, 2009; Pouillard & Pottier, 2010)), as well as
extending the power of HOAS-based systems such as Abella and Beluga (e.g., (Cave
& Pientka, 2012; Wang et al., 2013)). Our benchmark aims to see how these sys-
tems fare when presented with a greater variety of issues that occur in the presence
of binders, beyond the mere syntactical representation of the binding structures:
we refer here to context extensions, properties of contexts such as weakening and
exchange, simultaneous substitutions and renamings. And in fact, the process of
mechanizing our benchmark in Agda, Beluga, and Coq has led to progress in all
three of the tested systems and libraries in this regard.

• Complex inductions. The POPLMark challenge focused on syntactic inductive proofs,
in particular type soundness. In contrast, our benchmark involves the more challeng-
ing principles of lexicographic induction and induction that is stable under exchange
of variables. The accessibility definition of strong normalization used in the first half
of the challenge requires an inductive type with infinite branching. Finally, formaliz-
ing the logical relation involves a non-strictly positive, yet stratified definition, that
is, a relation defined inductively on one of the indices.

Thus we feel that our choice of challenge problem, while seemingly small and simple,
in fact emphasizes several issues that must be dealt with in order to mechanize the more
complicated logical relations proofs that come up in practice. We seek not to directly
advance the state of the art in PL theory, but instead to stimulate discussion between the
communities for different proof assistants, to encourage sharing of ideas between different
systems, and to make the core of our systems more robust.

3 Strong normalization for the λ -calculus

Proving (strong) normalization of the λ -calculus (STLC) using logical relations is a well-
known result; however, modern tutorials on the subject are largely missing. There are
two textbook resources one might refer to (Pierce, 2002) (Chapter 11) and (Girard et al.,
1989) (Chapter 6), neither of them being satisfactory for our purposes. Pierce (2002) only
discusses weak normalization and on top of it he only considers reductions for closed
terms, i.e., there is no evaluation inside a λ -abstraction. Girard et al. (1989) present a high-
level account of proving strong normalization where many of the more subtle issues are
skipped — in fact, it is over in less than five pages.

3.1 Simply typed λ -calculus with type-directed reductions

Our challenge problem is centered around the simply-typed λ calculus with a base type i.
The grammar for the main syntactical entities are:

Terms M,N ::= x | λx:A.M |M N
Types A,B ::= A⇒ B | i
Contexts Γ ::= · | Γ,x:A
Substitutions σ ::= · | σ ,M/x
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Γ `M : A Term M has type A in the context Γ

Γ,x:A `M : B

Γ ` λx:A.M : A⇒ B

x : A ∈ Γ

Γ ` x : A

Γ `M : A⇒ B Γ ` N : A

Γ `M N : B

Γ′ ` σ : Γ Substitution σ maps variables from Γ to terms in Γ′

Γ
′ ` · : ·

Γ
′ ` σ : Γ Γ

′ `M : A

Γ
′ ` σ ,M/x : Γ,x:A

Fig. 1. Typing for STLC, and well-typed substitutions

Type-directed reduction : Γ `M −→ N : A
Γ ` λx:A.M : A⇒ B Γ ` N : A
Γ ` (λx:A.M) N −→ [N/x]M : B

S-β

Γ `M −→M′ : A⇒ B Γ ` N : A
Γ `M N −→M′N : B

S-APP-L
Γ `M : A⇒ B Γ ` N −→ N′ : A

Γ `M N −→M N′ : B
S-APP-R

Γ,x:A `M −→M′ : B
Γ ` λx:A.M −→ λx:A.M′ : A⇒ B

S-ABS

Type-directed multi-step reduction : Γ `M −→∗ N : A

Γ `M −→∗ M : B
M-REFL

Γ `M −→ N : B Γ ` N −→∗ M′ : B
Γ `M −→∗ M′ : B

M-TRANS

Fig. 2. Type-directed reductions

The typing rules for terms and substitutions are standard, but we include them here for
completeness in Fig. 1. Note that only variables will inhabit the base type.

Since the notion of reducibility is Kripke-based, we will be extra careful about contexts
and operations over them, such as weakening; we have learned the hard way how leaving
apparently trivial notions unspecified may come back to haunt us during the mechanization.
We view a context as an ordered list without repetitions that grows on the right (as opposed
to at arbitrary positions within the context). Although renamings ρ are merely substitutions
that map variables to variables, we write Γ′ ≤ρ Γ for well-typed renamings instead of
Γ′ ` ρ : Γ. In the case that ρ is an identity substitution, i.e., maps variables to themselves,
Γ′ is an extension of Γ modulo reordering. This is one motivation for our notation Γ′ ≤ρ Γ,
the other being the analogy with record subtyping.

Furthermore, we often silently exploit in this tutorial standard equational properties
about well-typed substitutions (which also naturally hold for renamings), such as composi-
tion and application, relying on the single substitution operation [N/x]M, whose definition
is the usual capture-avoiding one.

[σ ](λx:A.B) = λx:A.[σ ,x/x]M [σ ](·) = ·
[σ ](M N) = [σ ]M [σ ]N [σ ](σ ′,M/x) = [σ ]σ ′, [σ ]M/x
[σ ](x) = σ(x) [σ ]([σ1]σ2) = [[σ ]σ1]σ2

[N/x]([σ ,x/x]M) = [σ ,N/x]M

(We write σ(x) to denote variable lookup.)



ZU064-05-FPR main 24 January 2019 19:52

8 A. Abel et. al.

We describe single step reductions in Figure 2. Following (Goguen, 1995), we describe
reductions in a type-directed manner. While types only play an essential role when we
include rules such as η-expansion or in the presence of the unit type, which we do not
consider here, we follow his approach as it scales to defining more complex notions such as
type-directed equivalence (see also Sec. 3.8). There is another, more pedagogical advantage
to the typed view: the scope of variables is made explicit, making them either bound by
lambda-abstraction or in the typing context Γ. On top of the single step reduction relation,
we define multi-step reductions.

Our benchmark relies on a number of basic properties about typing and typed reductions
whose proofs are straightforward.

Lemma 3.1 (Reductions Preserve Typing). If Γ ` M −→ N : A, then Γ ` M : A and
Γ ` N : A.

Proof. By induction on the given derivation.

Lemma 3.2 (Weakening and Exchange for Typing and Typed Substitutions).

• If Γ `M : B, then Γ,x:A `M : B.
• If Γ,y:A,x:A′ `M : B, then Γ,x:A′,y:A `M : B.
• If Γ′ ` σ : Γ, then Γ′,x:A ` σ : Γ.

Proof. The first two by mutual induction on the given derivation, the last one by the same
induction.

Corollary 3.1 (Weakening of Renamings). If Γ′ ≤ρ Γ, then Γ′,x:A≤ρ Γ.

Lemma 3.3 (Anti-Renaming of Typing). If Γ′ ` [ρ]M : A and Γ′ ≤ρ Γ, then Γ `M : A.

Proof. By induction on the given typing derivation taking into account the equational
theory of substitutions.

Lemma 3.4 (Weakening and Exchange of Typed Reductions).

• If Γ `M −→ N : B, then Γ,x:A `M −→ N : B.
• If Γ,y:A,x:A′ `M −→ N : B, then Γ,x:A′,y:A `M −→ N : B.

Proof. By mutual induction on the given derivation.

Lemma 3.5 (Substitution Property of Typed Reductions). If Γ,x:A ` M −→ M′ : B and
Γ ` N : A, then Γ ` [N/x]M −→ [N/x]M′ : B.

Proof. By induction on the first derivation, using the usual properties of composition of
substitutions as well as weakening and exchange.

We will also rely on some standard properties about multi-step reduction.

Lemma 3.6 (Properties of Multi-Step Reductions).

1. If Γ `M1 −→∗ M2 : B and Γ `M2 −→∗ M3 : B, then Γ `M1 −→∗ M3 : B.
2. If Γ `M −→∗ M′ : A⇒ B and Γ ` N : A, then Γ `M N −→∗ M′ N : B.
3. If Γ `M : A⇒ B and Γ ` N −→∗ N′ : A, then Γ `M N −→∗ M N′ : B.
4. If Γ,x:A `M −→∗ M′ : B, then Γ ` λx:A.M −→∗ λx:A.M : A⇒ B.
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5. If Γ,x:A `M : B and Γ ` N −→ N′ : A, then Γ ` [N/x]M −→∗ [N′/x]M : B.

Proof. Properties 1, 2, 3, and 4 are proven by induction on the given multi-step rela-
tion. Property 5 is proven by induction on Γ,x:A ` M : B using weakening and exchange
(Lemma 3.4).

Remark One may choose to formulate the weakening and substitution properties using
simultaneous substitutions—and in fact, we will need those properties in the subsequent
development.

Lemma 3.7 (Closure under Simultaneous Substitution and Renaming). Let Γ `M −→ N :
A.

1. If Γ′ ` σ : Γ, then Γ′ ` [σ ]M −→ [σ ]N : A.
2. If Γ′ ≤ρ Γ, then Γ′ ` [ρ]M −→ [ρ]N : A.

What initial set-up we choose about substitutions has little consequence in a pen-and-
paper proof; nonetheless, it plays a crucial role in a mechanization.

3.2 Defining strong normalization

Classically, a term M is strongly normalizing if there are no infinite reduction sequences
from M. Constructively, we can define strong normalization Γ `M : A ∈ sn as an accessi-
bility relation:

∀N. Γ `M −→ N : A =⇒ Γ ` N : A ∈ sn
Γ `M : A ∈ sn

Since we follow a type-directed reduction strategy, we have added typing information to
accessibility.

We can unwind Γ `M : A ∈ sn along a multi-step reduction:

Lemma 3.8 (Multi-step Strong Normalization). If Γ `M −→∗ M′ : A and Γ `M : A ∈ sn,
then Γ `M′ : A ∈ sn.

Proof. Induction on Γ `M −→∗ M′ : A.

