
SEMI-CONTINUOUS SIZED TYPES AND TERMINATION

ANDREAS ABEL

Institut für Informatik, Ludwig-Maximilians-Universität München
e-mail address: abel@tcs.ifi.lmu.de

Abstract. A type-based approach to termination uses sized types: an ordinal bound for
the size of a data structure is stored in its type. A recursive function over a sized type
is accepted if it is visible in the type system that recursive calls occur just at a smaller
size. This approach is only sound if the type of the recursive function is admissible, i.e.,
depends on the size index in a certain way. To explore the space of admissible functions in
the presence of higher-kinded data types and impredicative polymorphism, a semantics is
developed where sized types are interpreted as functions from ordinals into sets of strongly
normalizing terms. It is shown that upper semi-continuity of such functions is a sufficient
semantic criterion for admissibility. To provide a syntactical criterion, a calculus for semi-
continuous functions is developed.

1. Introduction

Termination of computer programs has received continuous interest in the history of
computer science, and classical applications are total correctness and termination of par-
tial evaluation. In languages with a notion of computation on the type-level, such as
dependently-typed languages or rich typed intermediate languages in compilers [CW99],
termination of expressions that compute a type is required for type checking and type sound-
ness. Further, theorem provers that are based on the Curry-Howard Isomorphism and offer
a functional programming language to write down proofs usually reject non-terminating pro-
grams to ensure consistency. Since the pioneering work of Mendler [Men87], termination
analysis has been combined with typing, with much success for strongly-typed languages
[HPS96, ACG98, Gim98, Xi01, BFG+04, Bla04]. The resulting technique, type-based termi-
nation checking, has several advantages over a purely syntactical termination analysis: (1) It
is robust w. r. t. small changes of the analyzed program, since it is working on an abstraction
of the program: its type. So if the reformulation of a program (e.g., by introducing a redex)
still can be assigned the same sized type, it automatically passes the termination check. (2)

2000 ACM Subject Classification: 68N15, 68N18, 68Q42.
Key words and phrases: Type-based termination, sized types, inductive types, semi-continuity, strong

normalization.
A shorter version of this article has appeared in the proceedings of Computer Science Logic 2006 [Abe06c].
Research supported by the coordination action TYPES (510996) and thematic network Applied Se-

mantics II (IST-2001-38957) of the European Union and the project Cover of the Swedish Foundation of
Strategic Research (SSF).

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Andreas Abel
Creative Commons

1

In design and justification, type-based termination rests on a technology extensively studied
for several decades: types. (3) Type-based termination is essentially a refinement of the
typing rules for recursion and for introduction and elimination of data. This is orthogonal
to other language constructs, like variants, records, and modules. Thus, a language can be
easily enriched by such constructs without change to the termination checker. This is not
true if termination checking is a separate static analysis. Orthogonality has an especially
pleasing effect: (4) Type-based termination scales to higher-order functions and polymor-
phism. (5) Last but not least, it effortlessly creates a termination certificate, which is just
the typing derivation.

Type-based termination especially plays its strength when combined with higher-order
datatypes and higher-rank polymorphism, i. e., occurrence of ∀ to the left of an arrow. Let
us see an example. We consider the type of generalized rose trees GRose FA parameterized
by an element type A and the branching type F . It is given by two constructors:

leaf : GRose FA
node : A → F (GRose FA) → GRose FA

Generalized rose trees are either a leaf or a node a fr of a label a of type A and a collection
of subtrees fr of type F (GRose FA). Instances of generalized rose trees are binary trees
(FA = A× A), finitely branching trees (FA = List A), or infinitely branching trees (FA =
Nat → A). Programming a generic equality function for generalized rose trees that is
polymorphic in F and A, we will end up with the following equations:

Eq A = A → A → Bool

eqGRose : (∀A.Eq A → Eq (FA)) → ∀A.Eq A → Eq (GRose FA)

eqGRose eqF eqA leaf leaf = true
eqGRose eqF eqA (node a fr) (node a′ fr ′) = (eqA a a′) ∧

(eqF (eqGRose eqF eqA) fr fr ′)
eqGRose eqF eqA = false

The generic equality eqGRose takes two parametric arguments, eqF and eqA. The second
one is a placeholder for an equality test for type A, the first one lifts an equality test for an
arbitrary type A to an equality test for the type FA. The equality test for generalized rose
trees, eqGRose eqF eqA, is then defined by recursion on the next two arguments. In the case
of two nodes we would expect a recursive call, but instead, the function itself is passed as
an argument to eqF , one of its own arguments! Nevertheless, eqGRose is a total function,
provided its arguments are total and well-typed. However, with traditional methods, which
only take the computational behavior into account, it will be hard to verify termination of
eqGRose. This is due to the fact that the polymorphic nature of eqF plays a crucial role. It
is easy to find an instance of eqF of the wrong type which makes the program loop. Take,
for instance:

eqF : Eq (GRose F Nat) → Eq (F (GRose F Nat))
eqF eq fr fr ′ = eq (node 0 fr) (node 0 fr ′)

A type-based termination criterion however passes eqGRose with ease: Consider the
indexed type GRoseı FA of generalized rose trees whose height is smaller than ı. The types
of the constructors are refined as follows:

leaf : ∀F∀A∀ı. GRoseı+1 FA
node : ∀F∀A∀ı. A → GRoseı FA → GRoseı+1 FA

2

When defining eqGRose for trees of height < ı + 1, we may use eqGRose on trees of height
< ı. Hence, in the clause for two nodes, term eqGRose eqF eqA has type Eq (GRoseı FA),
and eqF (eqGRose eqF eqA) gets type Eq (F (GRoseı FA)), by instantiation of the polymor-
phic type of eqF . Now it is safe to apply the last expression to fr and fr ′ which are in
F (GRoseı FA), since node a fr and node a′ fr ′ were assumed to be in GRoseı+1 FA.

In essence, type-based termination is a stricter typing of the fixed-point combinator fix
which introduces recursion. The unrestricted use, via the typing rule (1), is replaced by a
rule with a stronger hypothesis (2):

(1)
f : A → A

fix f : A
(2)

f : ∀ı. A(ı) → A(ı + 1)
fix f : ∀n. A(n)

Soundness of rule (2) can be shown by induction on n. To get started, we need to show
fix f : A(0) which requires A(ı) to be of a special shape, for instance A(ı) = GRoseı F B → C
(this corresponds to Hughes, Pareto, and Sabry’s bottom check [HPS96]). Then A(0) denotes
functions which have to behave well for all arguments in GRose0 F B, i. e., for no arguments,
since GRose0 F B is empty. Trivially, any program fulfills this condition. In the step case,
we need to show fix f : A(n + 1), but this follows from the equation fix f = f (fix f) since
f : A(n) → A(n + 1), and fix f : A(n) by induction hypothesis.

In general, the index ı in A(ı) will be an ordinal number. Ordinals are useful when
we want to speak of objects of unbounded size, e. g., generalized rose trees of height < ω
that inhabit the type GRoseω FA. Even more, ordinals are required to denote the height of
infinitely branching trees: take generalized rose trees with FA = Nat → A. Other examples
of infinite branching, which come from the area of type-theoretic theorem provers, are the
W -type, Brouwer ordinals and the accessibility predicate [PM92].

In the presence of ordinal indices, rule (2) has to be proven sound by transfinite in-
duction. In the case of a limit ordinal λ, we have to infer fix f : A(λ) from the induction
hypothesis fix f : ∀α < λ.A(α). This imposes extra conditions on the shape of a so-called
admissible type A, which are the object of this article. Of course, a monotone A is triv-
ially admissible, but many interesting types for recursive functions are not monotone, like
A(α) = Natα → Natα → Natα (where Natα contains the natural numbers < α). We will
show that all those types A(α) are admissible that are upper semi-continuous in α, mean-
ing lim supα→λA(α) ⊆ A(λ) for limit ordinals λ. Function types C(α) = A(α) → B(α)
will be admissible if A is lower semi-continuous (A(λ) ⊆ lim infα→λA(α)) and B is upper
semi-continuous. Similar laws will be developed for the other type constructors and put
into the form of a kinding system for semi-continuous types.

Before we dive into the mathematics, let us make sure that semi-continuity is relevant for
termination. A type which is not upper semi-continuous is A(ı) = (Natω → Natı) → Natω

(see Sect. 5). Assuming we can nevertheless use this type for a recursive function, we
can construct a loop. First, define successor succ : ∀ı. Natı → Natı+1 and predecessor
pred : ∀ı. Natı+1 → Natı. Note that the size index is an upper bound and ω is the biggest
such bound for the case of natural numbers, thus, we have the subtyping relations Natı ≤
Natı+1 ≤ · · · ≤ Natω ≤ Natω+1 ≤ Natω.

