
Parallel hereditary substitutions

Andreas Abel

30 October 2019

1 Introduction

During the TYPES 2018 conference in Braga, Conor McBride posed me with
the riddle how to implement parallel hereditary substitutions. At the time of
TYPES 2019 in Oslo I had not solved the riddle yet. He gave me the additional
hint that active and passive parts need to be separated (I don’t remember the
actual wording).

In October 2019, after many tries to implement his hint, and after leaving a field
of corpses (McBride, 20??), I realized I had already had the main idea needed
here in my implementation of single hereditary substitutions, in the type of Res.
This type distinguishes (the only) active substitution entry tm contained in the
sg singleton substitution from a passive entry var introduced by lift.

Turning my realization into a solution was not hard from there, except that I
used sized types to implement the common upper bound on the order of the
types of all active substitution entries, and it took some patience to get all the
sizings correct.

The following is a detailed sketch of the solution in prose, but see also the Agda
implementation.

2 Syntax

Types are simple types over a set of uninterpreted base types denoted by o.

a,b,c ::= o | a ⇒ b

The order of a type.

ord(o) = 0
ord(a ⇒ b) = max (ord(a)+1, ord(b))

Terms are in �-normal form:

• Variables (de Bruijn indices)

1

http://www.cse.chalmers.se/~abela/html/HereditarySubstitutionSTLC.html
http://www.cse.chalmers.se/~abela/html/ParallelHereditarySubstitutionSTLC.html
http://www.cse.chalmers.se/~abela/html/ParallelHereditarySubstitutionSTLC.html

x ∈ ℕ

• Normal forms

t, u ::= λ t | x s

• Spines

s ::= ε | u, s

2.1 Typing

Variable typing Γ ∋ x : a

Γ.a ∋ 0 : a

Γ ∋ n : a

Γ.b ∋ n+1 : a

Normal form typing Γ ⊢ t : a

Γ.a ⊢ t : b

Γ ⊢ λ t : a ⇒ b

Γ ∋ x : a Γ | a ⊢ s : b

Γ ⊢ x s : b

Spine typing Γ | a ⊢ s : b

Γ | a ⊢ ε : a

Γ ⊢ u : a Γ | b ⊢ s : c

Γ | (a ⇒ b) ⊢ (u,s) : c

Weakening t + 1, to be defined as usual via generalization to context extensions
Γ ⊆ Δ.

Γ ⊢ t : a

Γ.b ⊢ t + 1 : a

3 Substitutions

Substitutions

2

σ ::= id | σ.u | lift σ

Looking up in a substitution σ(x) = t

id(x) = x
(σ.u) (0) = u
(σ.u) (x+1) = σ(x)
(lift σ)(0) = 0
(lift σ)(x+1) = σ(x) + 1

3.1 Bounded substitution typing

Bounded typing of non-variables Γ ⊢ⁿ t : a:

Γ ∋ x : a

Γ ⊢ⁿ x : a

Γ ⊢ t : a
---------- ord(a) ≤ n
Γ ⊢ⁿ t : a

Bounded substitution typing Γ ⊢ⁿ σ : Δ:

Γ ⊢ⁿ id : Γ

Γ ⊢ⁿ σ : Δ Γ ⊢ⁿ u : a

Γ ⊢ⁿ σ.u : Δ.a

Γ ⊢ⁿ σ : Δ

Γ.a ⊢ⁿ lift σ : Δ.a

Lemma (substitution lookup). If Γ ⊢ⁿ σ : Δ and Δ ∋ x : a then Γ ⊢ⁿ σ(x) : a.

Proof. In the interesting case (σ.u)(0) = u, we have by substitution typing Γ
⊢ⁿ u : a.

4 Hereditary parallel substitution

We define four mutually recursive functions by a lexicographic measure (n,m,l)
∈ ℕ³ where

• n is a bound on the order of a type

• m is the function index:

3

0. active application: 0
1. hereditary substitution into normal forms or spines: 1
2. accumulating application: 2

• l is the height or a term or spine (if viewed as a mixed tree of terms and
spines)

The following definition is well-founded, i.e., the functions are terminating by
virtue of the measure. We justify each recursive call by checking that the mea-
sure goes strictly down.