While the above definition is appealing in its simplicity and has been widely used (see for
example (Altenkirch, 1993)), it is not without defects: it involves reasoning about reduction
sequences and positions of terms, so much that “the reduct analysis becomes increasingly
annoying in normalization proofs for more and more complex systems” (Joachimski &
Matthes, 2003). This applies both to pen-and-paper and mechanized proofs.

As pioneered in (van Raamsdonk & Severi, 1995) and further developed in (Joachimski
& Matthes, 2003), we can easily characterize strongly normalizing terms inductively, build-
ing on the standard definitions of normal and neutral terms. Raamsdonk and Severi (1995)
observed that a term M is in the set of (strongly) normalizing terms, if either it is a normal
form or it can be obtained as the result of a series of expansions starting from a normal
form. However, to preserve strong normalization during expansions, we have to be careful
about terms “lost” via substitution for a variable with no occurrence. In particular, strong
normalization of [N/x]M does not imply strong normalization of (λx:A.M)N or of N, when
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Strongly normalizing neutral terms : Γ `M : A ∈ SNe
x:A ∈ Γ

Γ ` x : A ∈ SNe

Γ ` R : A⇒ B ∈ SNe Γ `M : A ∈ SN

Γ ` RM : B ∈ SNe

Strongly normalizing terms : Γ `M : A ∈ SN
Γ,x:A `M : B ∈ SN

Γ ` λx:A.M : A⇒ B ∈ SN

Γ ` R : A ∈ SNe

Γ ` R : A ∈ SN

Γ `M −→SN M′ : A Γ `M′ : A ∈ SN

Γ `M : A ∈ SN

Strong head reduction : Γ `M −→SN N : A

Γ ` N : A ∈ SN Γ,x:A `M : B

Γ ` (λx:A.M) N −→SN [N/x]M : B

Γ `M −→SN M′ : A⇒ B Γ ` N : A

Γ `M N −→SN M′N

Fig. 3. Inductive definition of Strong Normalization

x does not occur in M. This motivates the concept of strong head reduction, which is a weak
head reduction (λx:A.M)N N1 . . . Nn −→ [N/x]M N1 . . . Nn with the extra condition that N
is strongly normalizing. Our inductive definition given in Fig. 3 follows (van Raamsdonk
& Severi, 1995), augmented to track typing information.

Many proofs, not only those involving normalization, become simpler thanks to the in-
ductive definition, since it allows us to prove properties by structural induction: we reduce
the task of checking all one-step reducts to analyzing no more than one standard reduct
and some subterms. The reduct analysis is localized to the proof that the inductive notion
of normalization entails the accessibility version, a property we refer to as “soundness”
(Theorem 3.1).

3.3 Challenge 1a: Properties of sn

To establish soundness, we start with the following:

Lemma 3.9 (Properties of Strongly Normalizing Terms).

1. Γ ` x : A ∈ sn for all variables x : A ∈ Γ.
2. If Γ,x:A `M : B ∈ sn, then Γ ` λx:A.M : A⇒ B ∈ sn.
3. If Γ ` [N/x]M : B ∈ sn and Γ ` N : A, then Γ,x:A `M : B ∈ sn.
4. If Γ `M N : B ∈ sn, then Γ `M : A⇒ B ∈ sn and Γ ` N : A ∈ sn.

Proof. The first property is immediate, as variables do not step. Properties (2), (3), and (4)
are proven by induction on the given derivation.

Lemma 3.10 (Weak Head Expansion). If Γ ` N : A ∈ sn and Γ ` [N/x]M : B ∈ sn, then
Γ ` (λx:A.M) N : B ∈ sn.

Proof. By lexicographic induction on Γ ` N : A ∈ sn and Γ,x:A ` M : B ∈ sn (which is
entailed by Γ ` [N/x]M : B ∈ sn due to Lemma 3.9), analysing the possible reductions of
(λx:A.M) N.
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Remark We might again generalize Properties 3.9 (3) and 3.10 in terms of simultaneous
substitutions.

To make the proof of soundness more modular, it is useful to characterize terms that
are “blocked” by a variable, i.e. that are of the form x M1 . . .Mn. Those terms will not
trigger a weak head reduction and correspond intuitively to those characterized by SNe.
We call these terms neutral, following (Altenkirch et al., 1995); in the normalization proof,
they play a similar role as Girard’s neutrals (Girard et al., 1989). They are defined by the
judgment Γ ` R : A ne :

x : A ∈ Γ

Γ ` x : A ne

Γ ` R : A⇒ B ne Γ ` N : A

Γ ` R N : B ne

Now, we can show that neutral terms are forward closed and that if R is neutral and
strongly normalizing together with N being strongly normalizing, then R N is strongly
normalizing.

Lemma 3.11 (Closure Properties of Neutral Terms).

1. If Γ ` R : A ne and Γ ` R−→ R′ : A, then Γ ` R′ : A ne.
2. If Γ ` R : A⇒ B ne and Γ ` R : A⇒ B∈ sn, and Γ `N : A∈ sn, then Γ ` R N : B∈ sn.

Proof. Property (1) follows by induction on Γ ` R : A ne. Property (2) is proven by lexico-
graphic induction on Γ ` R : A⇒ B ∈ sn and Γ ` N : A ∈ sn, using Property (1).

We further introduce the notion of sn-strong head reduction −→sn, which is analogous
to (SN-)strong head reduction −→SN.

Γ ` N : A ∈ sn Γ,x:A `M : B
Γ ` (λx:A.M) N −→sn [N/x]M : B

Γ `M −→sn M′ : A⇒ B Γ ` N : A
Γ `M N −→sn M′ N : B

Lemma 3.12 (Confluence of sn). If Γ `M −→sn N : A and Γ `M −→ N′ : A then either
N = N′ or there ∃Q s.t. Γ ` N′ −→sn Q : A and Γ ` N −→∗ Q : A.

Proof. By induction on Γ `M −→sn N : A.

Lemma 3.13 (Backward Closure of sn).

1. If Γ `N : A∈ sn, Γ `M : A⇒ B∈ sn, Γ `M−→sn M′ : A⇒ B and Γ `M′ N : B∈ sn,
then Γ `M N : B ∈ sn.

2. If Γ `M −→sn M′ : A and Γ `M′ : A ∈ sn, then Γ `M : A ∈ sn.

Proof. Property (1) is proven by lexicographic induction on Γ ` N : A ∈ sn and Γ ` M :
A⇒ B ∈ sn. Property (2) is proven by induction on Γ `M −→sn M′ : A, using Property (1)
in the inductive case.

We here sketch the use of the Confluence lemma and lexicographic induction in the
proof of property (1); the full proof can be found in the electronic appendix.

To show that Γ ` M N : B ∈ sn, we assume Γ ` M N −→ Q : B, and establish that
Γ ` Q : B ∈ sn. By case analysis on Γ `M N −→ Q : B, two cases remain:

1. If Γ ` N −→ N′ : A and Q = M N′, the claim follows directly with the inductive
hypothesis for Γ ` N : A ∈ sn.
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2. If Γ ` M −→ M′′ : A⇒ B and Q = M′′ N, we require confluence to establish any
relation between M′ and M′′: Either M′ =M′′, in which case the goal follows directly
by our assumption, or M′ and M′′ converge to the same term P. Then we require the
inductive hypothesis for Γ ` M : A⇒ B ∈ sn, and Lemmas 3.6(2) and 3.8 to fulfill
the assumptions.

Note how a mere structural induction is not enough: the lexicographic induction is
necessary, to later have the particular inductive hypothesis available.

Challenging aspects Proving confluence about sn (Lemma 3.12, sometimes referred to
as the weak standardization lemma), requires a detailed and tedious case analysis and has
previously not been stated as clearly.2 The introduction of sn-strong head reduction −→sn,
which mirrors strong head reduction−→SN, helps structure and simplify the proofs. How-
ever, the proofs about backward closure of sn require a detailed analysis of the reduction
relation, for example, in Property (1) of Lemma 3.13. This analysis can be quite tricky as
we rely on simultaneous well-founded induction.

3.4 Challenge 1b: Soundness of inductive definition of strongly normalizing terms

We now have all the properties about sn that are necessary to establish soundness save for
the simple property that all terms inductively characterized by SNe are neutral.

Lemma 3.14. If Γ `M : A ∈ SNe, then Γ `M : A ne.

Proof. By induction on Γ `M : A ∈ SNe.

Theorem 3.1 (Soundness of SN).

1. If Γ `M : A ∈ SN, then Γ `M : A ∈ sn.
2. If Γ `M : A ∈ SNe, then Γ `M : A ∈ sn.
3. If Γ `M −→SN M′ : A, then Γ `M −→sn M′ : A.

Proof. By mutual structural induction on the given derivations using the closure properties
(Lemmas 3.9 (1), 3.9 (2), 3.11 (2), 3.13 (2), 3.14).

Challenging aspects Given our set-up, the final soundness proof is straightforward. This
is largely due to the fact that we have factored out and defined the−→sn relation in analogy
to the −→SN relation.

Additional twist One might want to consider a formulation of neutral terms that relies on
evaluation contexts instead of a predicate. Using evaluation contexts is elegant and might
be advantageous as the language grows. Evaluation contexts are defined inductively as
either a hole or the application of an evaluation context C to a term M.

Evaluation Contexts C ::= _ |C M

2 For example, Abel and Vezzosi (2014) state a variant of this lemma that makes some unnecessary
assumptions about strong normalization.
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Definition 3.2 (Typing Rules for Evaluation Contexts). We write Γ | A0 ` C : A to state
that the evaluation context C lives in scope Γ, has a hole of type A0 and gives rise to an
overall expression of type A. This relation is specified by the two following typing rules:

Γ | A0 ` _ : A0

Γ | A0 `C : A⇒ B Γ `M : A
Γ | A0 `C M : B

We extend the notion of reduction as usual and of sn (respectively SN) to evaluation
contexts by demanding that all the terms appearing in such a context are sn (respectively
SN). For that, we need the usual notion of filling a hole.