3

We make the following definitions:

A(ı) := (Natω → Natı) → Natω

shift : ∀ı. (Natω → Natı+1)
→ Natω → Natı

shift := λgλn. pred (g (succ n))

f : ∀ı. A(ı) → A(ı + 1)
f := λloopλg. loop (shift g)

loop : ∀ı. A(ı)
loop := fix f

Since Natω → Nat0 is empty, A passes the bottom check. Still, instantiating types to
succ : Natω → Natω and loop : (Natω → Natω) → Natω we convince ourselves that the
execution of loop succ indeed runs forever.

1.1. Related Work and Contribution. Ensuring termination through typing is quite an
old idea, just think of type systems for the λ-calculus like simple types, System F, System
Fω, or the Calculus of Constructions, which all have the normalization property. These sys-
tems have been extended by special recursion operators, like primitive recursion in Gödel’s
T, or the recursors generated for inductive definitions in Type Theory (e. g., in Coq). These
recursion operators preserve normalization but limit the definition of recursive functions to
special patterns, namely instantiations of the recursion scheme dictated by the recursion
operator. Taming general recursion fix f through typing, however, which allows the defini-
tion of recursive functions in the intuitive way known from functional programming, is not
yet fully explored. Mendler [Men87] pioneered this field; he used a certain polymorphic typ-
ing of the functional f to obtain primitive (co)recursive functions over arbitrary datatypes.
Amadio and Coupet-Grimal [ACG98] and Giménez [Gim98] developed Mendler’s approach
further, until a presentation using ordinal-indexed (co)inductive types was found and proven
sound by Barthe et al. [BFG+04]. The system λ̂ presented in loc. cit. restricts types A(ı)
of recursive functions to the shape µıF → C(ı) where the domain must be an inductive
type µıF indexed by ı and the codomain a type C(ı) that is monotonic in ı. This criterion,
which has also been described by the author [Abe04], allows for a simple soundness proof in
the limit case of the transfinite induction, but excludes interesting types like the considered

Eq (GRoseı FA) = GRoseı FA → GRoseı FA → Bool

which has an antitonic codomain C(ı) = GRoseı FA → Bool. The author has in previous
work widened the criterion, but only for a type system without polymorphism [Abe03].
Other recent works on type-based termination [Bla04, Bla05, BGP05] stick to the restriction
of λ̂ . Xi [Xi01] uses dependent types and lexicographic measures to ensure termination of
recursive programs in a call-by-value language, but his indices are natural numbers instead
of ordinals; this excludes infinite objects we are interested in.

Closest to the present work is the sized type system of Hughes, Pareto, and Sabry
[HPS96], Synchronous Haskell [Par00], which admits ordinal indices up to ω. Index quan-
tifiers as in ∀ı. A(ı) range over natural numbers, but can be instantiated to ω if A(ı) is
ω-undershooting. Sound semantic criteria for ω-undershooting types are already present,
but in a somewhat ad-hoc manner. We cast these criteria in the established mathematical
framework of semi-continuous functions and provide a syntactical implementation in form
of a derivation system. Furthermore, we allow ordinals beyond ω and infinitely branching
inductive types that invalidate some criteria for the only finitely branching tree types in
Synchronous Haskell. Finally, we allow polymorphic recursion, impredicative polymorphism
and higher-kinded inductive and coinductive types such as GRose. This article summarizes

4

the main results of the author’s dissertation [Abe06b]. A shorter version has appeared in
the CSL’06 proceedings [Abe06c].

1.2. Contents. In Section 2 we introduce the syntax of Fω̂, our λ-calculus with higher-
kinded polymorphism, recursion over higher-kinded inductive types and corecursion into
higher-kinded coinductive types. Static semantics (i. e., typing rules) and dynamic semantics
(i. e., reduction rules) are presented there, and we formally express the eqGRose-example
from the introduction in Fω̂. In Section 3 we model the types of Fω̂ as saturated sets of
strongly normalizing terms in order to show termination of well-typed programs. After
these two technical sections we come to the main part of this article: In Section 4 we
identify compositional criteria for semi-continuous types and in Section 5 we justify the
absence of certain composition schemes by giving counterexamples. These results are put
in the form of a calculus for semi-continuous types in Section 6, culminating in syntactic
rules for admissible (co)recursion types. We close by giving some practical examples for
admissible types.

1.3. Preliminaries. We assume that the reader is to some extent acquainted with the
higher-order polymorphic lambda-calculus, System Fω (see Pierce’s text book [Pie02]) and
has some knowledge of ordinals, inductive types, and strong normalization.

2. Overview of System Fω̂

In this section we introduce Fω̂, an a posteriori strongly normalizing extension of Sys-
tem Fω with higher-kinded inductive and coinductive types and (co)recursion combinators.
Figure 1 summarizes the syntactic entities.

2.1. Type constructors. We seek to model sized types like GRoseıF A whose first pa-
rameter F is a type constructor of kind ∗ → ∗, meaning that it maps types to types. It
is therefore suggestive to take Fω as basis, which formalizes type constructors of arbitrary
kind and, e. g., lays the foundation for the purely functional language Haskell. In the in-
troduction, we have presented GRoses as built from two (data) constructors leaf and node;
however, for a theoretic analysis it is more convenient to consider GRose F A as the least
fixed-point of the type constructor λX. 1 + (A× F X). For this we write

GRose FA := µλX. 1 + (A× F X).

Herein, 1 is the unit type and + the disjoint sum. Taking the empty tuple 〈〉 : 1 to be the
inhabitant of the unit type and inl : A → (A + B) and inr : B → (A + B) the two injections
into the disjoint sum lets us define the original data constructors:

leaf : GRose FA
leaf := in (inl 〈〉)
node : A → F (GRose FA) → GRose FA
node := λaλfr . in (inr 〈a, fr〉)

(The tag in introduces a inductive type, see below.)

5

Polarities, kinds, constructors, kinding contexts.

p ::= + | − | ◦ polarity
κ ::= ∗ | ord | pκ → κ′ kind
κ∗ ::= ∗ | pκ∗ → κ′∗ pure kind
a, b, A,B, F,G ::= C | X | λX :κ. F | F G (type) constructor
C ::= 1 | + | × | → | ∀κ | µκ∗ | νκ∗ | s | ∞ constructor constants
∆ ::= � | ∆, X :pκ kinding context

Constructor constants and their kinds (κ
p→ κ′ means pκ → κ′).

1 : ∗ unit type

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

µκ∗ : ord
+→ (κ∗

+→ κ∗)
+→ κ∗ inductive constructors

νκ∗ : ord
−→ (κ∗

+→ κ∗)
+→ κ∗ coinductive constructors

s : ord
+→ ord successor of ordinal

∞ : ord infinity ordinal

Objects (terms), values, evaluation frames, typing contexts.

r, s, t ::= c | x | λxt | r s term
c ::= 〈〉 | pair | fst | snd | inl | inr | case | in | out | fixµ

n | fixν
n constant (n ∈ N)

v ::= λxt | pair t1 t2 | inl t | inr t | in t | c | pair t | fix∇ns t1..m value (m ≤ n)
e() ::= s | fst | snd | case | out | fixµ

n s t1..n evaluation frame
E() ::= e1(. . . en() . . .) evaluation context (n ≥ 0)
Γ ::= � | Γ, x :A | Γ, X :pκ typing context

Reduction t −→ t′.

(λxt) s −→ [s/x]t
fst 〈r, s〉 −→ r
snd 〈r, s〉 −→ s
case (inl r) −→ λxλy. x r (∗)
case (inr r) −→ λxλy. y r (∗)

out (in r) −→ r
fixµ

n s t1..n (in t) −→ s (fixµ
n s) t1..n (in t)

out (fixν
n s t1..n) −→ out (s (fixν

n s) t1..n)

+ closure under all term constructs

(*) x, y 6∈ FV(r).

Figure 1: Fω̂: Syntax and operational semantics.

6

2.2. Polarized kinds. Negative recursive types such as µλX. X → 1 allow the coding of
Y and other fixed-point combinators as pure λ-terms, so one can write recursive programs
without special syntax for recursion [Men87]. For our purposes, this is counter-productive—
type systems for termination need to identify all uses of recursion. Therefore, we restrict
to positive recursive types µH where H is monotone. In the case of GRose, the underlying
constructor H X = 1 + (A× F X) must be monotone, which is the case if F is monotone.
So GRose FA is only well-formed for monotone F . To distinguish type constructors by
their monotonicity behavior, also called variance, we equip function kinds with polarities p
[Ste98], which are written before the domain or on top of the arrow. Polarity + denotes co-
variant constructors, − contravariant constructors and ◦mixed-variant constructors [DC99].
For instance:

λX.X → 1 : ∗ −→ ∗
λX.X → X : ∗ ◦→ ∗
λX. Int → (1 + X) : ∗ +→ ∗
GRose : (∗ +→ ∗) +→ ∗ +→ ∗

Abel [Abe06a] and Matthes [AM04] provide more explanation on polarities.

