
Extensional Normalization in the Logical Framework with
Proof Irrelevant Equality

Andreas Abel
Department of Computer Science

Ludwig-Maximilians-University Munich

Abstract

We extend the Logical Framework by proof irrelevant
equality types and present an algorithm that computes
unique long normal forms. The algorithm is inspired by
normalization-by-evaluation. Equality proofs which are not
reflexivity are erased to a single object ∗. The algorithm
decides judgmental equality, its completeness is established
by a PER model.

1. Introduction

In intensional Martin-Löf type theory (ITT), but also
in the Calculus of Inductive Constructions which underlies
the Coq proof assistant, we distinguish between definitional
equality of terms t and t′ of type T , given by the judgement
Γ ` t = t′ : T , and propositional equality which is estab-
lished by providing an inhabitant of the identity set IdT t t

′.
While definitional equality is decidable and invoked during
type checking, propositional equality is not. Inhabitants of
IdT t t

′ can be assumed and constructed by induction. How-
ever, there is at most one canonical inhabitant, the poly-
morphic constant refl; if t is definitionally equal to t′, then
Γ ` refl : IdT t t

′ is canonical, otherwise, there are only
non-canonical inhabitants.

In this respect, identity sets are similar to the unit set
which has exactly one canonical inhabitant. For the unit
set one easily proves that any two inhabitants are propo-
sitionally equal. The question whether this can be shown
for the identity set as well has been answered negatively by
Hofmann and Streicher [11]. The principle UIP (unique-
ness of identity proofs) which states that any two proofs of
propositional equality are propositionally equal themselves
is refuted by interpreting each set T of ITT as a groupoid,
and each identity set IdT t t

′ as a set of isomorphisms be-
tween the objects t and t′ in the groupoid T . This model
leaves room for more than one isomorphism per each pair
of objects. Awodey and Warren [8] and Gambino and Gar-
ner [10] continue this program by looking at isomorphisms

of isomorphisms and towers of identity sets leading to weak
ω-groupoids and homotopy theory.

While UIP is not provable and adding it as a constant
might destroy canonicity,1 we can add the principle of proof
irrelevance for identity sets, as Altenkirch suggested [5].

Γ ` p, q : IdT t t
′

Γ ` p = q : IdT t t′

Any two proofs of a propositional equality are definitionally
equal. In the presence of this rule, UIP has a trivial proof.
An instance of proof irrelevance (for q = refl) is Martin-
Löf’s η-expansion for the identity type [12]:

Γ ` p : IdT t t

Γ ` p = refl : IdT t t

Streicher’s axiom K [14] is the propositional variant of this
principle, again, it has a trivial proof.

In this article, we are concerned with a decision proce-
dure for definitional equality in the presence of proof ir-
relevant identity sets. We aim at computing unique η-long
β-normal forms of well-typed terms which can then be com-
pared syntactically. There are a few challenging issues:

1. Unlike in settings with proof-irrelevant propositions
that are never eliminated [4, 7], we need to distinguish
a refl-proof from a merely hypothetical proof of a pos-
sibly false identity in order to resolve identity elimina-
tion.

Γ ` S : Set Γ ` s, s′ : S Γ ` p : IdS s s
′

Γ ` C : (x, x′ :S)→ IdS xx
′ → Set

Γ ` h : (x :S)→ C xx refl

Γ ` idElimS,s,s′ pC h : C s s′ p

idElimS,s,s reflC h = h s

2. An η-expansion at identity type can trigger a new β-
reduction.2

idElimA,a,a pC h −→η− idElimA,a,a reflC h −→β h a

1Canonicity means that each closed term reduces to a canonical form,
e.g., each closed term of natural number type reduces to a numeral

1

Hence, we cannot simply compute β-normal forms
which we η-expand in a second phase.

Our solution is as follows: We introduce a symbol ∗ for
irrelevant proofs which may be different from refl.

Γ ` p : IdT t t
′

Γ ` ∗ : IdT t t′

To obtain unique normal forms, we replace each proof
p : IdT t t

′ with refl if t and t′ have the same normal form,
and with ∗ otherwise. This step may not be done too early,
in particular, bottom-up normalization (like hereditary sub-
stitutions [15]) does not work. For example, consider the
following computation in context X :Set, x :X .

nf((λy :X.λp : IdX x y. p)x)
= nf(λy :X.λp : IdX x y. p) nf(x)
= (λy :X.λp : IdX x y. ∗)x
= λp : IdX xx. ∗

We have checked for identity of x and y too early. A top-
down normalization function might work, but it is not com-
positional, thus, a proof of normalization could be hard.

In this article, we consider a strategy that is inspired by
normalization-by-evaluation. It is type-directed; a term of
function type is normalized by applying it to a fresh, η-
expanded variable. At base type, it is sufficient to compute
the β-normal form. However, here we have the same issue
that η-expansion may not be executed eagerly, otherwise we
will produce ∗s where we could have refls. For example, a
variable f of type (x :X)→ (y :X)→ IdX x y will eagerly
expand to λxλy. ∗, missing that f x x = refl. We therefore
treat η-expansion of variables lazily, we introduce markers
UpT t which remember that t needs to be η-expanded.