Lemma 3.15 (Properties of Evaluation Contexts).

1. If Γ | A0 `C : A and Γ `M : A0, then Γ `C[M] : A.
2. If Γ | A0 `C : A ∈ sn and x:A0 ∈ Γ, then Γ `C[x] : A ∈ sn.
3. If Γ ` M : A ∈ SNe, then there exists A0, C and x:A0 ∈ Γ such that M = C[x] and

Γ | A0 `C : A ∈ SN.

Proof. (1), (2) by induction on C. (3) by induction on Γ `M : A ∈ SNe.

Lemma 3.16 (Closure Properties of Strongly Normalizing Evaluation Contexts).

1. If Γ | A0 `C : B ∈ sn, M is not an abstraction, and Γ `C[M]−→ N : B, then
either ∃M′ s.t. N =C[M′] and Γ `M −→M′ : A0

or ∃C′ s.t. N =C′[M] and ∀M′′. Γ `C[M′′]−→C′[M′′] : B.
2. If Γ,x:A `M : A0 ∈ sn, Γ ` N : A ∈ sn, Γ | A0 `C : B ∈ sn, Γ `C[ [N/x]M ] : B ∈ sn

then Γ `C[ (λx:A. M)N ] : B ∈ sn.
3. If Γ `M −→sn M′ : A0 and Γ `C[M′] : A ∈ sn then Γ `C[M] : A ∈ sn.

Proof. (1) by induction on C and case analysis on the reduction step. (2) is proven by
lexicographic induction on the sn assumptions, by assuming C[ (λx:A.M)N ] steps to a
reduct and using (1) to decide whether the reduction happens in C, M, N or ((λx:A.M)N).
Last but not least (3) by induction on the reduction step either using (2) or growing the
evaluation context.

Theorem 3.2 (Soundness of SN using Evaluation Contexts).

1. If Γ `M : A ∈ SN, then Γ `M : A ∈ sn.
2. If Γ | A0 `C : A ∈ SN, then Γ | A0 `C : A ∈ sn.
3. If Γ `M −→SN M′ : A, then Γ `M −→sn M′ : A.

Proof. By mutual induction on the respective derivations using 3.15 (3, 1) to deal with the
SNe case 3.16 (3) to deal with the −→SN case.

3.5 Challenge 2a: Properties of strong normalization

Before we describe the main proof of strong normalization, we need to establish a number
of properties about the inductive definition of SN.

In particular, we express two key properties about context extensions over strongly nor-
malizing terms in terms of renaming substitutions as witnesses for the context extension.
Lemma 3.17 states that we can transport any well-typed term that is strongly normalizing
in the context Γ to the extended context Γ′. The second property is the dual and states that
given a well-typed term [ρ]M in a context extension Γ′ we can recover M in the context Γ.
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Lemma 3.17 (Renaming).

1. If Γ `M : A ∈ SN and Γ′ ≤ρ Γ, then Γ′ ` [ρ]M : A ∈ SN.
2. If Γ `M : A ∈ SNe and Γ′ ≤ρ Γ, then Γ′ ` [ρ]M : A ∈ SNe.
3. If Γ `M −→SN N : A and Γ′ ≤ρ Γ, then Γ′ ` [ρ]M −→SN [ρ]N : A.

Proof. By mutual induction on the given derivations using the Weakening Lemma 3.2.

Lemma 3.18 (Anti-Renaming).

1. If Γ′ ` [ρ]M : A ∈ SN and Γ′ ≤ρ Γ, then Γ `M : A ∈ SN
2. If Γ′ ` [ρ]M : A ∈ SNe and Γ′ ≤ρ Γ, then Γ `M : A ∈ SNe
3. If Γ′ ` [ρ]M −→SN N′ : A and Γ′ ≤ρ Γ, then there exists N s.t. Γ `M −→SN N : A

and [ρ]N = N′.

Proof. By mutual induction on the given derivations, in each case exploiting that ρ is a
renaming. For example, we might encounter that Γ′ ` [ρ]M : A ∈ SNe via the application
rule. Since [ρ]M is an application, we need to conclude that M is also an application to
proceed with the proof.

The proof moreover takes into account several equational properties of substitutions:
Consider for example the case of term abstraction, where we have to show

Γ
′ ` λx:A.[ρ,x/x]M : A⇒ B ∈ SN

and thus require weakening (Lemma 3.1) to apply the inductive hypothesis.
Next, in the case of beta reduction for strong head reduction, we have to show

Γ
′ ` [ρ]((λx:A.M) N)−→SN [ρ, [ρ]N/x]M : B

and thus have to handle composition of renamings and substitutions appropriately.
Full proof details can be found in the appendix.

This proof challenges support for binders in various ways: For one, it requires the
systems to have an appropriate notion of renamings — the claim is not true for full substi-
tutions. In addition, the proof requires convenient handling of equations for both renamings
and substitutions.

Lastly, we need extensionality of SN for function types, which will be crucial in the
proof of Girard’s property CR1:

Lemma 3.19 (Extensionality of SN). If x:A ∈ Γ and Γ `M x : B ∈ SN, then Γ `M : A⇒
B ∈ SN.

Proof. By induction on Γ `M x : B ∈ SN.

Remark One can also define extensionality of SN as:

If Γ `M : A⇒ B and Γ,x:A≤ρ Γ and Γ,x:A ` [ρ]M x : B ∈ SN, then Γ `M : A⇒ B ∈ SN.

The proof of this formulation of extensionality is similar, but relies more heavily on the
anti-renaming lemma.
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Challenging aspects The main issue here is doing case analysis modulo the equational
theory of renamings in the proof for Lemma 3.18 when considering all possible cases for
Γ′ ` [ρ]M : A ∈ SN.

3.6 Challenge 2b: Proving strong normalization with logical relations

We now turn to the definition of our logical predicate. Since we are working with well-
typed terms, we define the semantic interpretation of Γ ` M ∈ RA⇒B considering all ex-
tensions of Γ (described by Γ′ ≤ρ Γ) in which we may use M.

• Γ `M ∈Ri iff Γ `M : i ∈ SN
• Γ ` M ∈ RA⇒B iff for all Γ′ ≤ρ Γ such that Γ′ ` N : A, if Γ′ ` N ∈ RA, then Γ′ `
([ρ]M) N ∈RB.

Rather than attempt the proof of the main result directly and then extract additional
lemmas one might need about the semantic types, we follow Girard’s technique and char-
acterize some key properties that our logical predicate needs to satisfy.

Theorem 3.3.

1. CR1: If Γ `M ∈RA, then Γ `M : A ∈ SN.
2. CR2: If Γ ` M −→SN M′ : A and Γ ` M′ ∈ RA, then Γ ` M ∈ RA, i.e. backward

closure.
3. CR3: If Γ `M : A ∈ SNe, then Γ `M ∈RA.

Proof. The properties are proven by mutual induction on the structure of A.

We prove that if a term is well-typed, then it is strongly normalizing in two steps:

Step 1 If Γ `M ∈RA, then Γ `M : A ∈ SN.
Step 2 If Γ `M : A and Γ′ ` σ ∈RΓ, then Γ′ ` [σ ]M ∈RA.

Step 1 is satisfied by the fact that Γ `M ∈RA must be a reducibility candidate (Theo-
rem 3.3) and by CR 1 all terms in RA are strongly normalizing. We now prove the second
step, which is often referred to as the Fundamental Lemma. It states that if M has type A and
we can provide “good” instantiation σ , yielding terms which are themselves normalizing
for all the free variables in M, then Γ ` [σ ]M ∈RA. The definition of such instantiations σ

is as follows:
Definition 3.3 (Semantic Substitutions).

Γ
′ ` · ∈R·

Γ
′ ` σ ∈RΓ Γ

′ `M ∈RA

Γ
′ ` σ ,M/x ∈RΓ,x:A

Lemma 3.20 (Fundamental lemma). If Γ `M : A and Γ′ ` σ ∈RΓ then Γ′ ` [σ ]M ∈RA.

Proof. By induction on Γ `M : A using the renaming lemma for Γ′ ` σ ∈RΓ.

Corollary 3.4. If Γ `M : A, then Γ `M : A ∈ SN.

Proof. Using the fundamental lemma with the identity substitution Γ ` id ∈RΓ, we obtain
Γ `M ∈RA. By CR1, we know Γ `M ∈ SN.
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Type-directed reduction : Γ `M −→ N : A
Γ `M : A Γ,x:A ` N1 : C Γ,y:b ` N2 : C

Γ ` case(inl M)of inlx⇒ N1 | inry⇒ N2 −→ [M/x]N1 : C
E-CASE-INL

Γ `M : B Γ,x:A ` N1 : C Γ,y:b ` N2 : C
Γ ` case(inr M)of inlx⇒ N1 | inry⇒ N2 −→ [M/y]N2 : C

E-CASE-INR

Fig. 4. Type-directed reduction, extended with disjoint sums

Strongly normalizing neutral terms : Γ `M : A ∈ SNe
Γ `M : A+B ∈ SNe Γ,x:A ` N1 : C ∈ SN Γ,y:B ` N2 : C ∈ SN

Γ ` caseMof inlx⇒ N1 | inry⇒ N2 : C ∈ SNe

Strongly normalizing terms : Γ `M : A ∈ SN
Γ `M : A ∈ SN

Γ ` inl M : A+B ∈ SN
Γ `M : B ∈ SN

Γ ` inr M : A+B ∈ SN

Strong head reduction : Γ `M −→SN N : A
Γ `M : A ∈ SN Γ,x:A ` N1 : C ∈ SN Γ,y:B ` N2 : C ∈ SN
Γ ` case(inl M)of inlx⇒ N1 | inry⇒ N2 −→SN [M/x]N1 : C

Γ `M : B ∈ SN Γ,x:A ` N1 : C ∈ SN Γ,y:B ` N2 : C ∈ SN
Γ ` case(inr M)of inlx⇒ N1 | inry⇒ N2 −→SN [M/x]N2 : C

Γ `M −→SN M′ : A+B Γ,x:A ` N1 : C Γ,y:B ` N2 : C

Γ ` caseMof inlx⇒ N1 | inry⇒ N2 −→SN caseM′ of inlx⇒ N1 | inry⇒ N2 : C

Fig. 5. Inductive definition of Strong Normalization, extended with disjoint sums

Challenging aspects The definition of the logical predicate is not strictly positive, but
is well-founded as it is defined by recursion on the structure of the type. The proofs of
CR1 through CR3 rely extensively on reasoning about context extensions and in turn about
renamings. Similarly, the fundamental lemma requires a good handling of simultaneous
substitutions.