2.3. Sized inductive types. We refine inductive types µF to sized inductive types µaF .
The first argument, a, to µ, which we usually write as superscript, denotes the upper
bound for the height of data represented by terms of the inductive type. The index a is a
constructor of kind ord and denotes an ordinal; the relevant ordinal expressions are given
by the grammar

a ::= ı | s a | ∞
with ı an ordinal variable.1 If a actually denotes a finite ordinal (a natural number), then the
height is simply the number of data constructors on the longest path in the tree structure
of any element of µaF . Since a is only an upper bound, µaF is a subtype of µbF , written
µaF ≤ µbF for a ≤ b, meaning that µ is covariant in the index argument. Finally, F ≤ F ′

implies µaF ≤ µaF ′, so we get the kinding

µ : ord
+→ (∗ +→ ∗) +→ ∗

for the least fixed-point constructor. For the closure ordinal ∞, we have

µ∞F = µ∞+1F,

where ∞+ 1 is a shorthand for s∞, s : ord
+→ ord being the successor on ordinals.

Because ∞ denotes the closure ordinal, the axiom s∞ = ∞ is justified. Equality on
type constructors is defined as the least congruent equivalence relation closed under this
equation and βη.

At this point, let us stress that the syntax of ordinals is extremely simple, hence,
equality of types and subtyping is decidable. The user can think of ordinals as of natural
numbers with infinity, although they will be interpreted as real ordinals up to a fairly large
closure ordinal in Section 3.

1One could add a constant for the ordinal 0, but for our purposes it is enough that each concrete data
structure inhabits µ∞F . For checking termination relative sizes are sufficient, which can be expressed using
ordinal variables and successor.

7

Example 2.1 (Some sized types).

Nat : ord
+→ ∗

Nat := λı. µıλX. 1 + X

List : ord
+→ ∗ +→ ∗

List := λıλA. µıλX. 1 + A×X

GRose : ord
+→ (∗ +→ ∗) +→ ∗ +→ ∗

GRose := λıλFλA. µıλX. 1 + A× F X

Tree : ord
+→ ∗ −→ ∗ +→ ∗

Tree := λıλBλA. GRoseı (λX.B → X) A

2.4. Sized coinductive types. Dually to inductive or least fixed-point types µF we have
coinductive or greatest fixed-point types νF to model infinite structures. For instance
StreamA = νX.A×X contains the infinite sequences over A. The dual to the height of an
inductive data structure is the depth of a coinductive one, i.e., how often one can unwind
the structure. So the size a of a sized coinductive type νaF is a lower bound on the depth
of its inhabitants. Since it is a lower bound, coinductive types are contravariant in their
size index:

ν : ord
−→ (∗ +→ ∗) +→ ∗.

As for inductive types, the equation ν∞F = ν∞+1F holds.

Example 2.2 (Sized streams). On a stream in StreamaA one can safely read off the first a
elements.

Stream : ord
−→ ∗ +→ ∗

Stream := λıλA. νıλX.A×X

2.5. Heterogeneous datatypes. If we consider not only fixed-point types, but also fixed-
point constructors, we can treat programs involving so-called nested or heterogeneous types.
A simple example of a heterogeneous type is the type of powerlists PListA which contains
lists of As whose length is a power of two [Hin00a]. The type constructor PList : ∗ +→ ∗ can
be modeled as µλXλA. A + X (A× A) which is the least fixed-point of a type constructor
of kind (∗ +→ ∗) +→ (∗ +→ ∗).

Sized heterogeneous types are obtained by simply generalizing µ and ν to

µκ : ord
+→ (κ +→ κ) +→ κ

νκ : ord
−→ (κ +→ κ) +→ κ.

The kind κ is required to be pure, i. e., a kind not mentioning ord, for reasons explained in
Section 3.4. All our examples work for pure κ.

Example 2.3 (Sized heterogeneous types).

PList : ord
+→ ∗ +→ ∗

PList := λı. µıλXλA.A + X (A×A)

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µıλXλA. 1 + A×X (X A)

Lam : ord
+→ ∗ +→ ∗

Lam := λı. µıλXλA.A + X A×X A + X (1 + A)

8

The second type, Busha A, bushy lists, models finite maps from unlabeled binary trees of
height < a into A [Alt01, Hin00b]. The third type, Lama A, is inhabited by de Bruijn
representations of untyped lambda terms of height < a with free variables in A [BP99,
AR99].

2.6. Programs. The term language of Fω̂ is the λ-calculus plus the standard constants
to introduce and eliminate unit (1), sum (+), and product (×) types. We write 〈t1, t2〉
for pair t1 t2. Further, there is folding, in, and unfolding, out, of (co)inductive types. The
complete listing of the typing rules can be found in Figure 6 in the appendix, here we discuss
the most important ones. Let κ = ~p~κ → ∗ a pure kind, F : +κ → κ, Gi : κi for 1 ≤ i ≤ |~κ|,
a : ord, and ∇ ∈ {µ, ν}, then we have the following (un)folding rules:

ty-fold
Γ ` t : F (∇a

κ F) ~G

Γ ` in t : ∇a+1
κ F ~G

ty-unfold
Γ ` r : ∇a+1

κ F ~G

Γ ` out r : F (∇a
κ F) ~G

Finally, there are fixed-point combinators fixµ
n and fixν

n for each n ∈ N on the term level.
The term fixµ

n s denotes a recursive function with n leading non-recursive arguments; the
n + 1st argument must be of an inductive type. Similarly, fixν

n s is a corecursive function
which takes n arguments and produces an inhabitant of a coinductive type. We abbreviate
f t1 . . . tn by f t1..n or f ~t.

One-step reduction t −→ t′ is defined by the β-reduction axioms given in Figure 1
plus congruence rules. Its transitive closure is denoted by −→+, and −→∗ is the reflexive-
transitive closure. Interesting are the reduction rules for recursion and corecursion:

fixµ
n s t1..n (in t) −→ s (fixµ

n s) t1..n (in t)
out (fixν

n s t1..n) −→ out (s (fixν
n s) t1..n)

A recursive function is only unfolded if its recursive argument is a value, i. e., of the form
in t. This condition is required to ensure strong normalization; it is present in the work
of Mendler [Men87], Giménez [Gim98], Barthe et al. [BFG+04], and the author [Abe04].
Dually, corecursive functions are only unfolded on demand, i. e., in an evaluation context,
the matching one being out .

p ≤ p′ polarity ordering
∆ ` F : κ kinding
∆ ` F = F ′ : κ constructor equality
∆ ` F ≤ F ′ : κ higher-order subtyping
t −→ t′ reduction
Γ ` t : A typing
Γ ` A fix∇n-adm admissible recursion type

Figure 2: Fω̂: Judgements.

9

Figure 2 lists the basic judgements of Fω̂, their rules can be found in the appendix. As
pointed out in the introduction, recursion is introduced by the rule

ty-rec
Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı :ord. A ı → A (ı + 1)) → A a
.

Herein, ∇ stands for µ or ν, and the judgement A fix∇n-adm (see Def. 6.3) ensures that type
A is admissible for (co)recursion, as discussed in the introduction. In this article, we will
find out which types are admissible.

Example 2.4. Now we can code the example from the introduction in Fω̂, with a suitable
coding of true, false and ∧.

eqGRose : (∀A.Eq A → Eq (FA)) → ∀A.Eq A → ∀ı. Eq (GRoseıFA)
eqGRose := λeqFλeqA.

fixµ
0λeqλt1λt2. case (out t1)
(λ . case (out t2) (λ . true) (λn2. false))
(λn1. case (out t2) (λ . false)

(λn2. (eqA (fst n1) (fst n2)) ∧
(eqF eq (sndn1) (sndn2))))

Typing succeeds, by the following assignment of types to variables:

eqF : ∀A.Eq A → Eq (FA)
eqA : Eq A
eq : Eq (GRoseıFA)

t1, t2 : GRoseı+1FA
: 1

n1, n2 : A× F (GRoseıFA)

More examples, including programs over heterogeneous types, can be found in the
author’s thesis [Abe06b].

3. Semantics

Hughes, Pareto, and Sabry [HPS96] give a domain-theoretic semantics of sized types.
We, however, follow Barthe et al. [BFG+04] and interpret types as sets of terminating open
expressions and show that any reduction sequence starting with a well-typed expression
converges to a normal form. This is more than showing termination of programs (closed
expressions); our results can be applied to partial evaluation and testing term equality in
type-theoretic proof assistants.

