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In this paper we present an Agda formalization of a normalizer for simply-typed lambda terms. The
first step is to write a coinductive evaluator using the delay monad. The other component of the
normalizer, a type-directed reifier from values to η-long β -normal forms, resides in the delay monad
as well. Their composition, normalization-by-evaluation, is shown to be a total function, using a
standard logical-relations argument.

The successful formalization serves as a proof-of-concept for coinductive programming and
proving using sized types and copatterns, a new and presently experimental feature of Agda.

1 Introduction and Related Work

It would be a great shame if dependently-typed programming (DTP) restricted us to only writing very
clever programs that were a priori structurally recursive and hence obviously terminating. Put another
way, it is a lot to ask of the programmer to provide the program and its termination proof in one go,
programmers should also be supported in working step-by-step. This paper champions a technique that
lowers the barrier of entry, from showing termination to only showing productivity up front, and then
later providing the opportunity to show termination (convergence). In this paper, we write a simple re-
cursive normalizer for simply-typed lambda calculus which as an intermediate step constructs first-order
weak head normal forms and finally constructs full η-long β -normal forms. The normalizer is not struc-
turally recursive and we represent it in Agda as a potentially non-terminating but nonetheless productive
corecursive function targeting the coinductive delay monad. Later we show that the function is indeed
terminating as all such delayed computations converge (are only finitely delayed) by a quite traditional
strong computability argument. The coinductive normalizer, when combined with the termination proof,
yields a terminating function returning undelayed normal forms.

Our normalizer is an instance of normalization by evaluation as conceived by Danvy [11] and Abel,
Coquand, and Dybjer [1]:1 Terms are first evaluated into an applicative structure of values; herein, we
realize function values by closures, which can be seen as weak head normal forms under explicit substi-
tution. The second phase goes in the other direction: values are read back (terminology by Grégoire and
Leroy [14]) as terms in normal form. In contrast to the cited works, we employ intrinsically well-typed
representations of terms and values. In fact, our approach is closest to Altenkirch and Chapman’s big-
step normalization [5, 9]; this work can be consulted for more detailed descriptions of well-typed terms
and values. Where Altenkirch and Chapman represent partial functions via their inductively defined
graphs, we take the more direct route via the coinductive delay monad. This is the essential difference
and contribution of the present work.

1In a more strict terminology, normalization by evaluation must evaluate object-level functions as meta-level functions; such
is happening in Berger and Schwichtenberg’s original work [7], but not here.
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2 Normalization by Evaluation in the Delay Monad

The delay monad has been used to implement evaluators before: Danielsson’s Operational Semantics
Using the Partiality Monad [10] for untyped lambda-terms is the model for our evaluator. However, we
use a sized delay monad, which allows us to use the bind operation of the monad directly; Danielsson,
working with the previous version of Agda and its coinduction, has to use a workaround to please Agda’s
guardedness checker.

In spirit, evaluation into the delay monad is closely related to continuous normalization as imple-
mented by Aehlig and Joachimski [4]. Since they compute possibly infinitely deep normal forms (from
untyped lambda-terms), their type of terms is coinductive; further, our later constructor of the delay
monad is one of their constructors of lambda-terms, called repetition constructor. They attribute this idea
to Mints [16]. In the type-theoretic community, the delay monad has been popularized by Capretta [8],
and it is isomorphic to the trampolin type [13]. Escardo [12] describes a delay monad in the context of a
(ultra)metric model for PCF which allows intensional functions that can measure the termination speed
of their arguments. Indeed, the coinductive delay monad is intensional in the same sense as it makes the
speed of convergence observable.

Using hereditary substitutions [18], a normalization function for the simply-typed lambda calculus
can be defined directly, by structural recursion on types. This normalizer has been formalized in Agda
by Altenkirch and Keller [15]. The idea of normalization by induction on types is very old, see, e.g.,
Prawitz [17]. Note however, that normalization via hereditary substitution implements a fixed strategy,
bottom-up normalization, which cannot be changed without losing the inductive structure of the algo-
rithm. Our strategy, normalization via closures, cannot be implemented directly by induction on types.
Further, the simple induction on types also breaks down when switching to more powerful lambda-calculi
like Gödel’s T, while our approach scales without effort.

To save paper and preserve precious forests, we have only included the essential parts of the Agda de-
velopment; the full code is available online at http://www.tcs.ifi.lmu.de/~abel/msfp14.lagda.
It runs under the development version of Agda from December 2013 or later plus the latest standard
library.