3.7 Extension: Disjoint sums

How well do our proof method and formal mechanization cope with language extensions?
In this section, we augment our language of terms with the constructors and eliminators
for disjoint sums:

Terms M,N ::= · · · | inl M | inr M | caseM of inlx⇒ N1 | inry⇒ N2

Types A,B ::= · · · | A+B

The new reduction rules are given in Figure 4. For reasons of brevity, the congruence
rules for inl, inr and case are omitted; the full set of reduction rules can be found in
the Appendix. We also extend our definitions of SN, SNe, and −→SN (Figure 5). The
extension to the definition of sn-strong head reduction (−→sn) is analogous to that of strong
head reduction (−→SN), using sn instead of SN, and can also be found in the Appendix.

Disjoint sums add several features that we need to account for in our proofs:
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Well-typed terms and reduction rules With the addition of injections and case-expressions
the number of rules for reduction more than doubles. We also need to extend weakening
and exchange for typing (Lemma 3.2), weakening of typed reductions (Lemma 3.4) and
substitution properties for typed reductions (Lemma 3.5), in addition to the proof that
reductions preserve typing (Lemma 3.1) and anti-renaming of typing (Lemma 3.3). The
new cases are standard, as well as our lemmas about multi-step reductions. In particular,
we need the following:

Lemma. [Properties of Multi-Step Reductions]

1. If Γ `M −→∗ M′ : A, then Γ ` inl M −→∗ inl M′ : A+B.
2. If Γ `M −→∗ M′ : B, then Γ ` inr M −→∗ inr M′ : A+B.
3. If Γ`M−→∗M′ : A+B, then Γ` caseM of inlx⇒N1 | inry⇒N2−→∗ caseM′ of inlx⇒

N1 | inry⇒ N2 : C.
4. If Γ,x:A`N1−→∗ N′1 :C, then Γ` caseM of inlx⇒N1 | inry⇒N2−→∗ caseM of inlx⇒

N′1 | inry⇒ N2 : C.
5. If Γ,y:B`N2−→∗ N′2 :C, then Γ` caseM of inlx⇒N1 | inry⇒N2−→∗ caseM of inlx⇒

N1 | inry⇒ N′2 : C.

Neutral terms Following the definition of SNe, neutral terms (Definition 3.3) contain a
new inhabitant:

Γ `M : A+B ne Γ,x : A ` N1 : C Γ,y : B ` N2 : C

Γ ` caseM of inlx⇒ N1 | inry⇒ N2 : C ne

This comes with the need for a new closure property.

3.7.1 Extension: Challenge 1

In the previous section, we described our extensions for syntax, reduction, and strong nor-
malization. To prove soundness, we need to extend our repertoire of properties about strong
normalization accordingly. The major statements, i.e. confluence (Lemma 3.12), backward
closure (Lemma 3.13), and soundness, follow immediately from additional helper lemmas
as described in this section.

First, the extended language requires additional subterm properties of strong normaliza-
tion.

Lemma. [Properties of Strongly Normalizing Terms]

1. If Γ `M : A ∈ sn, then Γ ` inl M : A+B ∈ sn.
2. If Γ `M : B ∈ sn, then Γ ` inr M : A+B ∈ sn.
3. If Γ ` caseM of inlx⇒ N1 | inry⇒ N2 : C ∈ sn, then Γ `M : A+B ∈ sn and Γ,x:A `

N1 : C ∈ sn and Γ,y:B ` N2 : C ∈ sn.

The new reduction rules E-CASE-INL and E-CASE-INR play a similar role to β -reduction
for abstractions. They thus invoke additional instances of weak head expansion and a new
case of the backward lemma.

Lemma. [Weak Head Expansion]
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1. If Γ ` M : A ∈ sn and Γ ` [M/x]N1 : C ∈ sn and Γ,y:B ` N2 : C ∈ sn, then Γ `
case(inl M)of inlx⇒ N1 | inry⇒ N2 ∈ sn.

2. If Γ ` M : B ∈ sn and Γ,x:A ` N1 : C ∈ sn and Γ ` [M/y]N2 : C ∈ sn, then Γ `
case(inr M)of inlx⇒ N1 | inry⇒ N2 ∈ sn.

Lemma. [Backward Closure of sn] If Γ ` M : A+B ∈ sn, Γ,x:A ` N1 : C ∈ sn, Γ,y:B `
N2 : C ∈ sn, Γ `M −→∗ M′ : A+B, and Γ ` caseM′ of inlx⇒ N1 | inry⇒ N2 ∈ sn, then
Γ ` caseM of inlx⇒ N1 | inry⇒ N2 ∈ sn.

Together with these extensions, backward closure (Lemma 3.13) follows as before.
While the preservation of neutral terms by reduction (Lemma 3.14 (1)) extends imme-

diately, the corresponding case for the soundness proof requires the following addition to
the closure property (Lemma 3.14 (2)):

Lemma. [Closure Properties of Neutral Terms] If Γ `M : A+B ∈ sn, Γ `M : A+B ne,
Γ,x:A`N1 : C ∈ sn, and Γ,y:B`N2 : C ∈ sn, then Γ` caseM of inlx⇒N1 | inry⇒N2 ∈ sn.

The soundness lemma itself (Lemma 3.1) follows immediately with the previous defini-
tions.

3.7.2 Extension: Challenge 2

Finally, we extend our definition of the logical predicate RA to disjoint sums. This is not as
simple as it may seem: the naïve definition of Γ ` inl M ∈RA+B iff Γ `M ∈RA and dual
is insufficient as it fails to satisfy CR2 and CR3. For example, we have y:A ` inl y ∈RA+B

according to our definition. But although y:A` (λx:A.inl x) y−→ inl y : A+B, our definition
fails to prove that y:A ` (λx:A.inl x) y ∈RA+B.

To be a reducibility candidate, we thus need to improve upon our definition of the logical
relation such that it satisfies CR2 and CR3. A closure RA of RA ensures exactly this:

Γ `M ∈RA

Γ `M ∈RA

Γ `M : A ∈ SNe

Γ `M ∈RA

Γ `M : RA Γ ` N −→SN M : A

Γ ` N : RA

The logical predicate RA+B is then defined as follows:

Γ `M ∈RA+B iff Γ `M ∈ {inl M′ | Γ `M′ ∈RA}∪{inr M′ | Γ `M′ ∈RB}

Showing that RA+B is a reducibility candidate is straightforward. The latter two prop-
erties are immediate by the definition of the closure. The proof of CR1 requires an inner
induction on the structure of the closure, which is straightforward from the definitions of
RA+B and SN.

Finally, we need to update the fundamental lemma (Lemma 3.20): The cases involving
inl and inr are straightforward, and the case expression requires an inner induction similar
to the proof of CR1. See the Appendix for full details.

Overall the approach to defining strong normalization inductively is remarkably modular
and we hope that this extension to disjoint sums provides further evidence of the value of
the inductive definition of strong normalization.
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3.8 Further extensions

The current benchmark problem focuses on a unary logical relation (or predicate). A binary
logical relation is typically used to prove decidability of conversion in the presence of type-
directed equality rules, such as in a typed lambda-calculus with η for function, product,
and unit types. In this setting, term equality is checked in a type-directed way interleaving
weak-head evaluation with head comparison (Harper & Pfenning, 2005; Goguen, 2005;
Abel & Scherer, 2012). Crary (Crary, 2005) explains for the simply-typed lambda-calculus
how to set up a suitable Kripke logical relation to prove that algorithmic equality is com-
plete, in particular, transitive and compatible with application. Formalizing the simply-
typed version by Crary (2005) would be a logical extension of the POPLMark Reloaded
challenge.

4 Solutions

We have completed the challenge problem using different encodings and proof environ-
ments. We will briefly survey them below.

4.1 Solution A: Using higher-order abstract syntax with Beluga

Beluga (Pientka & Dunfield, 2010) is a proof environment built on top of the (contextual)
logical framework LF (Harper et al., 1993; Nanevski et al., 2008). Proofs are implemented
as recursive programs based on the Curry-Howard correspondence. The type checker then
verifies that we manipulate well-typed derivations, while the totality checker certifies that
functions cover all cases and are terminating.

Definitions Beluga allows the user to encode well-typed lambda-terms directly using higher-
order abstract syntax (HOAS) where binders in the object language (i.e., in our case STLC)
are represented using the binders in the meta-language (i.e., in our case LF). Such en-
codings inherit not only α-renaming and substitution from the meta-language, but also
weakening/exchange and (single) substitution lemmas. We exploit dependent types in LF
to characterize well-typed terms. Hence typing invariants are tracked implicitly using the
LF type checker. The type family tm is indexed by ty, which describes our object language
types and has two LF constants lam for STLC abstractions and app for applications. Note
that there is no case for variables — instead we define lam as taking in a LF function tm
A → tm B as an argument. In other words, we re-use the LF function space to model the
scope of variables in STLC abstractions.