The material in this section is quite technical, but provides the necessary basis for our
considerations in the following sections. The reader may browse it, take a closer look at
the interpretation of types (Sec. 3.5) and then continue with Section 4, coming back when
necessary.

Let S denote the set of strongly normalizing terms. We interpret a type A as a semantic
type JAK ⊆ S, and the function space is defined extensionally:

JA → BK = {r | r s ∈ JBK for all s ∈ JAK}.
As main theorem, we show that given a well-typed term x1 : A1, . . . xn : An ` t : C and
replacements si ∈ JAiK for each occurring variable xi, the substitution [~s/~x]t inhabits JCK.
The proof proceeds by induction on the typing derivation, and in the λ-case (here simplified)

x : A ` t : B

` λxt : A → B

10

it suffices to show (λxt) s ∈ JBK for any s ∈ JAK. However, by induction hypothesis we
know only [s/x]t ∈ JBK. We therefore require semantic types to be closed under weak head
expansion to make this case go through.

Since we are interested in normalization of open terms, we need to set aforementioned
replacements si to variables xi. This is possible if each semantic type contains all variables,
which has to be generalized to all neutral terms, i.e. terms E[x] with a variable in evaluation
position. These observations motivate our definition of semantic types.

3.1. Semantic types. We define safe (weak head) reduction B by the following axioms.
The idea is that semantic types are closed under B-expansion.

(λxt) s B [s/x]t if s ∈ S
fst (pair r s) B r if s ∈ S
snd (pair r s) B s if r ∈ S
out (in r) B r

case (inl r) B λxλy. x r (∗)
case (inr r) B λxλy. y r (∗)
fixµ

ns t1..n (in r) B s (fixµ
ns) t1..n (in r)

out (fixν
ns t1..n) B out (s (fixν

ns) t1..n)

Side condition (*): x, y 6∈ FV(r). Additionally, we close safe reduction under evaluation
contexts and transitivity:

E(t) B E(t′) if t B t′

t1 B t3 if t1 B t2 and t2 B t3

One-step safe reduction is deterministic, hence, if r B s and r B t then either s = t or s B t
or t B s.

V := {v,E(x) | v value, E evaluation context}
is the set of B-normal forms, not counting junk terms like fst (λxt).

The relation is defined such that S is closed under B-expansion, meaning t B t′ ∈ S
implies t ∈ S. In other words, B used in the expansion direction does not introduce diverging
terms. Let BA denote the closure of term set A under B-expansion. In general, the closure
of term set A is defined as

A = B(A ∪ {E(x) | x variable, E(x) ∈ S}).
Closure preserves strong normalization: If A ⊆ S then A ⊆ S. A term set is closed if
A = A. The least closed set is the set of neutral terms N := ∅ 6= ∅. Intuitively, a neutral
term never reduces to a value, it necessarily has a free variable, and it can be substituted
into any term without creating a new redex. A term set A is saturated if A is closed and
N ⊆ A ⊆ S (this makes sure that A contains all variables). A saturated set is called a
semantic type.

3.2. Interpretation of kinds. When types are interpreted as sets of terms, the easiest
interpretation of type constructors are set-theoretical operators on term sets, or as we go
higher-order, on operators.

The saturated sets form a complete lattice J∗K with least element ⊥∗ := N and greatest
element >∗ := S. It is ordered by inclusion v∗ := ⊆ and has set-theoretic infimum inf∗ :=

⋂
and supremum sup∗ :=

⋃
. Let JordK := O where O = [0;>ord] is an initial segment of

the set-theoretic ordinals. With the usual ordering on ordinals, O constitutes a complete
lattice as well. For lattices L and L′, let L

+→ L′ denote the space of monotone functions
from L to L′ and L

−→ L′ the space of antitone ones. The mixed-variant function kind
J◦κ → κ′K is interpreted as set-theoretic function space JκK → Jκ′K; the covariant function

11

kind +κ → κ′ denotes the monotonic function space JκK +→ Jκ′K and the contravariant
kind −κ → κ′ the antitonic space JκK −→ Jκ′K. For all function kinds, ordering is defined
pointwise: F vpκ→κ′ F ′ :⇐⇒ F(G) vκ′ F ′(G) for all G ∈ JκK. Similarly, ⊥pκ→κ′(G) := ⊥κ′

is defined pointwise, and so are >pκ→κ′ , infpκ→κ′ , and suppκ→κ′ .

3.3. Limits and iteration. Inductive types JµaF K are constructed by iterating the oper-
ator JF K JaK-times, starting with the least semantic type ⊥. At limit ordinals, we take the
supremum. If JaK is big enough, latest if JaK = >ord, the least fixed-point is reached, but
our type system also provides notation for the approximation stages below the fixed-point.
For coinductive types, we start with the biggest semantic type > and take the infimum at
limits. It is possible to unify these two forms of iteration, by taking the lim sup instead of
infimum or supremum at the limits. The notion of lim sup and iteration can be defined for
arbitrary lattices:

In the following λ ∈ O will denote a limit ordinal. (We will only consider proper limits,
i. e., λ 6= 0.) For L a complete lattice and f ∈ O → L we define:

lim infα→λ f(α) := supα0<λ infα0≤α<λ f(α)
lim supα→λ f(α) := infα0<λ supα0≤α<λ f(α)

Using infλ f as shorthand for infα<λ f(α), and analogous shorthands for sup, lim inf, and
lim sup, we have infλ f v lim infλ f v lim supλ f v supλ f . If f is monotone, then even
lim infλ f = supλ f , and if f is antitone, then infλ f = lim supλ f .

If f ∈ L → L and g ∈ L, we define transfinite iteration fα(g) by recursion on α as
follows:

f0 (g) := g
fα+1(g) := f(fα(g))
fλ (g) := lim supα→λ fα(g)

This definition of iteration works for any f , not just monotone ones. For monotone f ,
we obtain the usual approximants of least and greatest fixed-points as µαf = fα(⊥) and
ναf = fα(>): It is easy to check that µλf = supα<λ µαf and νλf = infα<λ ναf , so our
definition coincides with the usual one.

3.4. Closure ordinal. We can calculate an upper bound for the ordinal >ord at which all
fixed-points are reached as follows: Let in be a sequence of cardinals defined by i0 = |N|
and in+1 = |P(in)|. For a pure kind κ, let |κ| be the number of ∗s in κ. Since J∗K consists
of countable sets, |J∗K| ≤ |P(N)| = i1, and by induction on κ, |JκK| ≤ i|κ|+1. Since an
(ascending or descending) chain in JκK is shorter than |JκK|, each fixed point is reached
latest at the |JκK|th iteration. Hence, the closure ordinal for all (co)inductive types can be
approximated from above by >ord = iω.

This calculation does not work if we allow fixed-points of constructors involving ord.
Then the closure ordinal of such a fixed-point would depend on which ordinals are in the
semantics of ord, which in turn would depend on what the closure ordinal for all fixed-points
was—a vicious cycle. However, I do not see a practical example where one want to construct
the fixed point of a sized-type transformer F : (ord ◦→ κ) +→ (ord ◦→ κ). Note that this does
not exclude fixed-points inside fixed-points, such as

BTreeı, A = µıλX. 1 + X × (µλY. 1 + A×X × Y),

12

“B-trees” of height < ı with each node containing < keys of type A.

Example 3.1 (Number classes). Here we show that higher-kinded inductive types may
require strictly higher closure ordinals than inductive types of kind ∗. Following Hancock
[Han02], we can define the number classes as inductive types as follows:

NC0 := µ∞λX. 1 ∼= 1
NC1 := µ∞λX. 1 + (NC0 → X) ∼= Nat∞

NC2 := µ∞λX. 1 + (NC0 → X) + (NC1 → X) ∼= µ∞λX. 1 + X + (Nat∞ → X)
NC3 := µ∞λX. 1 + (NC0 → X) + (NC1 → X) + (NC2 → X)

...

The second number class NC2 is also known as Brouwer ordinals. The law behind this
scheme is: NCn = µFn, where F0 X = 1 and Fn+1 X = Fn X + (µFn → X). Each number
class requires a higher closure ordinal, and their limit is the closure ordinal of all inductive
types of kind ∗. Now let

NumClTree : ord
+→ (∗ +→ ∗) ◦→ ∗

NumClTree := λı. µıλY λF. 1 + (µ∞F → Y (λX.F X + (µ∞F → X))).

Then NumClTree∞ (λX. 1) is the type of trees branching over the nth number class at the
nth level.