For the moment, we can show completeness of our nor-
malization procedure only for the logical framework [13]
with identity sets (see the rules in Sec. 2). In particular, we
did not succeed in adding function sets. However, adding a
natural number set and other base types imposes no prob-
lem.

Overview. In Sec. 2 we recapitulate syntax and inference
rules of the logical framework with proof irrelevant identity
sets. In Sec. 3 we define unique normal forms and present a
partial normalization function whose soundness is immedi-
ate. For completeness, we construct a PER model in Sec. 4.
For two semantic objects, we show that if they are related in
the PER of their type, then they have the same normal form.

2Note that this is unlike the case for function types where unrestricted η
expansion can create a β-redex whose reduction leads back to the original
term but makes no progress.

tA→B x −→η− (λy. t y)x −→β t x

The opposite direction could only be shown for objects of
base type. Termination and completeness of the normaliza-
tion function follows from the usual fundamental theorem.

2. Syntax

We consider Martin-Löf’s logical framework with Id as
the only set former. While it is unproblematic to add a set of
natural numbers, we do not know how to extend the present
word to function sets or Σ-sets yet.

Raw expressions and typing contexts are given by the
following grammar, where we use uppercase letter to indi-
cate types and lowercase letters to indicate terms.

Exp 3 p, q, r, s, t ::= x | λxt | r s | (x :S)→ T
| Set |Type
| refl | idElimS,s,s′ p T t | IdT t t

′

Cxt 3 Γ ::= � | Γ, x :T

Note that we use refl polymorphically, as opposed to adding
a monomorphic constant refl : (T :Set)→ (t :T)→ IdT t t
to the logical framework. Typing and equality is specified
via the following five judgements, which are introduced by
the rules in Figure 1. Note that we have omitted all congru-
ence rules for equality.

Γ ` Γ is a well-formed context
Γ ` T T is a well-formed type in Γ
Γ ` t : T t has type T in Γ
Γ ` T = T ′ T and T ′ are equal types in Γ
Γ ` t = t′ : T t and t′ are equal terms of type T in Γ

We write Γ ` J to mean one of these judgements. These
judgements enjoy the usual properties such as weakening,
context conversion, substitution, and inversion of typing.

We extend Exp to Exp∗ by adding the constructors ∗ and
UpT t. Normalization will erase all hypothetical identity
proofs to ∗, i.e., all proofs that do not normalize to refl but
to a term with a variable in head position. In order to de-
fine well-typed normal forms, we introduce another set of
judgements `∗ which are clones of the ` judgements, with
the additional rule

Γ `∗ p : IdT t t
′

Γ `∗ ∗ : IdT t t′
.

Our normalization procedure will use marked terms UpT t
which express that term t is to be eta-expanded at type T .
These markers have only administrative purpose, so we add
the rules

Γ `∗ t : T
Γ `∗ UpT t : T

Γ `∗ t : T
Γ `∗ UpT t = t : T

.

Theorem 1 (Conservativity) If Γ `∗ J and Γ, J do not
mention ∗ and Up, then Γ ` J .

2

Well-formed contexts.

� `
Γ ` Γ ` T :Type

Γ, x :T `

Dependently-typed λ-calculus.

Γ ` (x :T) ∈ Γ
Γ ` x : T

Γ ` t : T Γ ` T = T ′ :Type

Γ ` t : T ′

Γ ` S :Type Γ, x :S ` T :Type

Γ ` (x :S)→ T :Type

Γ, x :S ` t : T
Γ ` λxt : (x :S)→ T

Γ ` r : (x :S)→ T Γ ` s : S
Γ ` r s : T [s/x]

Equality axioms.

Γ, x :S ` t : T Γ ` s : S
Γ ` (λxt) s = t[s/x] : T [s/x]

Γ ` t : (x :S)→ T

Γ ` t = λx. t x : (x :S)→ T
x 6∈ FV(t)

Sets.

Γ `
Γ ` Set :Type

Γ ` T : Set

Γ ` T :Type

Identity set.

Γ ` T : Set Γ ` t : T Γ ` t′ : T
Γ ` IdT t t′ : Set

Γ ` T : Set Γ ` t : T
Γ ` refl : IdT t t

Γ ` S : Set Γ ` s, s′ : S Γ ` p : IdS s s
′ Γ ` C : (x, x′ :S)→ IdS xx

′ → Set Γ ` h : (x :S)→ C xx refl

Γ ` idElimS,s,s′ pC h : C s s′ p

Equality axioms.

Γ ` S : Set Γ ` s : S Γ ` C : (x, x′ :S)→ IdS xx
′ → Set Γ ` h : (x :S)→ C xx refl

Γ ` idElimS,s,s reflC h = h s : C s s refl

Γ ` p, q : IdT t t
′

Γ ` p = q : IdT t t′

Figure 1. Inference rules

3

Proof. As in [4]: Replace in the derivation of Γ `∗ J
each occurrence of ∗, which has been introduced by forget-
ting proof p, by just this p. Also, replace every UpT t by t.
Remove or replace the affected inference steps. �

3. Normalization

In this section, we exhibit a type-directed algorithm
normΓ`T t which, given a well-typed term Γ ` t : T , com-
putes the unique long normal form of t where all identity
proofs have been replaced by either refl or ∗. The purpose
of the algorithm is to decide judgmental equality, in partic-
ular we ask for the following properties. Let Γ ` t, t′ : T .