The reduction relation is modelled using the type family step. This is where we take
advantage of HOAS. In encoding the β -reduction rule, we simply step (app (lam M) N)
to (M N). Substitution in STLC is modelled using LF application (M N). Similarly, when
reducing the body of an STLC abstraction, we handle renaming by generating a new LF
variable x and step (M x) to some result (M’ x) (see LF constant rlam).

LF ty : type =
| base : ty
| arr : ty → ty
→ ty;

LF tm : ty → type =
| lam : (tm A → tm B) → tm (arr A B)
| app : tm (arr A B) → tm A → tm B;
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LF step : tm A → tm A → type =
| rbeta : step (app (lam _ M) N) (M N)
| rlam : (Πx:tm A. step (M x) (M’ x)) → step (lam M) (lam M’)
| rappl : step M M’ → step (app M N) (app M’ N)
| rappr : step N N’ → step (app M N) (app M N’);

The encoding of (intrinsically) typed terms and reduction rules is just 19 lines of Beluga
code.

We obtain basic properties about typed reductions (such as Lemma 3.1), weakening and
exchange properties for well-typed terms (Lemma 3.2), and anti-renaming properties of
well-typed terms (Lemma 3.3) for free. In addition, we obtain also for free the weakening
and exchange property of typed reductions (Lemma 3.4) and the substitution property for
typed reductions (Lemma 3.5).

We can model a well-typed term together with its typing context using contextual objects
and contextual types offered by contextual LF (Pientka, 2008). Contexts, substitutions, and
renamings are also internalized and programmers can work with them directly in Beluga.
Strong normalization as accessibility can then be directly encoded in Beluga using indexed
inductive types (Cave & Pientka, 2012).

schema cxt = tm A;

inductive Sn : (Γ : cxt) {M : [Γ ` tm A[]]} type =
| Acc : {Γ : cxt}{A:[ ` ty]}{M : [Γ ` tm A[]]}

({M’ : [Γ ` tm A[]]} {S : [Γ ` step M M’]} Sn [Γ ` M’])
→ Sn [Γ ` M]

We write here curly braces for universally quantified variables; we write round parenthe-
ses for implicit arguments in Beluga that merely provide a type annotation to some of the
parameters. As mentioned before, contexts are first-class citizens and we can declare their
“type” by giving a schema definition which in our example simply states that a context of
schema cxt consists of declarations tm A for some type A. The contextual type [Γ `
tm A[]] describes terms M that have type A in the context Γ. Further, we want to express
that the type A is closed and cannot refer to declarations in Γ. We hence associate it with a
weakening substitution (written as A[]).

Kripke-style logical relations about well-typed terms are represented using indexed strat-
ified types (Jacob-Rao & Pientka, 2018), which are recursive types that are defined by well-
founded recursion over an index. Here, we define Red as a stratified type for well-typed
terms based on the type of the term. Context extensions are witnessed by renamings that
have type [Γ′ `# Γ] and are again first-class citizens in Beluga.

stratified Red : (Γ : cxt) {A : [ ` ty ]} {M : [Γ ` tm A[]]} type =
| RBase : SN [Γ ` M] → Red [ ` base ] [Γ ` M]
| RArr : ({Γ′ : cxt} {ρ : [Γ′ `# Γ]} {N : [Γ′ ` tm A[]]}

Red [` A] [Γ′ ` N] → Red [` B] [Γ′ ` app M[ρ] N])
→ Red [ ` arr A B ] [Γ ` M] ;

Lemmas and proofs The main advantages of supporting well-typed terms, contexts, and
substitutions comes into play when building and type-checking proofs as programs. In
particular, Beluga compares well-typed (contextual) objects not only modulo βη , but also
modulo the equational theory of simultaneous substitutions described on page 7, taking
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into account composition, decomposition, and associativity properties of substitutions.
This avoids cluttering our proofs with them and leads to a direct, elegant, and compact
mechanization of the challenge problem. This is particularly evident in the proof of anti-
renaming (Lemma 3.18), which can directly be implemented by pattern matching on the
definition of SN, SNe and −→SN. We show a few cases illustrating the idea in Fig. 6.

rec anti_renameSN : {Γ : cxt}{Γ′ : cxt} {ρ : [Γ′ `# Γ]}{M : [Γ ` tm A[]]}
SN [Γ′ ` M[ρ]] → SN [Γ ` M] =

/ total s (anti_renameSN Γ Γ′ A ρ M s) /
mlam Γ, Γ’, ρ, M ⇒ fn s ⇒ case s of
| SAbs s’ ⇒

SAbs (anti_renameSN [Γ, x:tm _] [Γ′, x:tm _ ] [Γ’, x:tm _ ` ρ[...], x
] [Γ, x:tm _ ` _] s’)

| SNeu s’ ⇒ SNeu (anti_renameSNe [Γ′ ` ρ] [Γ ` M] s’)
| SRed r’ s’ ⇒

let SNRed’ [Γ′] [Γ] [Γ ` N ] r = anti_renameSNRed [_] [_] [Γ′ ` ρ] [_
` _ ] r’ in

let s’’ = anti_renameSN [Γ] [Γ′] [Γ′ ` ρ] [Γ ` N ] s’ in
SRed r s’’

and anti_renameSNe : (Γ : cxt)(Γ’ : cxt) {ρ : [Γ′ `# Γ]}{M : [Γ ` tm A
[]]}

SNe [Γ′ ` M[ρ]] → SNe [Γ ` M] =
/ total s (anti_renameSNe Γ Γ′ A ρ M s) /

mlam ρ, M ⇒ fn s ⇒ case s of
| SVar [Γ′ ` _ ] ⇒ SVar [ _ ` _ ]
| SApp r s ⇒

let r’ = anti_renameSNe [_ ` ρ] [_ ` _] r in
let s’ = anti_renameSN [_] [_] [_ ` ρ] [_ ` _] s in
SApp r’ s’

and anti_renameSNRed: .... ;

Fig. 6. Implementation of the anti-renaming lemma in Beluga

The type of the Beluga program directly corresponds to the statement of the anti-renaming
Lemma 3.18 . We leave some arguments such as the type A implicit and do not quantify over
them; Beluga’s type reconstruction algorithm will infer the type. The totality declaration
states that the subsequent program can be viewed as an inductive proof that proceeds over
SN [Γ′ ` M[ρ]]. This is verified by the totality checker. We introduce all the arguments
that are explicitly quantified using curly braces via the keyword mlam; subsequently we
introduce the variable s that stands for SN [Γ′ ` M[ρ]]. We then use pattern matching
on s and consider three possible cases: SAbs s’, SNeu s’ and SRed r’ s’. Note that
in the informal proof we took into account the equational theory of renamings; in Beluga,
this is directly incorporated into equivalence checking, unification, and matching. Other-
wise the program proceeds as the informal proof. In the case for SAbs, weakening of the
renaming ρ is accomplished by associating ρ with the weakening substitution written as
[...]. Type reconstruction in Beluga is quite powerful and we can often write an underscore
for arguments that are uniquely determined and can be reconstructed.
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Size The encoding of the strong normalization proof (Sec. 3.6) is 97 lines of Beluga
code; encoding some of the basic properties stated in Sec. 3.1 takes up 39 LOC out of 75
LOC. The encoding of the soundness proof of the inductive strong normalization definition
(Sec. 3.3 and Sec. 3.4) is about 192 LOC (see also Fig. 15).

Scalability As the proofs written in Beluga closely resemble their informal versions, the
significant increase in length for the pen-and-paper proofs resulting from the addition of
several reduction rules for disjoint sums was reflected in the mechanization of the extended
soundness proof. This was particularly evident in the Confluence lemma, which had to be
extended with an additional 13 cases; and several of these were repetitive. The growing
size is also reflected in the size of the soundness proof which is roughly double in size (see
again Fig. 15). On the other hand, as the proofs using the inductive definition of SN are
quite modular and scale easily without the need for additional lemmas (in particular, they
are completely independent of any new reduction rules), the extension of the proof using
the inductive definition was correspondingly short, taking fewer than 100 additional lines
of code.

Lessons learned In general, the Beluga programs correspond directly to the informal
proofs and in fact writing out the Beluga programs helped clarify the overall structure of the
former. The given benchmark problems were instrumental in driving the implementation
and testing of first-class renamings in Beluga. The benchmark also motivated the develop-
ers to generalize the totality checker, which was overly conservative in some places, and
extended it with lexicographic orders following Twelf’s (Pientka, 2005). However, this
benchmark also outlines some current limitations:

1. The structural subterm ordering employed by Beluga’s totality checker does not
take into account exchange; hence, we cannot certify the mechanized proof of the
substitution property of multi-step reductions (Lemma 3.6 (5)) where exchange is
needed. One might be able to work with a more generalized form of the substitution
lemma; possibly more natural would be to extend the implementation and allow a
more general structural subterm ordering that allows for exchange of variables.

2. From a practical perspective, one would like to have more support for constructing
proofs interactively. This would make it easier for the programmer to tackle larger
mechanizations.

3. Type reconstruction in dependently typed systems is still a challenging and not well-
understood problem; in Beluga this is exacerbated by the need to infer contexts, sub-
stitutions, and renamings. As a consequence, we write out more explicit arguments
than in comparable dependently typed systems.

4.2 Solution B: Using well-typed de Bruijn encoding in Coq

The Coq proof assistant is based on an expressive type theory, but offers no special support
for reasoning about languages with binders. Different encoding strategies exist to represent
variable bindings and the necessary infrastructure ranging from de Bruijn (De Bruijn,
1972), locally nameless (Pollack, 1994; Charguéraud, 2012), weak or parametric HOAS (De-
speyroux et al., 1995; Chlipala, 2008), full HOAS (Felty & Momigliano, 2009; Felty &
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Inductive tm (Γ : ctx) : ty → Type :=
| var A : Var Γ A→ tm Γ A
| app A B : tm Γ (A⇒ B)→ tm Γ A→ tm Γ B
| lam A B : tm (A :: Γ) B→ tm Γ (A⇒ B).