3.5. Interpretation of types. For r a term, e an evaluation frame, and A a term set,
let r · A = {r s | s ∈ A} and e−1A = {r | e(r) ∈ A}. If e is strongly normalizing and
A saturated, then e−1A is again saturated. For saturated sets A,B ∈ J∗K we define the
following saturated sets:

A + B := inl · A ∪ inr · B

A × B := (fst)−1A ∩ (snd)−1B

A → B :=
⋂

s∈A (s)−1B

1 := {〈〉}

Aµ := in · A

Aν := (out)−1A

The last two notations are lifted pointwise to operators F ∈ Jpκ → κ′K by setting F∇(G) =
(F(G))∇, where ∇ ∈ {µ, ν}.

Remark 3.2. Our definition of product and function space (inspired by Vouillon [Vou04])
makes it immediate that × and → operate on saturated sets. But it is just a reformulation
of the usual A × B = {r | fst r ∈ A and snd r ∈ B} and A → B = {r | r s ∈ B for all s ∈
A}.

Notice that the finitary or (in the logical sense) positive connectives 1, +, and µ are
defined via introductions, while the infinitary or negative connectives → and ν are defined
via eliminations. (The product fits in either category.)

13

For a constructor constant C :κ, the semantics JCK ∈ JκK is defined as follows:

J+K(A,B ∈ J∗K) := A + B
J×K(A,B ∈ J∗K) := A × B
J→K(A,B ∈ J∗K) := A → B
JµκK(α)(F ∈ JκK +→ JκK) := µαFµ

JνκK(α)(F ∈ JκK +→ JκK) := ναFν

J∀κK(F ∈ JκK → J∗K) :=
⋂
G∈[[κ]]F(G)

J1K := 1

J∞K := >ord

JsK(>ord) := >ord

JsK(α < >ord) := α + 1

This semantics is extended to arbitrary constructors in the usual way. Let U =
⋃

κJκK. For
a valuation θ which partially maps constructor variables X to their interpretation G ∈ U,
we define the partial map J−Kθ from constructors F to their interpretation in U by recursion
on F .

JCKθ := JCK
JXKθ := θ(X)
JF GKθ := JF Kθ(JGKθ)

JλX :κ. F Kθ :=
{ F if F ∈ JκK → Jκ′K for some κ′

undef. else
where F(G ∈ JκK) := JF Kθ[X 7→G]

In the last clause, F is a partial function from JκK to U.
The interpretation JF Kθ is well-defined for well-kinded F , and these are the only con-

structors we are interested in, but we chose to give a (possibly undefined) meaning to all
constructors. If one restricts the interpretation to well-kinded constructors, one has to de-
fine it by recursion on kinding derivation and show coherence: If a constructor has two
kinding derivations ending in the same kind, then the two interpretations coincide. This
alternative requires a bit more work than our choice.

Lemma 3.3 (Basic properties of interpretation).
(1) Relevance: If θ(X) = θ′(X) for all X ∈ FV(F), then JF Kθ = JF Kθ′.
(2) Substitution: J[G/X]F Kθ = JF Kθ[X 7→JGKθ].

Proof. Each by induction on F . For (2), consider case F = λY :κ. F ′. W. l. o. g., Y 6∈ FV(G).
By induction hypothesis,

F(H) := J[G/X]F Kθ[Y 7→H] = JF Kθ[Y 7→H][X 7→JGKθ[Y 7→H]] = JF Kθ[X 7→JGKθ][Y 7→H],

using (1) on G. Hence, J[G/X](λY :κ. F)Kθ = JλY :κ. F Kθ[X 7→JGKθ].

Although the substitution property holds even for ill-kinded constructors, we only have
for well-kinded constructors that J(λX : κ. F) GKθ = J[G/X]F Kθ. In general, the left hand
side is less defined than the right hand side, e. g., J(λX : ∗. 1)∞Kθ is undefined, whereas
the interpretation J1Kθ of its β-reduct is well-defined. In the following we show that for
well-kinded constructors the interpretation is well-defined and invariant under β.

Theorem 3.4 (Soundness of kinding, equality, and subtyping for constructors). Let θ v
θ′ ∈ J∆K, meaning that for all (X : pκ′) ∈ ∆ it holds that G := θ(X) ∈ Jκ′K and G′ :=
θ′(X) ∈ Jκ′K, and G = G′ if p = ◦, G v G′ if p = +, and G′ v G if p = −.

(1) If ∆ ` F : κ then JF Kθ v JF Kθ′ ∈ JκK.
(2) If ∆ ` F = F ′ : κ then JF Kθ = JF ′Kθ′ ∈ JκK.

14

(3) If ∆ ` F ≤ F ′ : κ then JF Kθ v JF ′Kθ′ ∈ JκK.

Proof. Simultaneously by induction on the derivation.

Now we can compute the semantics of types, e. g., JNatıK(ı7→α) = Natα = µα(X 7→ (1 +
X)µ). Similarly, the semantic versions of List, Stream, etc. are denoted by List , Stream, etc.

3.6. Semantic admissibility and strong normalization. For the main theorem to fol-
low, we assume semantic soundness of our yet to be defined syntactical criterion of admis-
sibility (Def. 6.3).

Assumption 3.5 (Semantic admissibility). If Γ ` A fix∇n-adm and θ(X) ∈ JκK for all
(X :κ) ∈ JΓK then A := JAKθ ∈ JordK → J∗K has the following properties:

(1) Shape: A(α) =
⋂

k∈K B1(k, α) → . . . → Bn(k, α) → B(k, α) for some K and some
B1, . . . ,Bn,B ∈ K × JordK → J∗K. In case ∇ = µ, B(k, α) = I(k, α)µ → C(k, α) for
some I, C. Otherwise, B(k, α) = C(k, α)ν for some C.

(2) Bottom-check: I(k, 0)µ = ⊥∗ in case ∇ = µ and C(k, 0)ν = >∗ in case ∇ = ν.
(3) Limit-check: infα<λA(α) ⊆ A(λ) for all limit ordinals λ ∈ JordK \ {0}.

In case of recursion (∇ = µ), the condition (1) ensures that fixµ
ns really produces a

function whose n+1st argument is of something that looks like an inductive type (I(k, α)µ).
The function can be polymorphic, therefore the intersection

⋂
k∈K over an index set K.

Condition (2) requires I to exhibit at least for α = 0 the behavior of an inductive type:
I(k, 0)µ = ⊥∗, which is equivalent to I(k, 0) = ∅. The technical condition (3) is used in the
following theorem and will occupy our attention for the remainder of this article. In case
of corecursion (∇ = ν), condition (1) ensures that fixν

ns maps n arguments into something
like a coinductive type (C(k, α)ν), which needs to cover the whole universe >∗ of terms for
α = 0.

Now we show soundness of our typing rules, which entails strong normalization. Let tθ
denote the simultaneous substitution of θ(x) for each x ∈ FV(t) in t.

Theorem 3.6 (Soundness of typing). Assume that the judgement Γ ` A fix∇n-adm is sound,
as stated above. Let θ(X) ∈ JκK for all (X : κ) ∈ Γ and θ(x) ∈ JAKθ for all (x : A) ∈ Γ. If
Γ ` t : B then tθ ∈ JBKθ.

Proof. By induction on the typing derivation. We consider the recursion rule (ty-rec for
∇ = µ).

ty-rec
Γ ` A fixµ

n-adm Γ ` a : ord

Γ ` fixµ
n : (∀ı :ord. A ı → A (ı + 1)) → A a

By hypothesis, A := JAKθ ∈ JordK → J∗K is admissible, and α := JaKθ ∈ JordK. Assume an
s ∈ J∀ı : ord. A ı → A (ı + 1)Kθ ⊆

⋂
β<>ord A(β) → A(β + 1). We show fixµ

n s ∈ A(α) by
transfinite induction on α.

In the base case α = 0, A(0) =
⋂

k∈K B1..n(k, 0) → ⊥∗ → C(k, 0). We assume k ∈ K,
ti ∈ Bi(k, 0), then e(r) := fixµ

n s t1..n r is a strongly normalizing evaluation frame. Since each
r ∈ ⊥∗ = N is neutral, we have e(r) ∈ N ⊆ C(k, 0).

In the step case, A(α + 1) =
⋂

k∈K B1..n(k, α + 1) → I(k, α + 1)µ → C(k, α + 1).
We assume k ∈ K, ti ∈ Bi(k, α + 1), and r ∈ I(k, α + 1)µ, which means that either r is
neutral—then we continue as in the previous case—or rBin r′. Now fixµ

n s~t rBfixµ
n s~t (in r′)B

s (fixµ
n s)~t (in r′). The last term inhabits C(k, α + 1), since fixµ

n s ∈ A(α) by induction hy-
pothesis and therefore s (fixµ

n s) ∈ A(α + 1).
15

Finally, in the limit case, fixµ
n s ∈ A(α) for all α < λ by induction hypothesis. Since⋂

α<λA(α) = infα<λA(α) ⊆ A(λ), we are done.

