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Abstract

The pointwise lifting of an operation on elements to sets of elements
is a common mathematical procedure. For instance, in the area of formal
languages, concatenation of words is lifted pointwise to concatenation of
languages, i.e., sets of words. Similar pointwise liftings occur in ring and
number theory, e.g. when considering residue classes or ideals.

Certain equational laws routinely carry over from an operation to its
pointwise lifting. For instance, word concatenation forms a monoid, and
so does language concatenation. However, not all laws can be inherited;
for instance, the pointwise inversion of a set of group elements is not an
inverse to this set under pointwise multiplication (assuming this is the
name of the binary operation of the group).

In this note, we demonstrate that linear equational laws, e.g., monoid
laws and commutativity, always carry over to the pointwise lifting. Herein,
an equational law is considered linear when both sides mention the same
variables, and exactly once.

Our observation has been published before by Gautam in article The
validity of equations of complex algebras [1].

1 Introduction

Given a magma M = (M,⊕), i. e., a set M and a binary operation ⊕ : M×M →
M , we define the pointwise lifting ⊕̂ : P(M)× P(M)→ P(M) as usual by

â ⊕̂ b̂ = {a⊕ b | a ∈ â and b ∈ b̂},

obtaining the lifted magma M̂ = (M̂, ⊕̂), where M̂ = P(M). Now the following
statements hold.

Observation 1.

1. If M is a semigroup, so is M̂.
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2. If M is commutative, so is M̂.
3. If M has a unit, so does M̂.

In other words, associativity, commutativity, and unit laws are preserved under
the pointwise lifting. The proofs are one-liners, e.g., consider commutativity:

Proof. Assume commutativity of M, i.e., a ⊕ b = b ⊕ a for all a, b ∈ M . Then
â⊕̂ b̂ = b̂⊕̂â follows for arbitrary â, b̂ ∈ M̂ by the following chain of equivalences:

c ∈ (â ⊕̂ b̂)
iff c = a⊕ b for some a ∈ â and b ∈ b̂
iff c = b⊕ a for some a ∈ â and b ∈ b̂
iff c ∈ (b̂ ⊕̂ â)

Besides commutativity of M̂ , we used only the definition of ⊕̂.

Yet many laws are not preserved, e.g., existence of inverses:

Fallacy 1. If M is a group, so is M̂.

Counterexample 1. (Z,+) is a group, but Ẑ is not, e.g., the set {1, 2} does
not have an inverse: There is no set â such that â +̂ {1, 2} = {0}.

What distiguishes laws that are preserved from those that may not be preserved?
If we look at Table 1 we see that the preserved laws in the upper left area have
a specific syntactic shape: They are linear, i.e., both sides of the equation use
the same variables, and these exactly once.

lifts pointwise may not lift
(x · y) · z = x · (y · z) associativity x−1 · x = 1 left inverse

x · 1 = x right unit x · x = x idempotency
x · y = y · x commutativity

0 · x = 0 left absorption
x · (y + z) = x · y + x · z right distributivity

Table 1: Lifting of equational laws.

In contrast, the laws in the upper right area are usually not preserved, and they
are essentially non-linear, using x twice.

The laws in the lower right area have a linear left hand side, and this suffices
for partial preservation. For instance, from right distributivity we have the
inclusion

â ·̂ (b̂ +̂ ĉ) ⊆ (â ·̂ b̂) +̂ (â ·̂ ĉ).

It is instructive to see why a generic proof of the reverse inclusion fails.
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Fallacy 2. (â ·̂ b̂) +̂ (â ·̂ ĉ) ⊆ â ·̂ (b̂ +̂ ĉ).

Attempting a proof, starting with d ∈ (â ·̂ b̂) +̂ (â ·̂ ĉ), we only obtain that

d = a · b + a′ · c for some a, a′ ∈ â and b ∈ b̂ and c ∈ ĉ. The lack of linearity
stiffles this proof attempt, as we end up with potentially different a, a′ ∈ â.

Counterexample 2. (N ·̂ {1}) +̂ (N ·̂ {1}) 6⊆ N ·̂ ({1} +̂ {1}), as the left hand
side is N but the right hand side is 2N, the set of even numbers.