1. Soundness: If normΓ`T t = normΓ`T t′ then Γ ` t =
t′ : T .

2. Completeness: If Γ ` t = t′ : T then normΓ`T t =
normΓ`T t′.

3. Termination: normΓ`T t is defined.

We will define normalization on terms, hence, the algorithm
will be sound by construction. Our soundness theorem is no
more than subject reduction. Completeness and termination
will follow from the construction of a PER model in Sec-
tion 4.

3.1. Normal forms

It is illustrative to first present a grammar of normal
forms, to see where the algorithm is supposed to take us.
We distinguish long normal forms v, identified by a judge-
ment Γ ` v ⇑ T , from neutral normal forms u, identified
by Γ ` u ⇓ T . Neutral normal forms are terms whose
head is a variable or ∗ and whose spine consists of long nor-
mal forms. Only certain expressions are candidates for long
normal forms. In any case, they need to be β-normal; in
particular, they must be generated by the following gram-
mar.

u, U ::= x | u v | idElimV,v,v′ ∗C h
v, V ::= u | λxv | refl | ∗

| (x :V)→ V ′ | IdV v v
′ | Set

Neutral normal forms Γ `∗ u ⇓ T .

Γ `∗

Γ `∗ x ⇓ Γ(x)

Γ `∗ u ⇓ (x :S)→ T Γ `∗ v ⇑ S
Γ `∗ u v ⇓ T [v/x]

Γ `∗ V ⇑ Set Γ `∗ v, v′ ⇑ V v 6≡ v′
Γ `∗ C ⇑ (x, x′ :V)→ IdV xx

′ → Set
Γ `∗ h ⇑ (x :V)→ C xx refl

Γ `∗ idElimV,v,v′ ∗C h ⇓ C v v′ ∗

Γ `∗ u ⇓ T Γ `∗ T = T ′ :Type

Γ `∗ u ⇓ T ′

Usually, one would consider idElimV,v,v′ uC h neutral if u
was. In our case, we only have two possible proofs u of
identity: refl and ∗. The first would constitute a β-redex,
thus, only the second is possible, and it forces v 6≡ v′.

(Long) normal forms (lnf) Γ `∗ v ⇑ T .

Γ `∗ U ⇓ Set Γ `∗ u ⇓ U
Γ `∗ u ⇑ U

Γ `∗ t : T
Γ `∗ refl ⇑ IdT t t

Γ `∗ v, v′ ⇑ T v 6≡ v′ Γ `∗ p : IdT v v
′

Γ `∗ ∗ ⇑ IdT v v′

Γ, x :S `∗ v ⇑ T
Γ `∗ λxv ⇑ (x :S)→ T

Γ `∗ v ⇑ T Γ `∗ T = T ′ :Type

Γ `∗ v ⇑ T ′

Neutral nfs of base type U are lnfs, yet in our case, we ex-
clude the identity type IdT t t

′ as base type, thus, only neu-
tral types Γ `∗ U ⇓ Set remain. The two possible lnfs of
identity type have their own introduction rules: ∗ is a lnf of
identity type IdT v v

′ if v and v′ are different lnfs and there
the identity type is inhabited by some proof p.

Normal types Γ `∗ V ⇑ Set/Type.

Γ `∗ U ⇓ Set

Γ `∗ U ⇑ Set

Γ `∗ V ⇑ Set Γ `∗ v, v′ ⇑ V
Γ `∗ IdV v v′ ⇑ Set

Γ `∗ V ⇑ Set

Γ `∗ V ⇑Type

Γ `∗

Γ `∗ Set ⇑Type

Γ `∗ V ⇑Type Γ, x :V `∗ V ′ ⇑Type

Γ `∗ (x :V)→ V ′ ⇑Type

The three judgements entail well-typedness and are pre-
served under weakening with well-formed contexts. Note
that these judgements do not immediately give us an method
to check whether a term is normal, since they rely on the
type equality judgement.

Remark 2 Note that while we can derive Γ ` x ⇓ IdT t t
′

for a suitable Γ, we do not get Γ ` x ⇑ IdT t t
′, since

IdT t t
′ is not a neutral type.

3.2. Normalization Algorithm

We denote parallel substitution by tσ, where σ is a map
from variables to expressions such that σ(x) 6= x for only
finitely many x. Update of σ at x by t is written (σ, x = t).

4

A weak head normal form (whnf) w is an expression
without β-redex in weak head position. In our case, this
means concretely:

w ::= u | Up(x:S)→Tu | λxt | (x :S)→ T
| refl | ∗ | IdT t t

′ | Set

The algorithm is given by the entry point function
normΓ`T t and six mutual recursive partial functions:

nfWw compute lnf of whnf w, directed by type W
NFW compute lnf of type W
↑W u η-expand neutral nf u at type W
LtM compute whnf of term t
w@s compute whnf of application w s
idE . . . compute whnf of idElim

The top-level normalization function replaces free variables
x : S by their reflection ↑S x and calls nf on the whnfs.

normΓ`T t = nfLTσMLtσM where σ(x) = ↑LΓ(x)M x.