Corollary 3.7 (Strong normalization). If Γ ` t : B then t is strongly normalizing.

Proof. From soundness of typing, taking a valuation θ with θ(x) = x for all term variables
x and θ(X) = >κ for all (X :pκ) ∈ Γ.

4. Semi-Continuity

As motivated in the introduction, only types C ∈ JordK → J∗K which satisfy the limit-
check infλ C v C(λ) can be admissible for recursion. In this section we develop a composi-
tional criterion for admissible types. The limit-check itself is not compositional since it does
not sensibly distribute over function spaces: To show infα<λ(A(α) → B(α)) v A(λ) →
B(λ) from infλ B v B(λ) requires A(λ) v infλA, which is not even true for A(α) = Natα at
limit ω. However, the criterion lim supλ C v C(λ) entails the limit-check, and it distributes
reasonably over the function space:

Proposition 4.1. If A(λ) v lim infλA and lim supλ B v B(λ) then lim supλ(A(α) →
B(α)) v A(λ) → B(λ).

This proposition will reappear (and proven) as Cor. 4.8. Note that Natω = lim infω Nat ,
hence, A(α) = Natα can now serve as the domain of an admissible function space, which is
the least we expect.

The conditions on A and B in the lemma are established mathematical terms: They
are subconcepts of continuity. In this article, we consider only functions f ∈ O → L
from ordinals into some lattice L. For such f , the question whether f is continuous in
point α only makes sense if α is a limit ordinal, because only then there are infinite non-
stationary sequences which converge to α; and since every strictly decreasing sequence is
finite on ordinals (well-foundedness!), it only makes sense to look at ascending sequences,
i. e., approaching the limit from the left. Hence, function f is upper semi-continuous in λ, if
lim supλ f v f(λ), and lower semi-continuous, if f(λ) v lim infλ f . If f is both upper and
lower semi-continuous in λ, then it is continuous in λ (then upper and lower limit coincide
with f(λ)).

In the following we identify sufficient criteria for sum, product, function, inductive, and
coinductive types to be semi-continuous.

4.1. Semi-continuity from monotonicity.
Obviously, any monotone function is upper semi-continuous, and any antitone function

is lower semi-continuous. Now consider a monotone f with f(λ) = supλ f , as it is the case
for an inductive type f(α) = µαF (where F does not depend on α). Since for monotone f ,
supλ f = lim infλ f , f is lower semi-continuous. This criterion can be used with Prop. 4.1 to
show upper semi-continuity of function types with inductive domain, such as Eq(GRoseı FA)
(see introduction) and, e. g.,

C(α) = Natα → Listα(A) → C′(α)

where C′(α) is any monotonic type-valued function, for instance, Listα(Natα), and A is some
constant type: The domain types, Natα and Listα(A), are lower semi-continuous according
the just established criterion and the monotonic codomain C′(α) is upper semi-continuous,

16

hence, Prop. 4.1 proves upper semi-continuity of C. Note that this criterion fails us if we
replace the domain Listα(A) by Listα(Natα), or even µα(F(Natα)) for some monotone F ,
since it is not immediately obvious that

µω(F(Natω)) = sup
α<ω

µα(F(sup
β<ω

Natβ)) ?= sup
γ<ω

µγ(F(Natγ)).

However, domain types where one indexed inductive type is inside another inductive type
are useful in practice, see Example 6.6. Before we consider lower semi-continuity of such
types, let us consider the dual case.

For f(α) = ναF , F not dependent on α, f is antitone and f(λ) := lim supλ f = infλ f ,
hence, f is continuous in all limits. This establishes upper semi-continuity of a type involved
in stream-zipping,

Streamα(A) → Streamα(B) → Streamα(C).
However, types like Streamα(Natα) are not yet covered, but now we will develop concepts
that allow us to look inside (co)inductive types.

4.2. Simple semi-continuous types. First we will investigate how disjoint sum, product,
and function space operate on semi-continuous types.

Definition 4.2. Let f ∈ L → L′. We say lim sup pushes through f , or f is lim sup-pushable,
if for all g ∈ O → L,

lim sup
α→λ

f(g(α)) v f(lim sup
λ

g).

Analogously, f is lim inf-pullable, or lim inf can be pulled out of f , if for all g,

f(lim inf
λ

g) v lim inf
α→λ

f(g(α)).

These notions extend straightforwardly to fs with several arguments.

Lemma 4.3 (Facts about limits).
(1) supi∈I lim infα→λ h(α, i) v lim infα→λ supi∈I h(α, i).
(2) lim supα→λ infi∈I h(α, i) v infi∈I lim supα→λ h(α, i).
(3) lim supα→λ infi∈I(α) h(α, i) v infi∈lim infλ I lim supα→λ h(α, i).

Fact (2) states that lim sup pushes through infimum, setting L = K → L′ for some set
K ⊇ I, f(g′) = infi∈I g′(i), and g(α)(i) = h(α, i) in the above definition. Thus, universal
quantification is lim sup-pushable, which justifies rule cont-∀ in Figure 3 (see Sect. 6). The
dual fact (1) expresses that lim inf can be pulled out of a supremum.

Fact (3) is a generalization of (2) which we will need to show semi-continuity properties
of the function space.

Proof. In the following proof of (3), let all ordinals range below λ. First we derive

h(α, i) v supα≥α0
h(α, i) for α ≥ α0

infi∈I(α) h(α, i) v infi∈T
α≥α0

I(α) supα≥α0
h(α, i) for α ≥ α0

supα≥α0
infi∈I(α) h(α, i) v infi∈infα≥α0

I(α) supα≥α0
h(α, i).

(I(α) is a set, so intersection = infimum.) Secondly, note that

infα0 infi∈J(α0) g(α0, i) = infα0,i∈J(α0) infα0 g(α0, i) = infi∈supα0
J(α0) infα0 g(α0, i).

17

With g(α0, i) := supα≥α0
h(α, i) and J(α0) := infα≥α0 I(α) we finally derive

lim supα→λ infi∈I(α) h(α, i) =
infα0 supα≥α0

infi∈I(α) h(α, i) v infα0 infi∈infα≥α0
I(α) supα≥α0

h(α, i)
= infi∈supα0

infα≥α0
I(α) infα0 supα≥α0

h(α, i)
= infi∈lim infλ I lim supα→λ h(α, i).

Lemma 4.4 (lim inf can be pulled out of the building blocks of saturated sets).
(1) r · lim infλA ⊆ lim infα→λ(r · A(α)).
(2) e−1(lim infλA) ⊆ lim infα→λ e−1(A(α)).
(3) lim infλA ∩ lim infλ B ⊆ lim infα→λ(A(α) ∩ B(α)).
(4) B(lim infλA) ⊆ lim infα→λ

B(A(α)).

Proof. All propositions have easy proofs. Let all introduced ordinals range below λ. For
proposition (3), assume r ∈ lim infλA ∩ lim infλ B, which means that there are α0, β0 such
that r ∈ A(α) for all α with α0 ≤ α and r ∈ B(β) for all β with β0 ≤ β. We have
to show that there exists γ0 such that r ∈ A(γ) ∩ B(γ) for all γ with γ0 ≤ γ. Choose
γ0 := max(α0, β0). Notice that even lim infλA ∩ lim infλ B = lim infα→λ(A(α) ∩ B(α)),
since the reverse direction is follows immediately from A(α) ∩ B(α) ⊆ A(α),B(α).

For proposition (4), assume rBr′ ∈ lim infλA. There exists α0 such that for all α ≥ α0,
we have r′ ∈ A(α), and thus, r ∈ B(A(α)). It follows that r ∈ lim infα→λ

B(A(α)).

The last lemma can be dualized to lim sup:

Lemma 4.5 (lim sup pushes through the building blocks of saturated sets).
(1) lim supα→λ(r · A(α)) ⊆ r · lim supλA.
(2) lim supα→λ e−1(A(α)) ⊆ e−1(lim supλA).
(3) lim supα→λ(A(α) ∪ B(α)) ⊆ lim supλA ∪ lim supλ B. (only classically!)
(4) lim supα→λ

B(A(α)) ⊆ B(lim supλA) if A(α) ⊆ V for all α < λ.

Proof. The first three propositions follow trivially since the infimum and supremum con-
sidered are set-theoretic intersection and union. Note that proposition (3) is valid in clas-
sical logics but not in intuitionistic logics: An r which inhabits infinitely many unions
A(α)∪B(α), must classically inhabit infinitely many A(α) or infinitely many B(α). But we
cannot tell which of these alternatives holds, so the proposition has no intuitionistic proof.
However, we will not need this proposition for the results to follow.