In case of the absorption law, we get the inclusion 0̂ ·̂ â ⊆ 0̂ from linearity of the
left hand side, yet the converse inclusion 0̂ ⊆ 0̂ ·̂ â fails for empty â.

In the remainder of this note, we shall demonstrate that:

Theorem 1. Linear equational laws are preserved by the pointwise lifting to
sets.

2 Linear Equational Laws

We formalize the concept of linear equations using the framework of multi-sorted
algebras.

Assume a set S of sort symbols and a signature Σ of function symbols. Σ maps
function symbols f to their type consisting of a list ~s = s1..n of domain sorts
and a codomain sort s. We express this as (f : s1 × · · · × sn → s) ∈ Σ or
(f : ~s → s) ∈ Σ. We may refer to the pair (S,Σ) or just Σ (with S given
implicitly) as algebra.

We assume a countably infinite set X of variables x. A context Γ is a finite
map from variables x to sorts s. Contexts Γ and Γ′ are said to be disjoint if
their domains do not intersect, dom(Γ) ∪ dom(Γ′) = ∅. We write Γ ] Γ′ for the
disjoint union of contexts. We write x:s for the singleton context.

We inductively define the indexed set Tm(Γ; s) containing the linear (first-order)
terms t of sort s in context Γ by the following rules.

x ∈ Tm(x:s; s)

(ti ∈ Tm(Γi; si))i=1..n

f(t1..n) ∈ Tm(
⊎
i=1..n Γi; s)

f : s1 × · · · × sn → s ∈ Σ

As customary, we write Γ ` t : s for t ∈ Tm(Γ; s).

An interpretation I of algebra (S,Σ) assigns to each sort s ∈ S a set I(s) and
to each function symbol f : s1..n → s ∈ Σ a function I(f) : I(s1) × · · · ×
I(sn) → I(s). The interpretation I(Γ) of a context Γ contains all finite maps
ρ with domain dom(Γ) that assign variables x to elements of I(Γ(x)). The
interpretation I(t)ρ of a linear term Γ ` t : s is defined by induction on t, given
ρ ∈ I(Γ):

I(x)(x 7→ a) = a
I(f(t1, . . . , tn))ρ = I(f)(I(t1)ρ1, . . . , I(tn)ρn)

where ρ =
⊎
i=1..n ρi
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The partitioning of ρ into the ρi shall follow the partitioning of Γ into the Γi as
given by the introduction rule for f(~t).

Remark 1. The interpretation of terms is actually oblivious to linearity. One
could first define well-sorted terms and their interpretation, and then intro-
duce the linearity restriction. However, our procedere, introducing linear terms
directly, is most suitable for our purposes.

A linear equation is a pair of linear terms t, t′ ∈ Tm(Γ; s) of the same sort s in
the same context Γ. We write such an equation as Γ ` t = t′ : s. The equation
is valid in interpretation I if I(t)ρ = I(t′)ρ for all ρ ∈ I(Γ).

3 An Invertible Fundamental Theorem

For a Σ-algebra, fix an interpretation written L M, i.e., we use the notations LsM,
LfM, LΓM and LtM. This interpretation serves to interpret terms as “elements”. A
second interpretation of terms as “sets” or predicates is given by:

[[s]] = PLsM

[[f ]] : [[s1]]× · · · × [[sn]]→ [[s]] for f : ~s→ s ∈ Σ
[[f ]](â1, . . . , ân) = {LfM(a1, . . . , an) | a1 ∈ â1, . . . , an ∈ ân}

The induced interpretation of terms Γ ` t : s is written [[t]] : [[Γ]] → [[s]]. For
ρ̂ ∈ [[Γ]] and ρ ∈ LΓM we write ρ ∈ ρ̂ if ρ(x) ∈ ρ̂(x) for all x ∈ dom(Γ).

Theorem 2 (Fundamental theorem and inversion). Let Γ ` t : s and ρ̂ ∈ [[Γ]].
Then

[[t]]ρ̂ = {LtMρ | ρ ∈ ρ̂}

Direction ⊇ is a soundness property resembling the fundamental theorem of
logical relations and holds regardless of linearity. Direction ⊆ is “new” and
holds thanks to linearity.