Type-directed normalization η-expands its argument, a
whnf, at function type, using active application to a re-
flected fresh variable ↑ x. Active application triggers fur-
ther normalization. At identity type, whnfs are already nfs,
and at neutral types U we only encounter neutral nfs u.

nf(x:S)→Tw = λx. nfLT [s/x]Mw@s
where x 6∈ FV(w) and s = ↑LSM x

nfSetW = NFW

nfTypeW = NFW

nf IdS s s
′
w = w

nfUu = u

Type normalization. This is just nf for types.

NF Set = Set

NF ((x :S)→ T) = (x :NF LSM)→ NF LT [(↑LSM x)/x]M
NF (IdT t t

′) = Id(NFW) (nfW LtM) (nfW Lt′M)
where W = LT M

NFU = U

Eta-expansion (reflection) acts on a neutral nf u of type W .
In case of an identity type IdT t t

′, if t and t′ have the same
normal form, we can safely expand u to refl, and if not,
then to ∗. It is crucial that the point of evaluating ↑IdT t t

′
u

we have the complete information about t and t′. This is
ensured by two means:

1. Free variables in any term involved in normalization
are reflected, i. e., they can only appear inside marked
terms Up(x:S)→Tu or neutral nfs u of neutral type.

2. Reflection at function types is delayed: ↑(x:S)→T u pro-
duces a marked term Up(x:S)→Tu which waits for an
argument. Only after application, reflection continues
(see below).

↑(x:S)→T u = Up(x:S)→Tu

↑IdT t t
′
u =

{
refl if nfLT MLtM ≡ nfLT MLt′M
∗ otherwise

↑Set U = U

↑U u = u

Weak head normalization is standard: It eliminates all top
level β-redexes.

Lr sM = LrM@s
LidElimS,s,s′ pC hM = idES,s,s′ LpM C h
LwM = w

Active application eliminates functions, which are either λ-
abstractions or delayed reflections Up(x:S)→Tu at function
type.

(λxt)@s = Lt[s/x]M
(Up(x:S)→Tu)@s = ↑LT [s/x]M (u (nfLSMLsM))

Identity proof elimination of refl is a β-redex which is re-
solved by idE. Elimination of ∗ leads to a neutral normal
form, which is subjected to η-expansion. This way, idElim
can never stack up in neutrals.

idES,s,s′ reflC h = Lh sM
idES,s,s′ ∗C h = ↑LC s s

′ ∗M (idElimVS ,vs,vs′ ∗VC vh)
where WS = LSM

VS = NFWS

vs = nfWS LsM
vs′ = nfWS Ls′M
VC = nf(x,x′:S)→IdS x x

′→SetLCM
vh = nf(x:S)→C xx reflLhM

3.3. Soundness

Soundness of normalization follows simply by inspec-
tion of the equations. Formally, we prove:

Theorem 3 (Subject reduction) Let Γ `∗ t : T .

1. If normΓ`T t = v then Γ `∗ t = v : T .

2. If nfT t = v then Γ `∗ t = v : T .

3. If NFT = V then Γ `∗ T = V :Type.

4. If ↑T t = w then Γ `∗ t = w : T .

5. If LtM = w then Γ `∗ t = w : T .

5

6. If Γ `∗ t s : S and t@s = w then Γ `∗ t s = w : S.

7. If Γ ` idElimS,s,s′ pC h : T and idES,s,s′ pC h = w
then Γ ` idElimS,s,s′ pC h = w : T .

Proof. Simultaneously, by induction on the evaluation
trace of the functions. More precisely, we view the func-
tions as mutually inductive relations, e.g., L M as the binary
relation L M = , which are given by inference rules, for
instance,

LT M = W LtM = w Lt′M = w′

nfWw = v nfWw′ = v

↑IdT t t′ u = refl

Then, we show the theorem by mutual induction on these
relations. In case of the rule above, we have Γ `∗ u :
IdT t t

′ which entails Γ `∗ T : Set and Γ `∗ t, t′ : T by
inversion. By induction hypotheses we get Γ `∗ T = W :
Set, Γ `∗ t = w : T , Γ `∗ t′ = w′ : T , Γ `∗ w = v : W
and Γ `∗ w′ = v : W . Putting these equalities together,
we get Γ `∗ t = t′ : T , hence, Γ `∗ refl : IdT t t

′. By
proof irrelevance, Γ `∗ u = refl : IdT t t

′. �

Corollary 4 (Soundness) If Γ ` t, t′ : T and
normΓ`T t = normΓ`T t′ then Γ ` t = t′ : T .

