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Abstract. Normalization fails in type theory with an impredicative universe of proposi-
tions and a proof-irrelevant propositional equality. The counterexample to normalization is
adapted from Girard’s counterexample against normalization of System F equipped with a
decider for type equality. It refutes Werner’s normalization conjecture [LMCS 2008].

Introduction

Type theories with an impredicative universe Prop of propositions, such as the Calculus of
Constructions (Coquand and Huet, 1988), lose the normalization property in the presence of
a proof-irrelevant propositional equality = : ΠA : Type. A→ A→ Prop with the standard
elimination principle. The loss of normalization is facilitated already by a coercion function
with a reduction rule

cast : ΠAB : Prop. A =Prop B → A→ B
cast A A e xB x

that does not inspect the equality proof e : A =Prop A but only checks whether the endpoints
are (definitionally) equal.

The failure of normalization refutes a conjecture by Werner (2008, Conjecture 3.14).
Consistency and canonicity is not at stake; thus, the situation is comparable to type theory
with equality reflection (Martin-Löf, 1984a,b), aka Extensional Type Theory. At the moment,
it is unclear whether the use of impredicativity is essential to break normalization; predicative
type theory might be able to host a proof-irrelevant propositional equality (Abel, 2009)
while retaining normalization.
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Counterexample to Normalization

We employ the usual impredicative definition of absurdity ⊥ and negation ¬A and a derived
definition of truth >:

⊥ : Prop
⊥ = ΠA : Prop. A

¬ : Prop → Prop
¬A = A→ ⊥

> : Prop
> = ¬⊥

The presence of cast allows us to define self-application under the assumption that all
propositions all equal. The self-application term ω refutes this assumption.

δ : >
δ z = z > z

ω : ¬ΠAB : Prop. A =Prop B
ω h A = cast >A (h >A) δ

Impredicativity is exploited in δ when applying z : ⊥ to type > = ⊥ → ⊥ so that it can be
applied to z again. The type of δ is > which we cast to A thanks to the assumption h that
all propositions are equal.

We build a non-normalizing term Ω by applying ω to itself through δ, reminiscent of
the shortest diverging term in untyped λ-calculus.

Ω : ¬ΠAB : Prop. A =Prop B
Ω h = δ (ω h)

Thanks to the reduction rule of cast, term Ω h reduces to itself:

Ω h = δ (ω h) B ω h > (ω h)
= cast > > (h > >) δ (ω h) B δ (ω h)
= Ω h

Thus, normalization is lost in the presence of a hypothesis (free variable) h. As a consequence,
normalization that proceeds under λ-abstraction can diverge. This means that equality of
open terms cannot be decided just by normalization.

The counterexample can be implemented in Werner’s type theory with proof-irrelevance
(2008), refuting the normalization conjecture (3.14). We implement cast as instance of
Werner’s more general equality elimination rule:

Eq rec : ΠA : Type. ΠP : A→ Type. Π a b : A. P a→ a =A b→ P b
Eq rec A P a b x e B x if a = b

cast A B e x = Eq rec Prop (λ a:A. Prop) A B x e

The term Ω also serves as counterexample to normalization in the theorem prover Lean
(de Moura et al., 2015), version 3.4.2 (Microsoft Research, 2019).

def False := ∀ A : Prop, A

def Not := λ A, A → False

def True := Not False

def delta : True := λ z, z True z

def omega : Not (∀ A B : Prop, A = B) := λ h A, cast (h True A) delta

def Omega : Not (∀ A B : Prop, A = B) := λ h, delta (omega h)

Infinite reduction can now be triggered with the command #reduce Omega, which diverges.
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A Counterexample Using Propositional Extensionality

The counterexample of the last section used the absurd assumption that all proposition are
equal. The following counterexample utilizes just the axiom of propositional extensionality,
propext, which is a default axiom of Lean. In fact, the weaker statement tautext, which
states the equality of true propositions, is sufficient.

propext : ΠAB : Prop. (A↔ B) → A =Prop B
tautext : ΠAB : Prop. A→ B → A =Prop B

The counterexample uses the standard impredicative definition of truth,

> = ΠA : Prop. A→ A

and a cast from > → > to A, which are both tautologies under the assumption a : A.

id, δ : > → >
id x = x
δ z = z (> → >) id z

ω, Ω : >
ω A a = cast (> → >) A (tautext (> → >) A id a) δ
Ω = δ ω

These definitions can be directly replayed in Lean 3.4.2 with the standard prelude, yielding
a non-normalizing term Omega.

def tautext {A B : Prop} (a : A) (b : B)

: A = B := propext (iff.intro (λ _, b) (λ _, a))

def True : Prop := ∀ A : Prop, A → A

def delta : True → True := λ z : True, z (True → True) id z

def omega : True := λ A a, cast (tautext id a) delta

def Omega : True := delta omega

Note that term Omega is closed with respect the standard axioms of Lean, and does not even
have a weak head normal form.