Proof. For ⊇, we assume ρ ∈ ρ̂ and show LtMρ ∈ [[t]]ρ̂ by induction on Γ ` t : s.

Case

x:s ` x : s

Assumption ρ ∈ ρ̂ proves LxMρ = ρ(x) ∈ ρ̂(x) = [[x]]ρ̂ immediately.

Case
(Γi ` ti : si)i=1..n

Γ ` f(t1..n) : s
Γ =

⊎
i=1..n Γi

We have the partitionings ρ =
⊎
i ρi and ρ̂ =

⊎
i ρ̂i, according to the

partitioning of Γ, such that ρi ∈ ρ̂i for i = 1..n. By induction hypoth-
esis, LtiMρi ∈ [[ti]]ρ̂i for i = 1..n. Thus, by definition of [[f ]], we conclude

LfM(LtiMρi)i=1..n ∈ [[f ]]([[ti]]ρ̂i)i=1..n which is Lf(~t)Mρ ∈ [[f(~t)]]ρ̂ by definition
of term interpretation.
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Direction ⊆, stating that b ∈ [[t]]ρ̂ implies b = LtMρ for some ρ ∈ ρ̂, is proven by
induction on Γ ` t : s as well.

Case

x:s ` x : s

ρ̂ = (x 7→ b̂) for some b̂ ⊆ LsM, thus, assumption b ∈ [[x]]ρ̂ simplifies to b ∈ b̂.
Hence, ρ := (x 7→ b) fulfills ρ ∈ ρ̂ and b = LxMρ.

Case
(Γi ` ti : si)i=1..n

Γ ` f(t1..n) : s
Γ =

⊎
i=1..n Γi

Mimicking the partitioning of Γ, we partition ρ̂ =
⊎
i=1..n ρ̂i. Assumption

b ∈ [[f(~t)]]ρ̂ entails b = LfM(a1..n) for some (ai ∈ [[ti]]ρ̂i)i=1..n. By induction
hypothesis there are ρi ∈ ρ̂i such that ai = LtiMρi. The ρi are disjoint
(thanks to linearity!), thus ρ =

⊎
i ρi is well-defined, and futher, ρ ∈ ρ̂.

This implies b = Lf(~t)Mρ.

The proof of direction ⊆ would fail if t were not linear.

4 Lifting of linear laws

We now have the tools to prove Theorem 1 which states that linear equational
laws are preserved by the pointwise lifting to sets. In the terminology developed
in the previous sections, we have to show that linear equations that are valid
under interpretation L M are also valid under [[ ]].

Proof of Theorem 1. Assume L M models a linear equation Γ ` t = t′ : s. We
show that it is also valid under interpretation [[ ]]. To this end, assume b ∈ [[t]]ρ̂.
By Theorem 2 direction “⊆”, there is ρ ∈ ρ̂ such that b = LtMρ. Since the
equation is valid for interpretation L M, we have b = Lt′Mρ. Thus, by Theorem 2
direction “⊇”, b ∈ [[t′]]ρ̂. Our line of reasoning is symmetric, thus, [[t′]]ρ̂ ⊆ [[t]]ρ̂
as well, and together, [[t]]ρ̂ = [[t′]]ρ̂.

Observe that direction [[t]]ρ̂ ⊆ [[t′]]ρ̂ only requires the linearity of t, not of t′.
Thus, laws like 0̂ ·̂ â ⊆ 0̂ as mentioned in the introduction can also be established
following our blueprint.

5 Discussion

Could the theorems in this note be obtained by parametricity-like theorem for
linearity? Even further, could they be obtained by internal parametricity in a
linear dependent type theory?
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6 Related Work

The observation that linear laws lift to sets was already made by Gautam [1].
He uses the terminology complex algebra for the algebra lifted to subsets (com-
plexes); his paper is nicely written and easily accessible for the reader with
general mathematical literacy.

Grätzer and Whitney [2] generalize the observation to arbitrary relations (be-
yond equality), even infinitary ones.

Shafaat [3] shows that if an algebra lifts to a power algebra (another word for
complex algebra), then it can be defined by linear equations.

Related concepts are further varieties and power structures.
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