• Substitution into NFs: t ∘ⁿ σ measure (n,1,t)

λt ∘ⁿ σ = λ (t ∘ⁿ lift σ) ok: (n,1,t) < (n,1,λt)
x s ∘ⁿ σ = σ(x) ∙ⁿ (s ∘ⁿ σ) ok: (n,1,s) < (n,1,xs)

and (n,0,_) < (n,1,_)

• Substitution into spines: s ∘ⁿ σ measure (n,1,s)

ε ∘ⁿ σ = ε
(u,s) ∘ⁿ σ = (u ∘ⁿ σ, s ∘ⁿ σ) ok: (n,1,u/s) < (n,1,(u,s))

• Active application: t ∙ⁿ s measure (n,0,t)

t ∙ⁿ ε = t
x s ∙ⁿ s' = x (s,s')
λt ∙ⁿ⁺¹ (u,s) = t [id.u]ⁿ s ok: (n,_,_) < (n+1,_,_)

• Accumulating application: t [σ]ⁿ s measure (n,2,t)

t [σ]ⁿ ε = t ∘ⁿ σ ok: (n,1,t) < (n,2,t)
(x s) [σ]ⁿ s' = σ(x) ∙ⁿ (s ∘ⁿ σ , s') ok: (n,0,_) < (n,2,xs)
λt [σ]ⁿ (u,s) = t [σ.u]ⁿ s ok: (n,2,t) < (n,2,λt)

4.1 Typing and totality

Theorem and proof. The four recursive functions are total if restricted to well-
typed terms according to the following scheme:

• Substitution into NFs

Δ ⊢ t : a Γ ⊢ⁿ σ : Δ

Γ ⊢ t ∘ⁿ σ : a

– Case (ok since lift preserves n)

λt ∘ⁿ σ = λ (t ∘ⁿ lift σ)

– Case �

x s ∘ⁿ σ = σ(x) ∙ⁿ (s ∘ⁿ σ)

4

• Substitution into spines

Δ | a ⊢ s : c Γ ⊢ⁿ σ : Δ

Γ | a ⊢ s ∘ⁿ σ : c

– Case �

ε ∘ⁿ σ = ε

– Case �

(u,s) ∘ⁿ σ = (u ∘ⁿ σ, s ∘ⁿ σ)

• Active application t ∙ⁿ s

Γ ⊢ⁿ t : a Γ | a ⊢ s : c

Γ ⊢ t ∙ⁿ s : c

– Case �

t ∙ⁿ ε = t

– Case �

x s ∙ⁿ s' = x (s,s')

– Case

λt ∙ⁿ⁺¹ (u,s) = t [id.u]ⁿ s

The order of the type of an abstraction is at least 1, thus, always of
the form n+1. We get the following inversion on the bounded typing
of λt:

Γ.a ⊢ⁿ⁺¹ t : b

Γ ⊢ⁿ⁺¹ λt : a ⇒ b

Since ord(a) ≤ n, we have

Γ ⊢ⁿ u : a

which justifies the substitution typing

Γ ⊢ⁿ id.u : Γ.a

Thus, the accumulating application t [id.u]ⁿ s is welltyped with Δ
= Γ.a.

• Accumulating application t [σ]ⁿ s

Δ ⊢ⁿ⁺¹ t : b Γ ⊢ⁿ σ : Δ Γ | b ⊢ s : c
--
Γ ⊢ t [σ]ⁿ s : b

5

– Case �

t [σ]ⁿ ε = t ∘ⁿ σ

– Case �

(x s) [σ]ⁿ s' = σ(x) ∙ⁿ (s ∘ⁿ σ , s')

– Case

λt [σ]ⁿ (u,s) = t [σ.u]ⁿ s

The bounded typing of λt is:

Δ.b ⊢ⁿ⁺¹ t : b'

Δ ⊢ⁿ⁺¹ λt : b ⇒ b'

Spine typing gives us

Γ ⊢ u : b Γ | b' ⊢ s : c

Γ | (b ⇒ b') ⊢ (u,s) : c

Since ord(b) ≤ n, we get

Γ ⊢ⁿ u : b

which justifies the substitution typing

Γ ⊢ⁿ σ.u : Δ.b

and, thus, the typing of the recursive call. □

5 Conclusion

Parallel hereditary solutions allow for more efficient normalization as several
β-redexes can be gathered into a single substitution using the equation

λt [σ]ⁿ (u,s) = t [σ.u]ⁿ s

which corresponds to the usual closure-based evaluation strategy of lambda
calculus.

6

	Introduction
	Syntax
	Typing

	Substitutions
	Bounded substitution typing

	Hereditary parallel substitution
	Typing and totality

	Conclusion