2 Delay Monad

The Delay type is used to represent computations of type A whose result will be returned after a poten-
tially infinite delay. A value available immediately is wrapped in the now constructor. A delayed value
is wrapped in at least one later constructor. Each later represents a single delay and an infinite number
of later constructors wrapping a value represents an infinite delay, i.e., a non-terminating computation.

It is interesting to compare the Delay type with the Maybe type familiar from Haskell. Both are used
to represent partial values, but differ in the nature of partiality. Pattern matching on an element of the
Maybe type immediately yields either success (returning a value) or failure (returning no value) whereas
pattern matching on an element of the Delay type either yields success (returning a value) or a delay after
which one can pattern match again. While Maybe lets us represent computation with error, possible non-
termination is elegantly modeled by the Delay type. A definitely non-terminating value is represented by
an infinite succession of later constructors, thus, Delay must be a coinductive type. When analyzing a
delayed value, we never know whether after an initial succession of later constructors we will finally get
a now with a proper value—this reflects the undecidability of termination in general.

In Agda, the Delay type can be represented as a mutual definition of an inductive datatype and
a coinductive record. The record ∞Delay is a coalgebra and one interacts with it by using its single
observation (copattern) force. Once forced we get an element of the Delay datatype which we can pattern
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match on to see if the value is available now or later. If it is later then we get an element of ∞Delay
which we can force again, et.c

mutual
data Delay (i : Size) (A : Set) : Set where
now : A → Delay i A
later : ∞Delay i A → Delay i A

record ∞Delay (i : Size) (A : Set) : Set where
coinductive
�eld
force : {j : Size< i} → Delay j A

Both types (Delay and ∞Delay) are indexed by a size i. This should be understood as observation
depth, i.e., at least the number of times we can iteratively force the delayed computation. More precisely,
forcing a∞ : ∞Delay i A will result in a value a∞ : Delay j A of strictly smaller observation depth j < i.
An exception is a delayed value a∞ : ∞Delay ∞ A of infinite observation depth, whose forcing force a∞ :
Delay ∞ A again has infinite observation depth. The sizes (observation depths) are merely a means to
establish productivity of recursive definitions, in the end, we are only interested in values a? : Delay ∞ A
of infinite depth.

If a corecursive function into Delay i A only calls itself at smaller depths j < i it is guaranteed to be
productive, i.e., well-defined. In the following definition of the non-terminating value never, we make
the hidden size arguments explicit to demonstrate how they ensure productivity:

never : ∀{i A} → ∞Delay i A
force (never {i}) {j} = later (never {j})

The value never is defined to be the thing that, if forced, returns a postponed version of itself. For-
mally, we have defined a member of the record type ∞Delay i A by giving the contents of all of its fields,
here only force. The use of a projection like force on the left hand side of a defining equation is called a
copattern [3]. Corecursive definitions by copatterns are the latest addition to Agda, and can be activated
since version 2.3.2 via the flag --copatterns.

The use of copatterns reduces productivity checking to termination checking. Agda simply checks
that the size argument j given in the recursive call to never is smaller than the original function parameter
i. Indeed, j < i is ensured by the typing of projection force. A more detailed explanation and theoretical
foundations can be found in previous work of the first author [2]. Agda can reconstruct size arguments
in programs if the sizes are declared in their type signature. Thus, we omit the hidden size arguments in
the following.

At each observation depth i, the functor Delay i forms a monad. The return of the monad is given
by now, and bind _�=_ is implemented below. Notice that bind is size (observation depth) preserving;
in other words, its modulus of continuity is the identity. The number of safe observations on a? �= f is
no less than those on both a? and f a for any a. The implementation of bind follows a common scheme
when working with Delay: we define two mutually recursive functions, the first by pattern matching on
Delay and the second by copattern matching on ∞Delay.



4 Normalization by Evaluation in the Delay Monad

module Bind where
mutual
_�=_ : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B
now a �= f = f a
later a∞ �= f = later (a∞ ∞�= f)

_∞�=_ : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B
force (a∞ ∞�= f) = force a∞ �= f

We make Delay i an instance of RawMonad (it is called ‘raw’ as it does not enforce the laws) as defined
in the Agda standard library. This provides us automatically with a RawFunctor instance, with map
function _<$>_ written infix as in Haskell’s base library.

delayMonad : ∀ {i} → RawMonad (Delay i)
delayMonad {i} = record
{ return = now
; _�=_ = _�=_ {i}
} where open Bind