Proof. Certainly, Γ `∗ t, t′ : T , hence, by subject reduc-
tion Γ `∗ t = normΓ`T t : T and Γ `∗ t′ = normΓ`T t′ :
T . It follows Γ `∗ t = t′ : T and, by conservativity,
Γ ` t = t′ : T . �

4. Model and Completeness

In this section we prove that normalization terminates
and is complete for judgmental equality, i. e., if Γ ` t =
t′ : T then normΓ`T t and normΓ`T t′ are defined and α-
equivalent. To this end, we construct a partial equivalence
relation (PER) [W] for each type W in whnf such that:

1. If Γ ` t = t′ : T and σ(x) = ↑LΓ(x)M x for all x ∈
dom(Γ) then (LtσM, Lt′σM ∈ [LTσM].

2. If (w,w′) ∈ [W] then nfWw and nfWw′ are defined
and equal.

We do not prove here that nfWw is actually a long normal
form Γ ` nfWw ⇑ W ; this result could be achieved by
switching to a Kripke model where Γ is available. Also,
the PER model is unsound: every type is inhabited in the
model. This does not bother us either; soundness can also
be obtained by switching to a Kripke model.

4.1. PER Model

Dealing with a predicative type theory, we can construct
a model from below. For convenience, we use induction-
recursion [9]. Our construction is analogous to previous
work [1, 2].

We write w = w′ ∈ W for (w,w′) ∈ [W] and extend
this to all terms by letting t = t′ ∈ T be LtM = Lt′M ∈ LT M,
which more precisely means the conjunction of LtM = w,
Lt′M = w′, LT M = W , and w = w′ ∈ W . Also t ∈ T is
short for t = t ∈ T .

First, we construct a PER = ∈ Set by induction,
and simultaneously for each W ∈ Set its extension, a PER
[W], by recursion on W ∈ Set. Then, we proceed with

= ∈ Type and [W] for W ∈ Type. We will not repeat
the proofs that the obtained relations are indeed PERs and
that related sets or types have the same extension [1]. In our
case, the construction of Set is trivial: there are only two
types of sets, namely neutral sets and identity sets.

Neutral sets.

U = U ∈ Set

[U] = {(u, u)}

Identity sets.

T = T ′ ∈ Set t1 = t′1 ∈ T t2 = t′2 ∈ T
IdT t1 t2 = IdT ′ t′1 t

′
2 ∈ Set

[IdT t1 t2] = {(refl, refl) | nfLT MLt1M ≡ nfLT MLt2M}
∪ {(∗, ∗) | nfLT MLt1M 6≡ nfLT MLt2M}

If the normal form of t1 or t2 is undefined, then [IdT t1 t2] is
empty, according to the definition. However, this will never
happen, since t1, t2 ∈ T by definition. Thus, [IdT t 1t2]
will be the singleton {(refl, refl)} if t1 and t2 have the same
normal form, and {(∗, ∗)} otherwise. Since α-equivalence
is decidable, our construction does not leave intuitionistic
logic.

Universe of sets.

W = W ′ ∈ Set

W = W ′ ∈Type Set = Set ∈Type

No new PERs [W] need to be constructed here, since
[Set] = {(W,W ′) | W = W ′ ∈ Set} already by our nota-
tional convention.

6

Function types. The standard construction.

S = S′ ∈Type
∀s = s′ ∈ S. T [s/x] = T [s′/x]′ ∈Type

(x :S)→ T = (x :S′)→ T ′ ∈Type

[(x :S)→ T] = {(w,w′) | ∀s = s′ ∈ S.
w@s = w′@s′ ∈ T [s/x]}

4.2. Escape Lemma

We would like to establish that nf decides model equal-
ity, i. e., if w,w′ ∈ W then w = w′ ∈ W if and only if
nfWw ≡ nfWw′. We show it for sets W , but for function
types we can only prove the direction “only if”.

In the following, when we formulate a property for the
PERType, we mean it also for Set, and a proof by induction
on W = W ′ ∈Type shall mean that we first do a induction
on W = W ′ ∈ Set.

Lemma 5 (Out of and into of the model) LetW = W ′ ∈
Type. Then,

1. NFW ≡ NFW ′.

2. If w = w′ ∈W then nfWw ≡ nfW
′
w′.

3. ↑W u = ↑W
′
u ∈W .

Proof. By induction on W = W ′ ∈Type.

Case

U = U ∈ Set

1. Clear, since NFU = U .

2. Assume u = u ∈ U . We have nfUu = u.

3. By definition, ↑U u = ↑U u ∈ U .

Case

T = T ′ ∈ Set t1 = t′1 ∈ T t2 = t′2 ∈ T
IdT t1 t2 = IdT ′ t′1 t

′
2 ∈ Set

1. Clear, using the induction hypotheses.

2. Case
nfLT MLt1M ≡ nfLT MLt2M
refl = refl ∈ IdT t1 t2

Trivial, since nf IdT t1 t2refl = refl.
Case

nfLT MLt1M 6≡ nfLT MLt2M
∗ = ∗ ∈ IdT t1 t2

Trivial, since nf IdT t1 t2∗ = ∗.