Related Work and Conclusions

The cast operator is inspired by Girard’s operator J : ΠAB : Prop. A→ B with reduction
rule J A A M BM that destroys the normalization property of System F (Girard, 1971;
Harper and Mitchell, 1999). In contrast to J , our cast also requires a proof of equality of A
and B, but this proof is not inspected and thus does not block reduction if it is non-canonical.
Thus, the simple lie that all propositions are equal is sufficient to trigger divergence.

Historically, the Automath system AUT-4 is maybe the first type-theoretic proof assistant
to feature proof-irrelevant propositions (de Bruijn, 1994). The terminology used by de Bruijn
is fourth degree identification, where proofs are expressions considered to have degree 4,
propositions and values degree 3, types and Prop degree 2, and the universe Type of types
degree 1.

Lean’s type theory (Carneiro, 2019) features an impredicative universe of proof-irrelevant
propositions which hosts both propositional equality and the accessibility predicate (Aczel,
1977, 1.2). As both may be eliminated into computational universes, decidability of defini-
tional equality is lost, as demonstrated by Carneiro (2019) for the case of accessibility. As a
consequence, typing is not decidable.

The type-theoretic proof assistants Agda and Coq have recently (Gilbert et al., 2019)
been equipped with a proof-irrelevant universe of propositions (“strict Prop”). In this
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universe, propositional equality can be defined, but cannot be eliminated into types that
are not strict propositions themselves. Under this restriction, Gilbert (2019, 4.3) formally
proved normalization and decidability of type checking for the predicative case.

Several open problems remain:

(1) Does the theory with impredicative strict Prop have normalization and decidability of
type checking as well?

(2) Does the addition of Werner’s rule, while destroying proof normalization, preserve
decidability of conversion and type checking? (Since proofs are irrelevant for equality,
they need not be normalized during type checking.)

(3) Does Werner’s rule preserve normalization in the predicative case? (Our counterexamples
make use of impredicativity.)

Acknowledgments.
The authors acknowledge support by the Swedish Research Council (Vetenskapsr̊adet)

under grants 2014-04864 Termination Certificates for Dependently-Typed Programs and
Proofs via Refinement Types and 2017-04064 Syntax and Semantics of Univalent Type
Theory. Our research group is part of the EU Cost Action CA15123 The European research
network on types for programming and verification (EUTypes). We thank Mario Carneiro
for contributing the original Lean implementation of the first counterexample.

References

A. Abel. Extensional normalization in the logical framework with proof irrelevant equality. In
O. Danvy, editor, Workshop on Normalization by Evaluation, affiliated to LiCS 2009, Los
Angeles, 15 August 2009, 2009. URL http://www.cse.chalmers.se/~abela/nbe09.pdf.

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Math-
ematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
739–782. Elsevier, 1977. URL https://doi.org/10.1016/S0049-237X(08)71120-0.

M. Carneiro. The type theory of Lean. Master’s thesis, Department of Philosophy, Carnegie
Mellon University, 2019. URL https://github.com/digama0/lean-type-theory.

T. Coquand and G. P. Huet. The calculus of constructions. Information and Computation,
76(2/3):95–120, 1988. URL https://doi.org/10.1016/0890-5401(88)90005-3.

N. de Bruijn. Some extensions of Automath: The AUT-4 family. In R. Nederpelt, J. Geuvers,
and R. de Vrijer, editors, Selected Papers on Automath, volume 133 of Studies in Logic
and the Foundations of Mathematics, pages 283–288. Elsevier, 1994. URL https://doi.

org/10.1016/S0049-237X(08)70209-X.
L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean theorem

prover (system description). In A. P. Felty and A. Middeldorp, editors, Automated Deduc-
tion - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Ger-
many, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science,
pages 378–388. Springer, 2015. URL https://doi.org/10.1007/978-3-319-21401-6_

26.
G. Gilbert. A type theory with definitional proof-irrelevance. PhD thesis, École Nationale

Supérieure Mines-Télécom Atlantique, 2019.
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