2.1 Strong Bisimilarity

We can define the coinductive strong bisimilarity relation _∼_ for Delay ∞ A following the same pattern
as for Delay itself. Two finite computations are strongly bisimilar if they contain the same value and the
same amount of delay (number of laters). Non-terminating computations are also identified.2

mutual
data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where

∼now : ∀ a → now a ∼ now a
∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼〈 i 〉∼ b∞) → later a∞ ∼ later b∞

_∼〈_〉∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b?

record _∞∼〈_〉∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where
coinductive
�eld

∼force : {j : Size< i} → force a∞ ∼〈 j 〉∼ force b∞

_∞∼_ = λ {i} {A} a∞ b∞ → _∞∼〈_〉∼_ {A} a∞ i b∞

The definition includes the two sized relations _∼〈 i 〉∼_ on Delay ∞ A and _∞∼〈 i 〉∼_ on ∞Delay ∞ A
that exist for the purpose of recursively constructing derivations (proofs) of bisimilarity in a way that
convinces Agda of their productivity. These are approximations of bisimilarity in the sense that they
are intermediate, partially defined relations needed for the construction of the fully defined relations
_∼〈 ∞ 〉∼_ and _∞∼〈 ∞ 〉∼_. They are subtly different to the approximations∼=n of strong bisimilarity
∼= in the context of ultrametric spaces [4, Sec. 2.2]. These approximations are fully defined relations that

2One could also consider other relations such as weak bisimilarity which identifies finite computations containing the same
value but different numbers of laters.
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approximate the concept of equality, for instance at stage n = 0 all values are equal, at n = 1 they are
equal if observations of depth one coincide, until at stage n = ω observation of arbitrary depth must yield
the same result.

All bisimilarity relations _∼〈 i 〉∼_ and _∞∼〈 i 〉∼_ are equivalences. The proofs by coinduction
are straightforward and omitted here.

∼re� : ∀{i A} (a? : Delay ∞ A) → a? ∼〈 i 〉∼ a?
∞∼re� : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼〈 i 〉∼ a∞

∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼〈 i 〉∼ b? → b? ∼〈 i 〉∼ a?
∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼〈 i 〉∼ b∞ → b∞ ∞∼〈 i 〉∼ a∞

∼trans : ∀{i A}{a? b? c? : Delay ∞ A} →

a? ∼〈 i 〉∼ b? → b? ∼〈 i 〉∼ c? → a? ∼〈 i 〉∼ c?
∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} →

a∞ ∞∼〈 i 〉∼ b∞ → b∞ ∞∼〈 i 〉∼ c∞ → a∞ ∞∼〈 i 〉∼ c∞

The associativity law of the delay monad holds up to strong bisimilarity. Here, we spell out the proof by
coinduction:

mutual
bind-assoc : ∀{i A B C} (m : Delay ∞ A)

{k : A → Delay ∞ B} {l : B → Delay ∞ C} →

((m �= k) �= l) ∼〈 i 〉∼ (m �= λ a → (k a �= l))
bind-assoc (now a) = ∼re� _
bind-assoc (later a∞) = ∼later (∞bind-assoc a∞)

∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A)
{k : A → Delay ∞ B} {l : B → Delay ∞ C} →

((a∞ ∞�= k) ∞�= l) ∞∼〈 i 〉∼ (a∞ ∞�= λ a → (k a �= l))
∼force (∞bind-assoc a∞) = bind-assoc (force a∞)

Further, bind (_�=_ and _∞�=_) and is a congruence in both arguments (proofs omitted here).

bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼〈 i 〉∼ b? →

(k : A → Delay ∞ B) → (a? �= k) ∼〈 i 〉∼ (b? �= k)

∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼〈 i 〉∼ b∞ →

(k : A → Delay ∞ B) → (a∞ ∞�= k) ∞∼〈 i 〉∼ (b∞ ∞�= k)

bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} →

(∀ a → (k a) ∼〈 i 〉∼ (l a)) → (a? �= k) ∼〈 i 〉∼ (a? �= l)

∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} →

(∀ a → (k a) ∼〈 i 〉∼ (l a)) → (a∞ ∞�= k) ∞∼〈 i 〉∼ (a∞ ∞�= l)

As map (_<$>_) is defined in terms of bind and return, laws for map are instances of the monad laws:
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map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} →

(g <$> (f <$> a?)) ∼〈 i 〉∼ ((g ◦ f) <$> a?)
map-compose a? = bind-assoc a?

map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) →

a? ∼〈 i 〉∼ b? → (f <$> a?) ∼〈 i 〉∼ (f <$> b?)
map-cong f eq = bind-cong-l eq (now ◦ f)