Fixpoint Var Γ A :=
match Γ with
| [] ⇒ False
| B :: Γ’⇒ (A = B) + Var Γ’ A
end.

Fig. 7. Type declaration for well-typed de Bruijn in Coq

Inductive step {Γ} : ∀ {A}, tm Γ A→ tm Γ A→ Prop :=
| step_beta A B (M : tm (A :: Γ) B) (N : tm Γ A) :

step (app (lam M) N) (M[N/])
| step_abs A B (M M’ : tm (A :: Γ) B) :

step M M’ → step (lam M) (lam M’)

Fig. 8. Definition of the step relation in Coq

Momigliano, 2012) to named representations (Anand, 2016). In the present work, we focus
on a well-typed variant of the de Bruijn representation (Benton et al., 2012) together with
parallel substitutions.

In the well-typed de Bruijn encoding, terms are encoded with an inductive family of
types tm (Figure 7). The type tm Γ A stands for terms of type A in context Γ, where a
context is a list of types. We write Var Γ A for the type of positions of type A in the
context Γ, which is defined by recursion on Γ. Unlike in LF, terms have an explicit variable
constructor which lifts positions in the context to the corresponding terms.

With these definitions, a (simultaneous) renaming is a function ρ mapping positions in
one context Γ to positions in another context Γ′, i.e. ρ: ∀ A, Var Γ A→ Var Γ’ A. A substitu-
tion σ is a function mapping context positions to terms in another context, i.e. σ : ∀ A, Var
Γ A→ tm Γ’ A. We write M<ρ> and M[σ] for the (capture avoiding) instantiation of a term
M under a renaming or substitution, respectively.

Their definitions are standard using the primitives suggested in (Abadi et al., 1991),
adapted to a well-typed setting. The primitives suffice to express beta-substitution, denoted
as M[N/]. To ensure termination, our implementation requires us to define instantiation of
renamings and substitutions separately.

Using these definitions entails a range of additional lemmas stating the connection be-
tween the different primitives; for example lemmas about composition, decomposition, and
associativity of substitutions.

As this forms a complete (Schäfer et al., 2015) and convergent rewriting system (Curien
et al., 1992), all further substitution lemmas are proven automatically by rewriting based
on a variant of the σ -calculus (Abadi et al., 1991). This approach is specific to de Bruijn
representations and typically not available under other encodings.

Definitions Our definitions are as expected: We implement reduction and strong normal-
ization with inductive types and the logical relation is defined by structural recursion on
types.

In contrast to the Beluga solution, we implement beta-reduction using the defined notion
of substitution (Figure 8). The logical relation uses the notion of renaming defined earlier
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Fixpoint Red (Γ : ctx) (A : ty) : tm Γ A→ Prop :=
match A with
| Base⇒ fun M⇒ SN M
| (A ⇒ B)⇒ fun M⇒
∀ Γ’ (ρ : ren Γ Γ’) (N : tm Γ’ A), Red M→ Red (app (M <ρ>) N)

end.

Fig. 9. Definition of the logical relation in Coq

(Figure 9). In general, cases where renamings or substitutions occur, such as for the logical
relation in the case of a function type, will later require the rewriting system of the σ -
calculus for the corresponding proofs.

Having well-typed (or well-scoped) terms proves incredibly useful for avoiding errors
in the definitions.

Lemmas and proofs The mechanization closely follows the informal proofs. No addi-
tional statements were needed. Whenever a statement holds for names but not for de Bruijn,
we use the equational theory of the σ -calculus. Repetitive proofs, like the renaming or
anti-renaming lemmas, are solved by using Coq’s tactic support and writing small scripts
to handle the case analysis.

Similar to Beluga, anti-renaming (Lemma 3.18) requires additional care. As an induction
can only be performed if the arguments are variables, we have to generalize the goal
accordingly. For example, for SN we prove the following equivalent statement:
∀ Γ A (M: tm Γ A). SN M → ∀ Γ’ M’ (ρ: ren Γ’ Γ). M = M’<ρ>→ SN M’

This uses an induction relying on several inversion lemmas.

Size Our solution is concise (Figure 15), in large part due to Coq’s automation. Setting
up simultaneous renaming and substitution together with the before-mentioned lemmas
requires around 150 lines of technical boilerplate. In a well-scoped setting, these definitions
are standard and can be generated automatically from the corresponding HOAS signature
of terms (Kaiser et al., 2017) using the primitives suggested in (Abadi et al., 1991). We are
confident that we can also generate automatically boilerplate infrastructure for well-typed
syntax.

Scalability The extension to disjoint sums contains twice as many constructors for both
the inductive term type and reducibility. Still, our approach scales well: The automation
scripts carried over for many lemmas, with at most minor adaptions in the binder cases. Of
course, we still have to prove the additional lemmas and handle more cases. These follow
the informal proofs. The confluence lemma proves tiresome, as the already high number
of cases explodes; maybe evaluation contexts could make these proofs more modular. As
can be seen by the line numbers, the framework and reductions require fewer adaptions,
while the additional lemmas for strong normalization and soundness are responsible for
most additional code.

Variation: Well-scoped syntax The well-scoped de Bruijn encoding technique is part of
the folklore, being already proposed in (Altenkirch, 1993) and used in several case studies,
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e.g. in Adam’s Coq formalization of pure type system (Adams, 2006). Terms are N-indexed
sets and variables are numbers bounded by that index (see Fig. 10) A second version of the
proofs formalises the challenge with this representation.

Here, the Autosubst library automatically generates the required definitions and proofs
concerning substitution and renaming. The proofs translate almost one-to-one from well-
typed syntax. Typing statements have to be stated explicitly and we have to show preser-
vation during reduction. We have observed no noticeable difference in the difficulty of the
proofs.

Inductive tm (n : N) : Type :=
| var : fin n → tm n
| app : tm n → tm n→ tm n
| lam : tm (S n) → tm n.

Fixpoint fin (n: N) : Type :=
match n with
| 0 ⇒ False
| S n ⇒ option (fin n)
end.

Fig. 10. The declaration for well-scoped de Bruijn terms in Coq

Lessons learned The challenge encouraged us to rethink what a library such as Autosubst
is missing: Is it possible to prove substitutivity lemmas automatically? What about renam-
ing or anti-renaming-lemmas? How can we support more advanced (object) types? The
challenge problem provided the motivation to extend and generalize the Autosubst library
to also support well-typed syntax and proofs of substitution and renaming lemmas. This
will reduce the boilerplate infrastructure we have built manually. It is unclear if one can
also automatically generate proofs of the anti-renaming lemmas, as they do not hold in
general.

Comparison The proofs were developed parallel with the ones in Beluga. Together with
our self-imposed restriction to similar lemma statements, difficulties arose in the same
places — notwithstanding the different approach to variable binding. We were thus sur-
prised not by the differences but by the similarities between the solutions in Beluga and
Coq. This similarity might disappear for more complex syntax, where good practices
are less established, as well as for different approaches to binders, such as single-point
substitutions or nominal logic.

4.3 Solution C: Using well-typed de Bruijn encoding in Agda

Agda (Norell, 2009) is a dependently-typed programming language based on Martin-Löf
Type Theory (Martin-Löf, 1982) with inductive families (Dybjer, 1994), induction-recursion
(Dybjer & Setzer, 1999), copattern-matching (Abel et al., 2013) and sized types (Abel,
2010). It offers no special support for representing syntaxes with binding. However, re-
membering that generic programming is everyday programming in type theory (Altenkirch
& McBride, 2003; Benke et al., 2003), we can rely on external libraries providing general
tools to represent and manipulate such syntaxes.

In this solution we use the generic-syntax library (Allais et al., 2018); this is a general-
isation of the observation that a large class of scope-and-type preserving traversals can be
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seen as instances of the same notion of semantics (Allais et al., 2017). Roughly speaking,
this semantics is a scope-aware fold over terms of a syntax. Recalling previous results
on folds (Malcolm, 1990), we know that once this shared structure is exposed, it can be
exploited to state and prove generic lemmas e.g. fusion lemmas, or even the fundamental
lemmas of logical relations.

A syntax for syntaxes with binding The generic-syntax library offers a description lan-
guage for the user to specify what one “layer” of intrinsically scoped and typed syntax
with binding looks like. Terms are then obtained as a fixed point of such a description. This
construction is analogous to the definition of the universe of indexed families in (Chapman
et al., 2010), except that we now deal with binding.

In more technical details: we have a datatype Desc I of descriptions of well scoped-and-
typed syntaxes with binding with variables of kind I. This datatype has three constructors
corresponding to three basic building blocks:

• ‘σ takes two arguments: a Set S and a family of descriptions d indexed over S. It
corresponds to a Σ-type and typically uses S as a set of tags marking distinct language
constructs (see e.g. TermC).
• ‘X takes three arguments: ∆ a List I, j an I and d a Description. It marks the presence

of a recursive substructure of kind j with extra variables of kind ∆ in scope (see e.g.
(‘X (A :: []) B) declaring the body of a λ -abstraction of type A⇒ B). The argument
d corresponds to the rest of the description.
• ‘� takes one argument j of type I. This token finishes the description and enforces

that the current branch is of kind j (see e.g. ‘� (A ⇒ B) ensuring that the λ -
abstraction branch has a function type).

These descriptions can be given a formal meaning as strictly positive endofunctors on
Set(I×ListI). The set of well scoped-and-typed terms for a description is given by the free
relative monad (Altenkirch et al., 2014; Altenkirch et al., 2015) with respect to the indexed
functor of well scoped-and-typed de Bruijn indices.