3. Let v1 := nfLT MLt1M and v2 := nfLT MLt2M which
are both defined by induction hypothesis. If
v1 ≡ v2 then ↑IdT t1 t2 u = refl. Since by
induction hypothesis also nfLT ′MLt′1M = v1 ≡
v2 = nfLT ′MLt′2M, we have ↑IdT ′ t

′
1 t
′
2 u = refl, thus

↑IdT t1 t2 u = ↑IdT ′ t
′
1 t
′
2 u ∈ IdT t1 t2. If v1 6≡ v2,

then ↑IdT t1 t2 u = ∗ = ↑IdT ′ t
′
1 t
′
2 u, thus, also

↑IdT t1 t2 u = ↑IdT ′ t
′
1 t
′
2 u ∈ IdT t1 t2.

Case
S = S′ ∈Type

∀s = s′ ∈ S. T [s/x] = T [s′/x]′ ∈Type

(x :S)→ T = (x :S′)→ T ′ ∈Type

1. Observe that NF ((x :S)→ T) = (x :NFLSM)→
NF LT [(↑LSM x)/x]M. By induction hypothesis,
we have ↑LSM x = ↑LS

′M x ∈ LSM. Thus,
by induction hypothesis NF LT [(↑LSM x)/x]M ≡
NF LT ′[(↑LS

′M x)/x]M, and also NF LSM ≡
NF LS′M. Together, NF ((x :S)→ T) ≡
NF ((x :S′)→ T ′).

2. Assume w = w′ ∈ (x : S) → T . Observe that
nf(x:S)→Tw = λx. nfLT [(↑LSM x)/x]M(w@ ↑LSM x).
Similar as in the last case, we have w@ ↑LSM x =
w′@ ↑LS

′M x ∈ LT [(↑LSM x)/x]M, from which
nf(x:S)→Tw ≡ nf(x:S′)→T ′w′ follows.

3. To show ↑(x:S)→T u = ↑(x:S
′)→T ′ u ∈ (x :

S) → T , assume arbitrary s = s′ ∈ S and
show (↑(x:S)→T u)@s = (↑(x:S

′)→T ′ u)@s′ ∈
LT [s/x]M. Observe that (↑(x:S)→T u)@s =
↑LT [s/x]M (u (nfLSMLsM)). Let v := nfLSMLsM.
By induction hypothesis, v ≡ nfLS′Ms′ and
↑LT [s/x]M (u v) = ↑LT

′[s′/x]M (u v) ∈ LT [s/x]M.
�

Lemma 6 (Eta-expansion in the model) Let W ∈ Set
and w ∈W .

1. NFW = W ∈ Set.

2. nfWw = w ∈W .

3. ↑W w = w ∈W .

Proof. By induction on W ∈ Set.

Case

U ∈ Set

1. We have NFU = U , hence, NFU = U ∈ Set.

2. Since nfUu = u, we have nfUu = u ∈ U .

7

3. With ↑U u = u we immediately obtain ↑U u =
u ∈ U .

Case

LT M ∈ Set Lt1M ∈ LT M Lt2M ∈ LT M
IdT t1 t2 ∈ Set

Let W = LT M, w1 = Lt1M and w2 = Lt2M.

1. NF (IdT t1 t2) = IdNFW (nfWw1) (nfWw2) en-
tails NF (IdT t1 t2) = IdT t1 t2 ∈ Set by the in-
duction hypotheses.

2. nf IdT t1 t2w = w by definition.

3. We distinguish two cases:

nfWw1 ≡ nfWw2

refl ∈ IdT t1 t2

Since ↑IdT t1 t2 w = refl for any w, clearly
↑IdT t1 t2 refl = refl ∈ IdT t1 t2.

nfWw1 6≡ nfWw2

∗ ∈ IdT t1 t2

Since ↑IdT t1 t2 w = ∗ for any w, clearly
↑IdT t1 t2 ∗ = ∗ ∈ IdT t1 t2.

�

Corollary 7 If W ∈ Set, w,w′ ∈ W , and nfWw =
nfWw′, then w = w′ ∈W .

It is unclear how to extend Lemma 6 to function types.
Hence, we could not prove it for types W ∈Type, and we
can not extend Set by function sets.

4.3. Fundamental Theorem

In this section, we show that judgmental equality is mod-
eled by the PERs, and as a consequence, is decided by nor-
malization.

Let σ = σ′ ∈ Γ iff σ(x) = σ′(x) ∈ Γ(x) for all x ∈
dom(Γ). We define Γ
 J , meaning that Γ ` J is valid in
the PER model by induction on Γ:

�
 :⇐⇒ true
Γ, x :T
 :⇐⇒ Γ
 T :Type

Γ
 t : T :⇐⇒ Γ
 t = t : T
Γ
 t = t′ : T :⇐⇒ Γ
 T and

∀σ = σ′ ∈ Γ. LtσM = Lt′σ′M ∈ LTσM

Γ
 T :⇐⇒ either T =Type and Γ

or Γ
 T :Type

The proof of the fundamental theorem requires Lemma 6
for the soundness of the typing of idElim.

Theorem 8 (Fundamental theorem) If Γ ` J then Γ

J .

Proof. By induction on Γ ` J .