2.2 Convergence

We define convergence as a relation between delayed computations of type Delay ∞ A and values of
type A. If a? ⇓ a, then the delayed computation a? eventually yields the value a. This is a central concept
in this paper as we will write a (productive) normalizer that produces delayed normal forms and then
prove that all such delayed normal forms converge to a value yielding termination of the normalizer.
Notice that convergence is an inductive relation defined on coinductive data.

data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where

now⇓ : ∀{a} → now a ⇓ a
later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a

_⇓ : {A : Set} (x : Delay ∞ A) → Set

x ⇓ = ∃ λ a → x ⇓ a

We define some useful utilities about convergence: We can map functions on values over a convergence
relation (see map⇓). If a delayed computation a? converges to a value a then so does any strongly
bisimilar computation a?′ (see subst∼⇓). If we apply a function f to a delayed value a? using bind and
we know that the delayed value converges to a value a then we can replace the bind with an ordinary
application f a (see bind⇓).

map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f <$> a?) ⇓ f a

subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a

bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} →

?a ⇓ a → f a ⇓ b → (?a �= f) ⇓ b

That completes our discussion of the delay infrastructure.

3 Well-typed terms, values, and coinductive normalization

We present the syntax of the well-typed lambda terms, which is Altenkirch and Chapman’s [5] without
explicit substitutions. First we introduce simple types Ty with one base type ? and function types a ⇒ b.

data Ty : Set where
? : Ty
_⇒_ : (a b : Ty) → Ty

We use de Bruijn indices to represent variables, so contexts Cxt are just lists of (unnamed) types.
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data Cxt : Set where
ε : Cxt
_,_ : (Γ : Cxt) (a : Ty) → Cxt

Variables are de Bruijn indices, just natural numbers. They are indexed by context and type which
guarantees that they are well-scoped and well-typed. Notice only non-empty contexts can have variables,
notice that neither constructor targets the empty context. The zero variable has the same type as the type
at the end of the context.

data Var : (Γ : Cxt) (a : Ty) → Set where
zero : ∀{Γ a} → Var (Γ , a) a
suc : ∀{Γ a b} (x : Var Γ a) → Var (Γ , b) a

Terms are are also indexed by context and type, guaranteeing well-typedness and well-scopedness. Terms
are either variables, lambda abstractions or applications. Notice that the context index in the body of the
lambda tracks that one more variable has been bound and that applications are guaranteed to be well-
typed.

data Tm (Γ : Cxt) : (a : Ty) → Set where
var : ∀{a} (x : Var Γ a) → Tm Γ a
abs : ∀{a b} (t : Tm (Γ , a) b) → Tm Γ (a ⇒ b)
app : ∀{a b} (t : Tm Γ (a ⇒ b)) (u : Tm Γ a) → Tm Γ b

We introduce neutral terms, parametric in the argument type of application as we will need both neutral
weak-head normal and beta-eta normal forms. Intuitively neutrals are stuck. In plain lambda-calculus,
they are either variables or applications that cannot compute as there is a neutral term in the function
position.

data Ne (T : Cxt → Ty → Set)(Γ : Cxt) : Ty → Set where
var : ∀{a} → Var Γ a → Ne T Γ a
app : ∀{a b} → Ne T Γ (a ⇒ b) → T Γ a → Ne T Γ b

Weak head normal forms (Values) are either neutral terms or closures of a body of a lambda and an
environment containing values for the all the variables except the lambda bound variable. Once a value
for the lambda bound variable is available the body of the lambda may be evaluated in the now complete
environment. Values are defined mutually with Environments which are just lists of values. We also
provide a lookup function for looking up variables in the environment. Notice that the types ensure that
the lookup function never tries to lookup a variable that is out of range and, indeed, never encounters an
empty environment as no variables can exist there.
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mutual
data Val (Δ : Cxt) : (a : Ty) → Set where
ne : ∀{a} (w : Ne Val Δ a) → Val Δ a
lam : ∀{Γ a b} (t : Tm (Γ , a) b) (ρ : Env Δ Γ) → Val Δ (a ⇒ b)

data Env (Δ : Cxt) : (Γ : Cxt) → Set where
ε : Env Δ ε

_,_ : ∀ {Γ a} (ρ : Env Δ Γ) (v : Val Δ a) → Env Δ (Γ , a)

lookup : ∀ {Γ Δ a} → Var Γ a → Env Δ Γ → Val Δ a
lookup zero (ρ , v) = v
lookup (suc x) (ρ , v) = lookup x ρ

Evaluation eval takes a term and a suitable environment and returns a delayed value. It is defined mutually
with an apply function that applies function values to argument values, returning a delayed result value.