For the last proposition, assume r ∈ lim supα→λ
B(A(α)). If we require all following

ordinals < λ, this means that for arbitrary α0 there exist α ≥ α0 and r′ ∈ A(α) such that
r B r′. Since each r′ ∈ V and safe reduction into V is deterministic, there is in fact a unique
r′ ∈

⋃
α≥α0

A(α) with r B r′ for all α, hence, r ∈ B(lim supλA).

Proposition (4) of Lemma 4.5 fails if we drop the conditionA(α) ⊆ V: Let ti = outi+1(fixν
0 out)

and observe that ti B ti+1. Setting A(n) := {ti | i ≥ n} we have t0 ∈ infn<ω
B(A(n)) ⊆

lim supn→ω
B(A(n)), but lim supω A = infω A = ∅, thus, t0 6∈ B(lim supω A). It did not help

that the A(n) were closed unter B-reduction.

Lemma 4.6. Binary sums + and products × and the operations (−)µ and (−)ν are lim sup-
pushable and lim inf-pullable.

18

Proof. Directly by the last lemmata. For instance,

(lim infλA) × (lim infλ B) = (fst−1 lim infλA) ∩ (snd−1 lim infλ B)
⊆ (lim infα→λ fst−1A(α)) ∩ (lim infβ→λ snd−1B(β))
⊆ lim infγ→λ(fst−1A(γ) ∩ snd−1B(γ))
= lim infγ→λ(A(γ) × B(γ)).

Because we wish to avoid classical reasoning (Lemma 4.5 (3)) as much as possible, pushing
lim sup through disjoint sums requires a closer look: Assume r ∈ lim supγ→λ(A(γ) + B(γ)),
hence, for some γ, either r B inl r′ for some r′ ∈ A(γ), or r B inr r′ for some r′ ∈ B(γ), or
r ∈ N . Since safe reduction B is deterministic, and N does not contain values, one of
these three alternatives must hold whenever r ∈ A(γ) + B(γ) for some γ. So either r ∈
B(inl · (lim supλA)), or r ∈ B(inr · (lim supλ B)), or r ∈ N , which means r ∈ (lim supλA) +
(lim supλ B).

Analogously, we show that lim sup pushes through (·)µ.

Using monotonicity of the product constructor, the lemma entails that A(α) × B(α) is
upper/lower semi-continuous if A(α) and B(α) are. This applies also for +.

Theorem 4.7 (Pushing lim sup through function space).
lim supα→λ (A(α) → B(α)) ⊆ (lim infλA) → lim supλ B.

Proof. We use Lemma 4.3 (3).

lim supα→λ (A(α) → B(α)) = lim supα→λ

⋂
s∈A(α)(s)−1B(α)

⊆
⋂

s∈lim infλA lim supα→λ(s)−1B(α)

⊆
⋂

s∈lim infλA(s)−1(lim supλ B)

= (lim infλA) → lim supλ B.

Corollary 4.8. If A(λ) v lim infλA and lim supλ B v B(λ) then lim supλ(A(α) →
B(α)) v A(λ) → B(λ).

4.3. Coinductive types preserve upper semi-continuity. We have already seen that
Streamα(Natω) is upper semi-continuous. In this section, we establish means to show that
also a type like Streamα(Natα) is upper semi-continuous (which is, by the way, isomorphic
to Natα → Natα).

Definition 4.9. A family Fα ∈ L → L′ (α ∈ O) is called lim sup-pushable if for any
G(−) ∈ O → L,

lim supα→λFγ(Gα) v Fγ(lim supα→λ Gα) for all γ ∈ O,
lim supα→λFα(Gα) v Fλ(lim supα→λ Gα) for all limits λ > 0.

The first property is easier to prove, but not entailed by the second property. Usually
we will confine in showing the second.

Lemma 4.10. Let Fα ∈ ~L → L
+→ L be a family which is lim sup-pushable in all arguments..

Then for all β the family
Hα ∈ ~L → L

Hα(~G) = νβ(Fα(~G))
19

is lim sup-pushable.

Proof. By transfinite induction on β we prove for all Gi ∈ O → Li that

lim sup
α→λ

νβ(Fα(~Gα)) v νβFλ(lim sup
λ

~G).

In case β = 0, both sides become the maximum element of L. In the successor case we have

lim supα→λ νβ+1(Fα(~Gα)) = lim supα→λFα(~Gα)(νβ(Fα(~Gα)))
v Fλ(lim supλ

~G)(lim supα→λ νβ(Fα(~Gα))) Fα pushable
v Fλ(lim supλ

~G)(νβ(Fλ(lim supλ
~G))) Fα monotone, i.h.

= νβ+1(Fλ(lim supλ
~G)).

In the remaining case β = λ we exploit that lim sup pushes through infima (Lemma 4.3.2).

In the remainder of this part we will show that lim supα<λ νφ(α)Fα v ν lim infλ φFλ. This
will enable us to show that types like Streamα(Natα) are lim sup-pushable.

In the following, we will need additional properties of lim sup. For the value of lim infλ f
and lim supλ f , only the behavior of f on a final segment of [0;λ[is relevant:

Lemma 4.11 (Limit starting later). Let all ordinal range below λ.

(1) infβ0≥α0 supβ≥β0
f(β) = infγ0≥0 supγ≥γ0

f(γ).
(2) supβ0≥α0

infβ≥β0 f(β) = supγ0≥0 infγ≥γ0 f(γ).

Proof. We show (1), the proof of (2) is analogous. Direction w follows by monotonicity of
inf. For v, we have to show that for all γ0 there exists a β0 ≥ α0 such that

sup
β≥β0

f(β) v sup
γ≥γ0

f(γ).

Take β0 = max(γ0, α0).

Lemma 4.12 (Splitting limits).

(1) lim supβ→λ h(β, β) v lim supα→λ lim supβ→λ h(α, β) for h ∈ O
−→ O → L,

(2) lim infα→λ lim infβ→λ h(α, β) v lim infβ→λ h(β, β) for h ∈ O
+→ O → L.

Proof. Again, we show just (1). Because of antitonicity, we have for all α,

h(β, β) v h(α, β) for all β ≥ α
supβ≥β0

h(β, β) v supβ≥β0
h(α, β) for all β0 ≥ α

infβ0≥α supβ≥β0
h(β, β) v infβ0≥α supβ≥β0

h(α, β)
lim supβ→λ h(β, β) v lim supβ→λ h(α, β) by Lemma 4.11.

The goal follows by taking lim sup on the r.h.s.

20

Next, we show how to push a lim sup into ν(−).

Lemma 4.13. Let φ ∈ O → O and I ⊆ O. Then
(1) supα∈I νφ(α) v ν infI φ,
(2) supα∈I νφ(α) w ν infI φ,
(3) infα∈I νφ(α) w νsupI φ, and
(4) infα∈I νφ(α) v νsupI φ.

Proof. (1) and (3) follow directly from antitonicity. For (2), remember that each set of
ordinals is left-closed, hence infI φ = φ(α) for some α ∈ I. The remaining proposition (4)
is proven by cases on supI φ. If supI φ is not a limit ordinal then supI φ = φ(α) for some
α ∈ I. For this α, clearly νφ(α) v νsupI φ, which entails the lemma. Otherwise, if supI φ
is a limit ordinal, then by definition of ν at limits we have to show infα∈I νφ(α) v νβ for
all β < supI φ. By definition of the supremum, β < φ(α) for some α. Since ν is antitone,
νφ(α) v νβ from which we infer our subgoal by forming the infimum on the left hand side.

Corollary 4.14. lim supα→λ νφ(α) = ν lim infλ φ.

Now we have the tools in hand to prove that coinductive types preserve upper semi-
continuity. In the second part of the following theorem, we make use of the fact that our
coinductive types close at ordinal ω.

Theorem 4.15 (Upper semi-continuity of coinductive types). Let Fα ∈ ~L → L
+→ L be a

family which is lim sup-pushable in all arguments and φ ∈ O
+→ O. Then

lim sup
α→λ

νφ(α)(Fα(~Gα)) v ν(lim infλ φ)(Fλ(lim sup
λ

~G)).

If φ is constant or affine, then even

lim sup
α→λ

νφ(α)(Fα(~Gα)) v νφ(λ)(Fλ(lim sup
λ

~G)).

Proof. Direct. Note that νφ(−) is antitone, so we can split the lim sup.

lim supα→λ νφ(α)(Fα(~Gα)) v lim supα→λ lim supγ→λ νφ(α)(Fγ(~Gγ)) Lemma 4.12
v lim supα→λ νφ(α)(Fλ(lim supλ

~G)) Lemma 4.10
v ν lim infα→λ φ(α)(Fλ(lim supλ

~G)) Cor. 4.14.