Case
Γ ` t : T

Γ ` refl : IdT t t

Assume σ = σ′ ∈ Γ. Let w := LtσM and W := LTσM.
By induction hypothesis, w ∈ W . Hence v := nfWw
is defined. Clearly, refl ∈ IdW ww.

Case
Γ ` S : Set Γ ` s, s′ : S

Γ ` p : IdS s s
′

Γ ` C : (x, x′ :S)→ IdS xx
′ → Set

Γ ` h : (x :S)→ C xx refl

Γ ` idElimS,s,s′ pC h : C s s′ p

Let W = LSσM, w = LsσM, and w′ = Ls′σM. By
induction hypothesis, LpσM = Lpσ′M ∈ L(IdS s s

′)σM.

In case nfWw ≡ nfWw′ we have LpσM = Lpσ′M =
refl and L(idElimS,s,s′ pC h)σM = L(h s)σM. By
Cor. 7 w = w′ ∈ W , hence, sσ = s′σ ∈
Sσ. Also by induction hypothesis, Cσ = Cσ ∈
(x, x′ : Sσ) → IdSσ xx

′ → Set, which implies
(C s s′ p)σ = (C s s refl)σ ∈ Set. By induction hy-
pothesis hσ = hσ′ ∈ (x : Sσ) → Cσ xx refl, which
implies (h s)σ = (h s)σ′ ∈ (C s s refl)σ, and fi-
nally (idElimS,s,s′ pC h)σ = (idElimS,s,s′ pC h)σ′ ∈
(C s s′ p)σ.

In case nfWw 6≡ nfWw′ we have LpσM = Lpσ′M =
∗. The proof is finished using the definition of
idESσ,sσ,s′σ ∗Cσ hσ and Lemma 5.

Case
Γ ` S : Set Γ ` s : S

Γ ` C : (x, x′ :S)→ IdS xx
′ → Set

Γ ` h : (x :S)→ C xx refl

Γ ` idElimS,s,s reflC h = h s : C s s refl

By induction hypothesis, hσ = hσ′ ∈ (x :
Sσ) → Cσ xx refl and sσ = sσ′ ∈ Sσ.
Since L(idElimS,s,s reflC h)σM = LhσM@(sσ)
and L(h s)σ′M = Lhσ′M@(sσ′), the goal
L(idElimS,s,s reflC h)σM = L(h s)σ′M ∈
L(C s s refl)σM follows immediately.

Case
Γ ` p, q : IdT t t

′

Γ ` p = q : IdT t t′

This is trivial by definition of the semantics of the iden-
tity type. Here is a proof: Assume σ = σ′ ∈ Γ and
show p′ = q′ ∈ W where p′ := LpσM, q′ := Lqσ′M,
and W := L(IdT t t

′)σM. By induction hypothesis and

8

Lemma 5, v := nfLT MLtM and v′ := nfLT MLt′M are both
defined. If they are identical, it must be the case that
p = q = refl, otherwise, p = q = ∗. In both cases
p′ = q′ ∈W .

Case
Γ, x :S ` t : T Γ ` s : S
Γ ` (λxt) s = t[s/x] : T [s/x]

Assume σ = σ′ ∈ Γ. W. l. o. g., choose x
such it does not interfere with σ or σ′. Observe
that L((λxt) s)σ)M = L(λx. t(σ, x = x)) sσM =
Lλx. t(σ, x = x)M@sσ = Lt(σ, x = x)[sσ/x]M =
Lt(σ, x = sσ)M. Further, L(t[s/x])σ′M = Lt(σ′, x =
sσ′)M. By induction hypothesis, LsσM = Lsσ′M ∈ LSM,
thus, sσ = sσ′ ∈ S. Hence, (σ, x = sσ) = (σ′, x =
sσ′) ∈ Γ, x : S. By induction hypothesis again,
∆ ` Lt(σ, x = sσ)M = Lt(σ′, x = sσ′)M ∈ LT (σ, x =
sσ)M. Using the calculations above, this implies the
goal L((λxt) s)σM = L(t[s/x])σ′M ∈ L(T [s/x])σM.

�

Corollary 9 (Completeness of Normalization) Let Γ `
t = t′ : T and σ(x) = ↑LΓ(x)M x. Then nfLTσMLtσM ≡
nfLTσMLt′σM.

Proof. By Lemma 5, σ = σ ∈ Γ. Then fundamental the-
orem yields LtσM = Lt′σM ∈ LTσM. The goal follows by
Lemma 5. �

5. Conclusion

We have shown how to decide judgmental equality in
a logical framework with proof irrelevant identity types.
Identities are restricted to base types. It is not clear yet how
to extend our approach to identities between function types,
future research will show.

5.1. More Related Work

In his habilitation thesis, Streicher [14] consid-
ers the η-rule idElimS,s,s′ pC (λx. e x x refl) = e for
e : (x, y : S) → (q : IdS x y)→C xy q and proves
that it entails equality reflection, i. e., Extensional Type
Theory. Clearly, this rule destroys decidability of defini-
tional equality and type checking. Streicher also proves
that in the presence of UIP, idElim can be replaced by
the simpler substitution operator subst : (S : Set) →
(s, s′ :S)→ IdS s s

′ → (P :S → Set)→ P s→ P s′.
Thus, we could have chosen subst instead of idElim
without losing expressivity.