eval : ∀{i Γ Δ b} → Tm Γ b → Env Δ Γ → Delay i (Val Δ b)
apply : ∀{i Δ a b} → Val Δ (a ⇒ b) → Val Δ a → Delay i (Val Δ b)
beta : ∀{i Γ Δ a b} → Tm (Γ , a) b → Env Δ Γ → Val Δ a → ∞Delay i (Val Δ b)

eval (var x) ρ = now (lookup x ρ)
eval (abs t) ρ = now (lam t ρ)
eval (app t u) ρ = eval t ρ �= λ f → eval u ρ �= apply f

apply (ne w) v = now (ne (app w v))
apply (lam t ρ) v = later (beta t ρ v)

force (beta t ρ v) = eval t (ρ , v)

Beta-eta normal forms are either of function type, in which case they must be a lambda term, or of base
type, in which case they must be a neutral term, meaning, a variable applied to normal forms.

data Nf (Γ : Cxt) : Ty → Set where
lam : ∀{a b} (n : Nf (Γ , a) b) → Nf Γ (a ⇒ b)
ne : (m : Ne Nf Γ ?) → Nf Γ ?

To turn values into normal forms we must be able to apply functional values to fresh variables. We need
an operation on values that introduces a fresh variable into the context:

weakVal : ∀{Δ a c} → Val Δ c → Val (Δ , a) c

We take the approach of implementing this operation using so-called order preserving embeddings
(OPEs) which represent weakenings in arbitrary positions in the context. Order preserving embeddings
can be represented in a first order way which simplifies reasoning about them.

data _≤_ : (Γ Δ : Cxt) → Set where
id : ∀{Γ} → Γ ≤ Γ

weak : ∀{Γ Δ a} → Γ ≤ Δ → (Γ , a) ≤ Δ

lift : ∀{Γ Δ a} → Γ ≤ Δ → (Γ , a) ≤ (Δ , a)
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We implement composition of OPEs and prove that id is the right unit of composition (proof suppressed).
The left unit property holds definitionally. We could additionally prove associativity and observe that
OPEs form a category but this is not required in this paper.

_•_ : ∀ {Γ Δ Δ′} (η : Γ ≤ Δ) (η′ : Δ ≤ Δ′) → Γ ≤ Δ′

id • η′ = η′

weak η • η′ = weak (η • η′)
lift η • id = lift η

lift η • weak η′ = weak (η • η′)
lift η • lift η′ = lift (η • η′)

η•id : ∀ {Γ Δ} (η : Γ ≤ Δ) → η • id ≡ η

We define a map operation that weakens variables, values, environments, normal forms and neutral terms
by OPEs.

var≤ : ∀{Γ Δ} → Γ ≤ Δ→ ∀{a} → Var Δ a → Var Γ a
val≤ : ∀{Γ Δ} → Γ ≤ Δ→ ∀{a} → Val Δ a → Val Γ a
env≤ : ∀{Γ Δ} → Γ ≤ Δ→ ∀{E} → Env Δ E → Env Γ E
nev≤ : ∀{Γ Δ} → Γ ≤ Δ→ ∀{a} → Ne Val Δ a → Ne Val Γ a
nf≤ : ∀{Γ Δ} → Γ ≤ Δ→ ∀{a} → Nf Δ a → Nf Γ a
nen≤ : ∀{Γ Δ} → Γ ≤ Δ→ ∀{a} → Ne Nf Δ a → Ne Nf Γ a

Having defined weakening of values by OPEs, defining the simplest form of weakening weakVal that just
introduces a fresh variable into the context is easy to define:

wk : ∀{Γ a} → (Γ , a) ≤ Γ

wk = weak id

weakVal = val≤ wk

We can now define a function readback that turns values into delayed normal forms, the potential delay
is due to the call to the apply function. The readback function is defined by induction on the types. If
the value is of base type then a call to nereadback is made which just proceeds structurally through the
neutral term replacing values in the argument positions by normal forms. If the value is of function type
then we perform eta expansion; we know the result is a lam, but the lambda body cannot be immediately
returned, since function values may be unevaluated closures; hence, its given later by eta. The function
eta takes the function value, weakens it, then applies it to the fresh variable var zero yielding a delayed
value at range type, which is read back recursively.
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readback : ∀{i Γ a} → Val Γ a → Delay i (Nf Γ a)
nereadback : ∀{i Γ a} → Ne Val Γ a → Delay i (Ne Nf Γ a)
eta : ∀{i Γ a b} → Val Γ (a ⇒ b) → ∞Delay i (Nf (Γ , a) b)

readback {a = ?} (ne w) = ne <$> nereadback w
readback {a = _ ⇒ _} v = lam <$> later (eta v)

force (eta v) = readback =� apply (weakVal v) (ne (var zero))

nereadback (var x) = now (var x)
nereadback (app w v) = nereadback w �= λ m → app m <$> readback v