Concretely, this means that for any description d, if we write J d K for the meaning of d
and Tm d for the free relative monad, we have:

• A ‘var constructor taking proofs that A is in Γ and returning a term of type Tm d A Γ

• A ‘con constructor taking a (J d K (Tm d )) A Γ (that is the interpretation of the
functor d where the ‘X are replaced with terms) to a Tm d A Γ

Renaming and substitution The morphisms of the category of (I×ListI)-indexed func-
tors are parallel renamings. The fact that our notion of terms is a free relative monad
gives us parallel substitution. These are convenient pragmatic choices for a programmer
to make as demonstrated by the Coq solution 4.2, but they arise here naturally from the
framework. We automatically get from the generic-syntax library a notion of type-and-
scope preserving renaming and substitution, as well as a wealth of lemmas among which
the four fusion lemmas describing how two renamings and/or substitutions interact.

More importantly, we get a generic statement and proof of the fundamental lemma of
logical relations. It is important to keep in mind that all of these are obtained by generic
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programming over the universe of syntaxes with binding and not code generation: this
process cannot fail.

Definitions Now that we have seen how the library is organised, we can define the simply-
typed λ -calculus by first giving the datatype of simple types Type and a set of tags corre-
sponding the language’s constructs: Lam represents λ -abstraction nodes whilst App stands
for application; both constructors carry two types.

data Type : Set where
α : Type
_⇒_ : Type→ Type→ Type

data TermC : Set where
Lam : Type→ Type→ TermC
App : Type→ Type→ TermC

Fig. 11. Types and constructor tags for STLC

We then define the (Type × List Type)-indexed functor underlying STLC as an element
of Desc Type. It offers a choice of two constructors (λ and application respectively) by
using a sigma type taking a TermC tag first and a description of the corresponding subterms
second defined by pattern-matching on the TermC value.

In the Lam A B case, we expect a recursive substructure of type B living in a context
extended by a newly-bound variable of type A. This ensures the term thus defined has type
A ⇒ B. In the App A B case, we expect two recursive substructures living in the same
contexts: one with a function type A⇒ B and one with an argument type A. This gives rise
to a term of type B.

TermD : Desc Type
TermD = ‘σ TermC ń where
(Lam A B)→ ‘X (A :: []) B (‘� (A⇒ B))
(App A B)→ ‘X [] (A⇒ B) (‘X [] A (‘� B))

Fig. 12. Description of STLC as a syntax with binding

If we write STLC for (Tm TermD) we have, modulo isomorphism, three constructors:

• ‘var taking proofs that A is in Γ to STLC A Γ

• ‘λ (lambda abstraction) of type STLC B (A :: Γ)→ STLC (A⇒ B) Γ

• ‘• (infix application) of type STLC (A⇒ B) Γ→ STLC A Γ→ STLC B Γ

Thanks to Agda’s support for pattern-synonyms (Pickering et al., 2016) that are re-
folded in goal types, the fact that we are using an encoding is practically invisible from
the reader’s point of view. The only troublesome point is the lack of support for interactive
case-analysis based on the defined pattern synonyms: case-splits have to be hand-written.

Lemmas and proofs The formalisation closely follows the informal proofs, always gener-
alising the statements involving single-variable substitutions to parallel substitutions. Most
inductive definitions are indexed by an extra size argument and the related lemmas are
proven to be size preserving, which helps tremendously in getting Agda to check that our
recursive definitions are indeed total.
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Compared to Coq, we cannot rely on tactics and have to write all proof terms by hand.
However, the expressiveness of dependently-typed pattern-matching, the power of size-
based termination checking and the consequent library on which we are relying means that
our proofs are just as short as tactics-based ones (cf. section 5.4).

Compared to Beluga, the theory of renaming and substitution is not internalised. This
means that we sometimes have to introduce a level of indirection when stating a lemma
so that pattern-matching will not get stuck on unification problems involving renaming.
This is particularly apparent in the anti-renaming lemma that Beluga tackles head-on (cf.
Figure 6), while we have to use a dummy argument, which is then constrained via an
equality, similarly to the Coq solution. We show a few cases below in Figure 13 to illustrate
the problem (we quantify over the unbound variables implicitly and use the absurd pattern
() to dismiss impossible cases).

th-1^SN : ∀M ρ →M′ ≡ ren ρ M→ ∆ `SN A 3M′ → Γ `SN A 3M
th-1^SN M ρ eq (neu pr) = neu (th-1^SNe M ρ eq pr)
th-1^SN (‘ń M) ρ refl (lam pr) = lam (th-1^SN M _ refl pr)
th-1^SN (‘var x) ρ () (lam pr)
th-1^SN (M ‘• N) ρ () (lam pr)
th-1^SN M ρ refl (red r pr) =
let (M′ , eq , r′) = th-1^ SN M ρ r in red r′ (th-1^SN M′ ρ eq pr)

th-1^SNe : ∀M ρ → M′ ≡ ren ρ M→ ∆ `SNe A 3M′ → Γ `SNe A 3M
th-1^SNe (‘var x) ρ refl (var _) = var x
th-1^SNe (M ‘• N) ρ refl (app p q) = app (th-1^SNe M ρ refl p) (th-1^SN N ρ refl q)

th-1^ SN : ∀M ρ → ∆ ` A 3 ren ρ M SN N′ → ∃ ń N→ N′ ≡ ren ρ N × Γ ` A 3M SN N

Fig. 13. Implementation of the anti-Renaming lemma in Agda

The type theory that Agda implements supports large elimination, which means that the
definition of the logical predicate for the proof of strong normalization is a run-of-the-mill
recursive function.

_`R_3_ : ∀ Γ A→ Term A Γ→ Set
Γ `R α 3M = Γ `SN α 3M
Γ `R A⇒ B 3M = ∀ {∆} ρ {N}→ ∆ `R A 3 N→ ∆ `R B 3 ren ρ M ‘• N

Fig. 14. Logical predicate for Strong Normalization

Our biggest departure from the other formalisations is in the soundness proof, where we
opted for evaluation context-based proofs (see Section 3.4 for a description of the twist);
this allows us to avoid proving confluence of the reduction relations.

Size The proof relies on generic-syntax that is approximately 1600 lines of code, as well
as (a small part of) the standard library most notably for the definition and properties of the
reflexive transitive closure of a relation. The mechanization of the main challenge problems
(STLC) is then only 425 LOC (excluding comments and blank lines) as we can take
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advantage of some of the generic properties established in the library. The mechanization
of the challenge extended with disjoint sums (STLC+) is 784 LOC. Both solutions include
not only the soundness but also the completeness of the inductive definition of strongly
normalizing terms. Figure 15 shows a breakdown section-by-section of the cost of the
formalization effort.

Scalability The extension to STLC+ took a long day of work. Between the two, the
number of constructors in the language more than doubled and the total size of solution
is slightly less than twice as big. To keep things tractable in STLC+ we were forced to
introduce new abstractions to structure the completeness proof nicely.

Lessons learned While attempting to solve the challenge, we had to implement new
generic results in generic-syntax that we had overlooked because of how “boring” the
results are (e.g. renaming with the identity is the identity).

This formalisation effort has also revealed some possible extensions of our library:
congruence closure of a relation ought to be a generic operation derived from a language’s
syntax and we ought to be able to prove it well-behaved with respect to (anti-)renaming
and (anti-)substitution as long as the original relation is. Similarly the notions of evaluation
contexts and term plugging should be defined once and for all by building on the work
studying the derivatives of regular types (Abbott et al., 2005).

5 Critical summary and comparison

Our three mechanizations are remarkably similar in the overall structure, although this may
be a factor of referring to a very detailed common informal proof. We will hereby discuss
some of the key points among these different solutions.

5.1 Representation of well-typed terms

We explored two different representations of bindings in our mechanizations, one based
on HOAS, the other modeled via (well-typed) de Bruijn representations. The HOAS rep-
resentation is, perhaps not surprisingly, the most compact one; it only requires 19 resp. 30
LOC for defining well-typed terms and well-typed reductions.

In our Coq solution we use well-typed de Bruijn terms. The definition of the inductive
type itself is concise, but establishing renaming and substitution (see the next subsection)
require approx. 120 LOC for the basic definition of STLC and approx. 150 LOC for the
extension with disjoint sums. Here, we can (potentially) exploit code generation via the
Autosubst framework to ease the definition of the initial infrastructure. In fact, contextual
objects may be viewed as an abstraction of well-typed de Bruijn encodings (Hofmann,
1999) and can actually be compiled to well-typed de Bruijn (Ferreira et al., 2013). Thus one
could approximate some of Beluga’s features through code generation (Kaiser et al., 2017)
and Coq’s rewriting facilities. Conversely, this case study can be seen as a step towards
understanding how to support HOAS via code generation and generic programming.

In the Coq solution based on well-scoped terms we use a separate typing judgment
(extrinsic typing). In this case, the differences in the proof structure are negligible and
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the developments are very similar — of course, we have to prove preservation of typing.
However, this similarity may depend on this proof in particular, or on the fact that we have
ported it from the typed to the untyped setting, rather than starting one from scratch. Or
it can be a factor of the SN proof itself, since different case studies, e.g. (Momigliano,
2012), suggest otherwise. In any case, extrinsic typing scales more easily to dependent
types (see, e.g., the Agda formalization in (Abel et al., 2018)), whereas intrinsic typing is
challenging (Danielsson, 2007; Chapman, 2009; Altenkirch & Kaposi, 2016).

Our Agda solution uses a library (Allais et al., 2018) that provides us with a universe
of well scoped-and-typed syntax with binding in which to encode our languages. The
definition of STLC takes 10 LOC while that of STLC extended with disjoint sums takes
15 LOC. We add 9 LOC (resp. 15 LOC) of Agda’s pattern synonyms and display pragmas
to make the user experience nicer. From these definitions we get renaming, substitution as
well as (among other things) identity and fusion lemmas.

5.2 Renamings and substitutions

In Beluga, (simultaneous) substitution and renamings are built into the underlying type-
theoretic foundation. Checking whether two objects are convertible or unifiable is done
modulo the equational theory of substitutions. Thus, weakening and anti-renaming proper-
ties such as Lemma 3.2 and 3.3 come for free: the first inherited from LF, the latter from
Beluga’s theory of substitutions.