Werner [16] considers the Calculus of Inductive Con-
structions (CIC) with proof-irrelevant propositions. Dur-
ing equality checking t =ε t

′, all proofs are replaced by
ε (our ∗), in particular, canonical and hypothetical proofs
of propositional equality are no longer distinguished. Con-
sequently, for identity elimination Werner switches to the
reduction rule substS,s,s′ pP x −→ x in case s =ε s

′. This
is generalized to all inductive propositions (which can have
at most one constructor in the CIC). We hope to extend our
approach to the CIC as well; this would integrate η-equality
into the CIC with proof-irrelevance.

Very interesting related work is Observational Type The-
ory by Altenkirch, McBride, and Swierstra [6]. They imple-
ment a heterogeneous propositional equality which features
functional extensionality by definition. Proof irrelevance is
obtained by type-directed quotation (very similar to con-
textual reification [3]) which happens after evaluation and
“boxes” all proofs such that they can be disregarded in the
syntactical equality test. How their approach relates to mine
exactly I do not know yet.

Acknowledgments. The idea to look at η-expansion for the
identity type came up in discussions with James Chapman
and Tarmo Uustalu during a visit to IOC Tallinn in March
2009. I am grateful for their invitation.

References

[1] A. Abel, K. Aehlig, and P. Dybjer. Normalization by eval-
uation for Martin-Löf type theory with one universe. In
M. Fiore, editor, Proceedings of the 23rd Conference on
the Mathematical Foundations of Programming Semantics
(MFPS XXIII), New Orleans, LA, USA, 11-14 April 2007,
volume 173 of Electronic Notes in Theoretical Computer
Science, pages 17–39. Elsevier, 2007.

[2] A. Abel, T. Coquand, and P. Dybjer. Normalization by evalu-
ation for Martin-Löf Type Theory with typed equality judge-
ments. In 22nd IEEE Symposium on Logic in Computer Sci-
ence (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Pro-
ceedings, pages 3–12. IEEE Computer Society Press, 2007.

[3] A. Abel, T. Coquand, and P. Dybjer. Verifying a semantic
βη-conversion test for Martin-Löf type theory. In P. Au-
debaud and C. Paulin-Mohring, editors, Mathematics of
Program Construction, 9th International Conference, MPC
2008, Marseille, France, July 15-18, 2008. Proceedings,
volume 5133 of Lecture Notes in Computer Science, pages
29–56. Springer-Verlag, 2008.

[4] A. Abel, T. Coquand, and M. Pagano. A modular type-
checking algorithm for type theory with singleton types and
proof irrelevance. In P.-L. Curien, editor, Typed Lambda
Calculi and Applications, 9th International Conference,
TLCA 2009, Brasilia, Brazil, July 1-3, 2009, Proceedings,
volume 5608 of Lecture Notes in Computer Science, pages
5–19. Springer-Verlag, 2009.

[5] T. Altenkirch. Extensional equality in intensional type the-
ory. In 14th Annual IEEE Symposium on Logic in Computer

9

Science, 2-5 July, 1999, Trento, Italy, Proceedings, pages
412–420, 1999.

[6] T. Altenkirch, C. McBride, and W. Swierstra. Observational
equality, now! In A. Stump and H. Xi, editors, Proceedings
of the ACM Workshop Programming Languages meets Pro-
gram Verification, PLPV 2007, Freiburg, Germany, October
5, 2007, pages 57–68. ACM Press, 2007.

[7] S. Awodey and A. Bauer. Propositions as [types]. J. Log.
Comput., 14(4):447–471, 2004.

[8] S. Awodey and M. A. Warren. Homotopy theoretic models
of identity types. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 146:45–55, 2009.

[9] P. Dybjer. A general formulation of simultaneous inductive-
recursive definitions in type theory. The Journal of Symbolic
Logic, 65(2):525–549, 2000.

[10] N. Gambino and R. Garner. The identity type weak factori-
sation system. Theoretical Computer Science, 409(1):94–
109, 2008.

[11] M. Hofmann and T. Streicher. The groupoid interpretation
of type theory. In Twenty-five Years of Constructive Type
Theory, Festschrift, Venice 1995, volume 36 of Oxford Logic
Guides, pages 83–111. Oxford University Press, 1998.

[12] P. Martin-Löf. Constructive mathematics and computer pro-
gramming. In Proc. of a discussion meeting of the Royal
Society of London on Mathematical logic and programming
languages, pages 167–184, Upper Saddle River, NJ, USA,
1985. Prentice-Hall, Inc.

[13] B. Nordström, K. Petersson, and J. M. Smith. Programming
in Martin Löf’s Type Theory: An Introduction. Clarendon
Press, Oxford, 1990.

[14] T. Streicher. Investigations into Intensional Type Theory,
1993. Habilitation thesis, Ludwig-Maximilians-University
Munich.

[15] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A
concurrent logical framework I: Judgements and properties.
Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 2003.

[16] B. Werner. On the strength of proof-irrelevant type theories.
Logical Methods in Computer Science, 4, 2008.

10