We define the identity environment by induction on the context.

ide : ∀ Γ → Env Γ Γ

ide ε = ε

ide (Γ , a) = env≤ wk (ide Γ) , ne (var zero)

Given eval, ide and readback we can define a normalization function nf that for any term returns a delayed
normal form.

nf : ∀{Γ a}(t : Tm Γ a) → Delay ∞ (Nf Γ a)
nf {Γ} t = eval t (ide Γ) �= readback

4 Termination proof

We define a logical predicate VJ_K_, corresponding to strong computability on values. It is defined by
induction on the type of the value. At base type when the value must be neutral, then the relation states
that the neutral term is strongly computable if its readback converges. At function type it states that the
function is strongly computable if, in any weakened context (in the general OPE sense) it takes any value
which is strongly computable to a delayed value which converges to a strongly computable value. The
predicate CJ_K_ on delayed values v? is shorthand for a triple (v,v⇓,JvK) of a value v, a proof v⇓ that
the delayed value converges to the value and a proof JvK of strong computability.

VJ_K_ : ∀{Γ} (a : Ty) → Val Γ a → Set
CJ_K_ : ∀{Γ} (a : Ty) → Delay ∞ (Val Γ a) → Set

VJ ? K (ne w) = nereadback w ⇓

VJ a ⇒ b K f = ∀{Δ}(η : Δ ≤ _)(u : Val Δ a) → VJ a K u → CJ b K (apply (val≤ η f) u)

CJ a K v? = ∃ λ v → v? ⇓ v × VJ a K v

The notion of strongly computable value is easily extended to environments.

EJ_K_ : ∀{Δ}(Γ : Cxt) → Env Δ Γ → Set
EJ ε K ε = >
EJ Γ , a K (ρ , v) = EJ Γ K ρ × VJ a K v
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Later we will require weakening (applying an OPE) variables, values, environments, etc. preserve iden-
tity and composition (respect functor laws). We state these properties now but suppress the proofs.

val≤-id : ∀{Δ a} (v : Val Δ a) → val≤ id v ≡ v
env≤-id : ∀{Γ Δ} (ρ : Env Δ Γ) → env≤ id ρ ≡ ρ

nev≤-id : ∀{Δ a} (t : Ne Val Δ a) → nev≤ id t ≡ t

var≤-• : ∀{Γ1 Γ2 Γ3 a} (η : Γ1 ≤ Γ2) (η′ : Γ2 ≤ Γ3) (x : Var Γ3 a) →

var≤ η (var≤ η′ x) ≡ var≤ (η • η′) x

val≤-• : ∀{Δ1 Δ2 Δ3 a} (η : Δ1 ≤ Δ2) (η′ : Δ2 ≤ Δ3) (v : Val Δ3 a) →

val≤ η (val≤ η′ v) ≡ val≤ (η • η′) v

env≤-• : ∀{Γ Δ1 Δ2 Δ3} (η : Δ1 ≤ Δ2) (η′ : Δ2 ≤ Δ3) (ρ : Env Δ3 Γ) →

env≤ η (env≤ η′ ρ) ≡ env≤ (η • η′) ρ

nev≤-• : ∀{Δ1 Δ2 Δ3 a} (η : Δ1 ≤ Δ2) (η′ : Δ2 ≤ Δ3) (t : Ne Val Δ3 a) →

nev≤ η (nev≤ η′ t) ≡ nev≤ (η • η′) t

We also require that the operations that we introduce such as lookup, eval, apply, readback etc. commute
with weakening. We, again, state these necessary properties but suppress the proofs.

lookup≤ : ∀ {Γ Δ Δ′ a} (x : Var Γ a) (ρ : Env Δ Γ) (η : Δ′ ≤ Δ) →

val≤ η (lookup x ρ) ≡ lookup x (env≤ η ρ)

eval≤ : ∀ {i Γ Δ Δ′ a} (t : Tm Γ a) (ρ : Env Δ Γ) (η : Δ′ ≤ Δ) →

(val≤ η <$> (eval t ρ)) ∼〈 i 〉∼ (eval t (env≤ η ρ))

apply≤ : ∀{i Γ Δ a b} (f : Val Γ (a ⇒ b))(v : Val Γ a)(η : Δ ≤ Γ) →

(val≤ η <$> apply f v) ∼〈 i 〉∼ (apply (val≤ η f) (val≤ η v))

beta≤ : ∀ {i Γ Δ E a b} (t : Tm (Γ , a) b)(ρ : Env Δ Γ) (v : Val Δ a) (η : E ≤ Δ) →