In the Coq solution, we use simultaneous substitution as an operation where we imple-
ment substitutions as functions that maps variables to terms. Renamings are represented
as functions from variables to variables. Coq’s rewriting facilities take care of solving
equational properties of substitutions automatically.

In the Agda solution, a general notion of scoped-and-typed V -valued environments
inherited from (Allais et al., 2018) supersedes both renaming and substitution: given two
contexts Γ and ∆, it associates to each variable x:σ in Γ a value V σ ∆. Taking V to
be de Bruijn variables yields renamings while using terms yields substitutions. This is a
generalisation of (McBride, 2006), which shows how to combine renaming and substitution
into a single parametrized operation, cutting down on the boilerplate proofs: instead of four
composition lemmata for renamings and substitutions, there is a single parameterized one.
However, proofs of weakening and anti-renaming tend to be more tedious than in Beluga,
requiring the use of inversion lemmas. A caveat: The use of proper functions requires
function extensionality in the meta theory, which is by default absent in the intensional
type theories of Agda and Coq. Alternatively, a special pointwise equality can be defined
for substitutions.

To support matching on terms under a renaming, both our Coq and Agda solution rely
on equality constraints. An alternative is to use an inductive relation between the renaming
ρ , a term M and a term M′ s.t. [ρ]M = M′. This allows us to reason by induction on this
relation, as suggested e.g., in (Abel & Vezzosi, 2014). We can show that this inductive
relation is equivalent to the algorithmic (functional) specification.
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5.3 Induction and recursive definitions

While in the strong normalization proof we only need fairly straightforward arguments by
(mutual) structural induction, the proofs of results such as weak head expansion (Lemma 3.10)
and backward closure of sn (Lemma 3.13) require lexicographic induction. This resulted
in the extension of the totality checker in Beluga.

In Coq, the user decides via tactics in which order inductions are done (and deals
with the consequences). For mutually recursive types (e.g. for the soundness proof), we
had to replace the standard induction principle with an (automatically generated) mutual
induction principle.

In Agda, we rely on sized types or on structural subterm ordering. Agda will infer a
suitable termination measure, if possible.

The proofs of substitution properties for typed reductions (Lemma 3.5) and multi-step
reductions (Lemma 3.6 (5)), formulated using single substitutions, require an induction
principle that takes into account exchange of variables. As Beluga’s totality checker only
considers direct subterms, it is currently unable to verify such proofs. This, again, could
motivate further extensions to Beluga’s totality checker. The Coq and Agda mechanizations
instead generalize these lemmas to simultaneous substitutions, which avoids the need to
reason about exchange.

The accessibility relation, while being an infinitary inductive definition, does not pose
any problem to its encoding via inductive types in all considered systems. The logical
predicate definition can be encoded in Agda and Coq using a recursive type; in Beluga, we
use a stratified type; both are ways to define predicates (relations) inductively on one of the
indices. In contrast to inductive definitions, such definitions do not give rise to induction
principles.

5.4 Lines of code

We summarize in Fig. 15 the lines of code (LOC) necessary to implement the challenge
problems considering the definitions and lemmas from each section in Sec. 3. Of course
we are well aware that such comparisons are only partially meaningful — especially since
in Coq we use proof scripts to construct proofs and in Beluga and Agda we write proofs as
programs. Even between Beluga and Agda there are some fundamental differences: Agda
supports simultaneous pattern matching similar to Haskell, while in Beluga we usually
split on one variable at a time following more the OCaml tradition and the pen-and-paper
development of a proof. These different styles in writing proofs impact the LOC count.

However, the LOC counts illustrate some fundamental points: proving the main chal-
lenges seems rather similar in size and scale: the main difference lies in how we support
the definition of binding syntax. Since Beluga supports binding, contexts, substitutions,
renamings, etc. intrinsically, it requires no additional lemmas w.r.t. syntax representation
and has therefore the leanest set up. In Coq, we need to support all the above when setting
up typed terms, together with the substitution statements of the σ -calculus. The size of
the set-up is thus up to three times larger than in Beluga. The generic syntax library is,
compared to the rest of the mechanization, huge — it is 2 to 4 times the size of the code
necessary to solve the actual challenge problem(s). This is partly due to the fact that it
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Beluga Coq Agda
STLC STLC+ STLC STLC+ STLC STLC+

Library (generic-syntax) 1600 1600
Sec 3.1: Typed Terms & Reduction 75 174 202 265 85 144
Sec 3.2: Defining Strong Norm. 30 48 22 30 34 47
Twist: Evaluation Contexts 38 57
Sec 3.3: Properties of sn 163 355 97 214 97 219
Sec 3.4: Soundness of SN 29 50 17 24 12 18
Sec 3.5: Properties of SN 69 136 43 67 42 65
Sec 3.6: SN proof using a Log. Pred. 80 155 55 115 70 134
Total 446 918 446 715 378 684

Fig. 15. Lines of code for Challenge problem 1 and 2

provides more than is necessary for the discussed challenge problems and, of course, it is
an effort for which you pay only once.

6 Related work

Normalization proofs by logical relations (Tait, 1967; Friedman, 1975) have been used
early in the design and implementation of proof assistants to demonstrate the power of a
given system (Coquand, 1993). In fact there is a wide range of approaches and implemen-
tations — they all differ from our benchmark.

Altenkirch (1993) presented the first and very influential published encoding of strong
normalization, namely for System F in Lego following (Girard et al., 1989)’s proof. Given
the lack of inductive types in Lego at the time he had to encode them using recursors. He
restricts to untyped lambda terms represented by standard de Bruijn indices — a choice
he later in the paper regrets and calls “actually a little bit of cheating” in the accom-
panying technical report (Altenkirch, 1992), where he also mentions intrinsically-typed
representations. System F types are represented with well-scoped terms. He introduces
the accessibility definition of strong normalization and defines reducibility candidates on
untyped terms. Barras (1997) revisited the problem for the Calculus of Constructions and
adapted Altenkirch’s proof. Girard’s strong normalization proof has been also implemented
in ATS/LF (Xi, 2004) and translated to Abella.3 The mechanization introduces a constant
inhabiting any type to avoid working with open terms, bringing in lemmas that have no
correspondence in the informal proof. This is arguably a shortcut that made sense for
ATS/LF (which is constitutionally incapable to reason about open terms), but much less for
Abella (which in principle shines in this regard). Berger et al. (2006) present formalizations
in Minlog, Coq and Isabelle/HOL of a Tait-style proof with an emphasis on extracting vari-
ants of the normalization-by-evaluation algorithm. Only the Coq formalization is reported
complete (code not available, but see (Letouzey, 2004)), based on a de Bruijn encoding and
recursively defining (closed) reducibility by strong elimination. Abel and Vezzosi (2014)
show strong normalization in a more complex setting, namely a simply-typed lambda

3 http://abella-prover.org/examples/lambda-calculus/normalization/
stlc-strong-norm.html

http://abella-prover.org/examples/lambda-calculus/normalization/stlc-strong-norm.html
http://abella-prover.org/examples/lambda-calculus/normalization/stlc-strong-norm.html
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calculus with guarded recursive types; the Agda mechanization uses intrinsically well-
typed terms over coinductively defined object types and unifies renaming and substitution
following (McBride, 2006). The operational semantics is based on evaluation contexts,
and the Kripke-style logical relation takes into account context extensions and antitonicity
of the recursion depth. From this formalization, a solution of the POPLMark Reloaded
challenge can be extracted.

There are also a number of mechanizations of weak normalization using reducibility
candidates, such as the one in Beluga (Cave & Pientka, 2018) which also uses a Kripke-
style logical relation via context extensions. Another example is (Abel et al., 2018), which
covers also dependent types, but with extrinsic typing. Intrinsically well-typed terms are
used by (Altenkirch & Kaposi, 2017) in form of a quotient inductive-inductive type.

Further, there are formalizations of normalization via a combinatorial proof following
(Girard et al., 1989), and (Joachimski & Matthes, 2003). One such example is the mech-
anization in Isabelle by Berghofer (2004); another is Abel’s (2008) in Twelf. Using the
inductive definition of normalization one can in fact avoid using logical predicates at all
and prove normalization by elementary means. However, this proof technique does not
scale to strong normalization in a proof-theoretically weak system such as Twelf. In fact,
we cannot directly represent the accessibility relation; a way to circumvent this problem
would be to follow Schürmann and Sarnat (2008)’s approach of building an intermediate
logic where to express the logical predicate, see also (Rasmussen & Filinski, 2013). This,
to our knowledge, has not been done yet.

Last, there have been (partial) mechanizations of the meta-theory of LF (Urban et al.,
2011; Cave & Pientka, 2018), in particular showing completeness of the type-directed
equivalence algorithm which relies on a Kripke-logical relation. The mechanization of this
problem in Beluga follows to a large extent the same ideas highlighted in the solution for
the strong normalization proof. In contrast, Urban et al. (2011) describe a mechanization in
Isabelle using nominal logic which “required identifying and proving a number of standard
properties of simultaneous substitutions”. It would be indeed interesting to compare more
closely a mechanization of our SN challenge in nominal logic.

7 Conclusion

From our perspective, the proposed challenge problem has already been a success: it has led
to a more modern tutorial-style presentation of proving strong normalization using Kripke-
style logical relations. It has brought together different communities and developers: those
working on logical frameworks, those building libraries for mechanizing meta-theory, and
those who use a code generation approach to handling syntax and binding. It has stimulated
progress in each of these systems and communities: for example, it has led to extensions
to renamings and generalizations of the totality checker in Beluga. It has motivated future
revisions in the design of Autosubst and it has led to the implementation of new generic
results in the generic-syntax library that were previously overlooked. Last but not least,
it has also helped us better understand the similarities and differences in each of the
approaches and we hope there will be more cross-fertilization in the future. We hope others
feel motivated to tackle the challenge problem(s)! So, what are you waiting for?
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