(val≤ η ∞<$> (beta t ρ v)) ∞∼〈 i 〉∼ beta t (env≤ η ρ) (val≤ η v)

nereadback≤ : ∀{i Γ Δ a}(η : Δ ≤ Γ)(t : Ne Val Γ a) →

(nen≤ η <$> nereadback t) ∼〈 i 〉∼ (nereadback (nev≤ η t))

readback≤ : ∀{i Γ Δ} a (η : Δ ≤ Γ)(v : Val Γ a) →

(nf≤ η <$> readback v) ∼〈 i 〉∼ (readback (val≤ η v))

eta≤ : ∀{i Γ Δ a b} (η : Δ ≤ Γ)(v : Val Γ (a ⇒ b)) →

(nf≤ (lift η) ∞<$> eta v) ∞∼〈 i 〉∼ (eta (val≤ η v))

As an example of a commutivity lemma, we show the proofs of the base case (type ?) for readback≤.
The proof is a chain of bisimulation equations (in relation _∼〈 i 〉∼_), and we use the preorder reasoning
package of Agda’s standard library which provides nice syntax for equality chains, following an idea of
Augustsson [6]. Justification for each step is provided in angle brackets, some steps ( ≡〈〉) hold
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directly by definition.

readback≤ ? η (ne w) =
proof
nf≤ η <$> (ne <$> nereadback w) ∼〈 map-compose (nereadback w) 〉
(nf≤ η ◦ ne) <$> nereadback w ≡〈〉
(Nf.ne ◦ nen≤ η) <$> nereadback w ∼〈 ∼sym (map-compose (nereadback w)) 〉
ne <$> (nen≤ η <$> nereadback w) ∼〈 map-cong ne (nereadback≤ η w) 〉
ne <$> nereadback (nev≤ η w)

�
where open ∼-Reasoning

We must also be able to weaken proofs of strong computability. Again we skip the proofs.

nereadback≤⇓ : ∀{Γ Δ a} (η : Δ ≤ Γ) (t : Ne Val Γ a) {n : Ne Nf Γ a} →

nereadback t ⇓ n → nereadback (nev≤ η t) ⇓ nen≤ η n

VJK≤ : ∀{Δ Δ′} a (η : Δ′ ≤ Δ) (v : Val Δ a) → VJ a K v → VJ a K (val≤ η v)
EJK≤ : ∀{Γ Δ Δ′} (η : Δ′ ≤ Δ) (ρ : Env Δ Γ) → EJ Γ K ρ → EJ Γ K (env≤ η ρ)

Finally, we can work our way up towards the fundamental theorem of logical relations (called term for
termination below). In our case, it is just a logical predicate, namely, strong computability CJ_K_, but
the proof technique is the same: induction on well-typed terms. To this end, we establish lemmas for each
case, calling them JvarK, JabsK, and JappK. To start, soundness of variable evaluation is a consequence of
a sound (θ) environment ρ:

JvarK : ∀{Δ Γ a} (x : Var Γ a) (ρ : Env Δ Γ) → EJ Γ K ρ → CJ a K (now (lookup x ρ))

JvarK zero (_ , v) (_ , v⇓) = v , now⇓ , v⇓

JvarK(suc x) (ρ , _) (θ , _ ) = JvarK x ρ θ

The abstraction case requires another, albeit trivial lemma: sound-β, which states the semantic soundness
of β -expansion.

sound-β : ∀ {Δ Γ a b} (t : Tm (Γ , a) b) (ρ : Env Δ Γ) (u : Val Δ a) →

CJ b K (eval t (ρ , u)) → CJ b K (apply (lam t ρ) u)
sound-β t ρ u (v , v⇓ , JvK) = v , later⇓ v⇓ , JvK

JabsK : ∀ {Δ Γ a b} (t : Tm (Γ , a) b) (ρ : Env Δ Γ) (θ : EJ Γ K ρ) →

(∀{Δ′}(η : Δ′ ≤ Δ)(u : Val Δ′ a)(u⇓ : VJ a K u) → CJ b K (eval t (env≤ η ρ , u))) →

CJ a ⇒ b K (now (lam t ρ))

JabsK t ρ θ ih = lam t ρ , now⇓ , (λ η u p → sound-β t (env≤ η ρ) u (ih η u p))

The lemma for application is straightforward, the proof term is just a bit bloated by the need to apply the
first functor law val≤-id to fix the types.
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JappK : ∀{Δ a b} {f? : Delay _ (Val Δ (a ⇒ b))} {u? : Delay _ (Val Δ a)} →

CJ a ⇒ b K f? → CJ a K u? → CJ b K (f? �= λ f → u? �= apply f)
JappK {u? = u?} (f , f⇓ , JfK) (u , u⇓ , JuK) =
let v , v⇓ , JvK = JfK id u JuK

v⇓′ = bind⇓ (λ f′ → u? �= apply f′)
f⇓
(bind⇓ (apply f)

u⇓

(subst (λ X → apply X u ⇓ v)
(val≤-id f)
v⇓))

in v , v⇓′ , JvK

Evaluation is sound, in particular, it terminates. The proof of term proceeds by induction on the terms
and is straightforward after our preparations.

term : ∀ {Δ Γ a} (t : Tm Γ a) (ρ : Env Δ Γ) (θ : EJ Γ K ρ) → CJ a K (eval t ρ)
term (var x) ρ θ = JvarK x ρ θ

term (abs t) ρ θ = JabsK t ρ θ (λ η u p → term t (env≤ η ρ , u) (EJK≤ η ρ θ , p))
term (app t u) ρ θ = JappK (term t ρ θ) (term u ρ θ)

Termination of readback for strongly computable values follows from the following two mutually defined
lemmas. They are proved mutually by induction on types.

To reify a functional value f, we need to reflect the fresh variable var zero to obtain a value u with
semantics JuK. We can then apply the semantic function JfK to u and recursively reify the returned value
v.

mutual

reify : ∀{Γ} a (v : Val Γ a) → VJ a K v → readback v ⇓

reify ? (ne _) (m , ⇓m) = ne m , map⇓ ne ⇓m
reify (a ⇒ b) f JfK =
let u = ne (var zero)

JuK = re�ect a (var zero) (var zero , now⇓)

v , v⇓ , JvK = JfK wk u JuK
n , ⇓n = reify b v JvK
⇓λn = later⇓ (bind⇓ (λ x → now (lam x))

(bind⇓ readback v⇓ ⇓n)
now⇓)

in lam n , ⇓λn

Reflecting a neutral value w at function type a ⇒ b returns a semantic function, which, if applied to a
value u of type a and its semantics JuK, in essence reflects recursively the application of w to u, which is
again neutral, at type b. A little more has to be done, though, e.g., we also show that this application can
be read back.
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re�ect : ∀{Γ} a (w : Ne Val Γ a) → nereadback w ⇓ → VJ a K (ne w)
re�ect ? w w⇓ = w⇓

re�ect (a ⇒ b) w (m , w⇓m) η u JuK =

let n , ⇓n = reify a u JuK
m′ = nen≤ η m
⇓m = nereadback≤⇓ η w w⇓m
wu = app (nev≤ η w) u
JwuK = re�ect b wu (app m′ n ,

bind⇓ (λ m → app m <$> readback u)
⇓m
(bind⇓ (λ n → now (app m′ n)) ⇓n now⇓))

in ne wu , now⇓ , JwuK

As immediate corollaries we get that all variables are strongly computable and that the identity environ-
ment is strongly computable.

var↑ : ∀{Γ a}(x : Var Γ a) → VJ a K ne (var x)
var↑ x = re�ect _ (var x) (var x , now⇓)

JideK : ∀ Γ → EJ Γ K (ide Γ)
JideK ε = _

JideK (Γ , a) = EJK≤ wk (ide Γ) (JideK Γ) , var↑ zero

Finally we can plug the termination of eval in the identity environment to yield a strongly computable
value and the termination of readback give a strongly computable value to yield the termination of nf.

normalize : ∀ Γ a (t : Tm Γ a) → ∃ λ n → nf t ⇓ n
normalize Γ a t = let v , v⇓ , JvK = term t (ide Γ) (JideK Γ)

n , ⇓n = reify a v JvK
in n , bind⇓ readback v⇓ ⇓n

5 Conclusions

We have presented a coinductive normalizer for simply typed lambda calculus and proved that it termi-
nates. The combination of the coinductive normalizer and termination proof yield a terminating normal-
izer function in type theory.

The successful formalization serves as a proof-of-concept for coinductive programming and proving
using sized types and copatterns, a new and presently experimental feature of Agda. The approach we
have taken lifts easily to extensions such as Gödel’s System T.
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