Now if φ is constant, then lim infλ φ = φ(λ). If φ is affine, then surely φ(λ) ≥ ω, and also
lim infλ φ ≥ ω. We only need to show that in our case the greatest fixed-point is reached
already at iteration ω. Observe that H(X) := Fλ(lim supλ

~G)(X) is lim sup-pushable, since
the family F is. It suffices to show that νωH v νω+1H.

νωH = lim supβ→ω νβH = lim supβ→ω νβ+1H = lim supβ→ω H(νβH)
v H(lim supβ→ω νβH) = νω+1H.

Thus, νω+1H = νωH, which means that νβH = νωH for all β ≥ ω; the fixed-point is
reached.

21

For example, since Fα(X) = (Natα × X)ν is lim sup-pushable, we have can infer upper
semi-continuity of Streamα(Natα) = ναFα.

4.4. Inductive types preserve lower semi-continuity. We can dualize the results of
the last section and prove that inductive types preserve lower semi-continuity and lim sup-
pushability.

Definition 4.16. A family Fα ∈ L → L′ (α ∈ O) is called lim inf-pullable if for all
G(−) ∈ O → L,

Fγ(lim infα→λ Gα) v lim infα→λFγ(Gα) for all γ ∈ O,
Fλ(lim infα→λ Gα) v lim infα→λFα(Gα) for all limits λ > 0.

Lemma 4.17. Let Fα ∈ ~L → L
+→ L be a family which is lim inf-pullable in all arguments.

Then,
(1) µβ(F(−)(−)) is a lim inf-pullable family,
(2) µ(lim infλ φ) = lim infα→λ µφ(α).

Theorem 4.18 (Lower semi-continuity of inductive types). Let Fα ∈ ~L → L
+→ L be a

family which is lim inf-pullable in all arguments and φ ∈ O
+→ O. Then

µ(lim infλ φ)(Fλ(lim inf
λ

~G)) v lim inf
α→λ

µφ(α)(Fα(~Gα)).

If φ is lower semi-continuous, then even

µφ(λ)(Fλ(lim inf
λ

~G)) v lim inf
α→λ

µφ(α)(Fα(~Gα)).

Putting together the conditions φ is required to be monotone and continuous in the
second statement of the theorem. Since φ is coming from a size expression in our case,
such a φ will either be the identity or a constant function. (The successor function is not
continuous!)

Using Thm. 4.18, we can establish lower semi-continuity of Listα(Natα).

5. Non Semi-Continuous Types

This section is devoted to show that our list of criteria for semi-continuity is somewhat
complete. Concretely, we demonstrate that there is no compositional scheme to establish
lower semi-continuity of function types or upper semi-continuity of inductive types.

5.1. Function space and lower semi-continuity. One may wonder whether Cor. 4.8 can
be dualized, i. e., does upper semi-continuity of A and lower semi-continuity of B entail lower
semi-continuity of C(α) = A(α) → B(α)? The answer is no, e. g., consider C(α) = Natω →
Natα. Although A(α) = Natω is trivially upper semi-continuous, and B(α) = Natα is lower
semi-continuous, C is not lower semi-continuous: For instance, the identity function is in
C(ω) but in no C(α) for α < ω, hence, also not in lim infω C. And indeed, if this C was lower
semi-continuous, then our criterion would be unsound, because then by Cor. 4.8 the type
(Natω → Natα) → Natω, which admits a looping function (see introduction), would be
upper semi-continuous.

Nevertheless, there are some lower semi-continuous function spaces, for instance, if the
domain is a finite type. For example, Bool → Natα is lower semi-continuous in α, which

22

implies that (Bool → Natα) → Natα could be admissible. This is the type of a maximum
function taking its two inputs in form of a function over booleans (Bool → Natα ∼= Natα ×
Natα). However, this example is somewhat contrived; it is not clear whether such cases
appear in practice, so we will not pursue this further here.

5.2. Inductive types and upper semi-continuity. Pareto [Par00] proves that inductive
types are (in our terminology) lim sup-pushable. His inductive types denote only finitely
branching trees, but we also consider infinite branching, arising from function space embed-
ded in inductive types. Such an infinitely branching type is the type of hungry functions
(which consumes one argument after the other):

Hungry : ord
+→ ∗ −→ ∗

Hungry := λıλA. µıλX.A → X.

We are interested in the special case of Hungryı(Natı). In the following we show that accept-
ing such a type as the result of recursion will lead to accepting a non-terminating program.
As a consequence, infinitely branching inductive data types, such as µıλX.Natı → X, do not
inherit upper semi-continuity from their defining body, here, Natı → X (recall that Natı is
lower semi-continuous, hence Natı → X is upper semi-continuous). But remember that in-
ductive types can still be upper semi-continuous, e. g., Hungryı(Nat∞) = µıλX.Nat∞ → X,
which is covariant in its size index.

Semantically, we set Hα = µαFα, where Fα(X) = (Natα → X)µ. Since

lim supα→λFα(G(α)) v ((lim infα→λNatα) → (lim supλ G))µ

= Fλ(lim supλ G),

the family Fα is lim sup pushable. If we had a result like

lim sup
α→λ

µφ(α)Fα v µlim supλ φ lim sup
λ

F ,

then H would be upper semi-continuous, and it would be legal to write the following recur-
sive function:

h : ∀ı. Natı → Hungryı(Natı)
h := fixµ

0λhλ . in (s ◦ h ◦ pred)

h (in) −→+ in (s ◦ h ◦ pred)
We will show that the existence of h destroys normalization. In the body of h we refer to
an auxiliary function s. As well as its inverse, p, it can be defined by induction on ı:

s : ∀ı∀.Hungryı(Nat) → Hungryı(Nat+1)
s := fixµ

0λsλh. in (s ◦ (outh) ◦ pred)

s (in f) −→+ in (s ◦ f ◦ pred)

p : ∀ı∀.Hungryı(Nat+1) → Hungryı(Nat)
p := fixµ

0λpλh. in (p ◦ (outh) ◦ succ)

p (in f) −→+ in (p ◦ f ◦ succ)

(Note that these definitions are perfectly acceptable and not to blame.) Another innocent
function is the following. Its type looks funny, since it produces something in the empty

23

type, but let us mind that Hungry, being an inductive type “with nothing to start induction,”
is also empty.

tr : ∀ı. Hungryı(Nat∞) → ∀A.A
tr := fixµ

0λtrλh. tr ((p ◦ (outh) ◦ succ) zero)

tr (in f) −→+ tr ((p ◦ f ◦ succ) zero)
Some calculation now shows that tr (h zero), the application of tr to the “bad guy” h, di-
verges:

tr (h zero) −→+ tr (in (s ◦ h ◦ pred))
−→+ tr ((p ◦ s ◦ h ◦ pred ◦ succ) zero) −→+

tr (p (s (h zero))) −→+ tr (p (s (in (s ◦ h ◦ pred)))))
−→+ tr (p (in (s2 ◦ h ◦ pred2)))
−→+ tr (in (p ◦ s2 ◦ h ◦ pred2 ◦ succ))
−→+ tr ((p2 ◦ s2 ◦ h ◦ pred2 ◦ succ2) zero) −→+

tr (p2 (s2 (h zero))) −→+ . . .

6. A Kinding System for Semi-Continuity

We turn the results of Section 4 into a calculus and define a judgement ∆;Π `ıq F : κ,
where ı is an ordinal variable with (ı : pord) ∈ ∆ for some p, the bit q ∈ {	,⊕} states
whether the constructor F under consideration is lower () or upper (⊕) semi-continuous,
and Π is a context of strictly positive constructor variables X :+κ′. We will prove (Thm. 6.2)
that the family F (ı) is lim sup-pushable in all X ∈ Π if q = ⊕ and lim inf-pullable if q = 	.

The complete listing of rules can be found in Figure 3; in the following, we discuss a
few.

cont-co
∆, ı :+ord ` F : κ p ∈ {+, ◦}

∆, ı :pord; Π `ı⊕ F : κ
If ı appears only positively in F , then F is trivially upper semi-continuous. However,
monotonicity does not imply lim sup-pushability, so no variables from Π may occur in F . In
the conclusion we may choose to set p = ◦, meaning that we forget that F is monotone in
ı. Rule cont-contra is analogous and rule cont-in states that a constant F is (trivially)
continuous.

cont-var
X :pκ ∈ ∆,Π p ≤ +

∆; Π `ıq X : κ
Rule cont-var can be used also for X = ι. It states that the identity is continuous and
both lim sup-pushable and lim inf-pullable.

Using the four rules discussed so far, we can derive semi-continuity properties of ordinal
expressions. Expressions like ∞ and sn (with 6= ı) which are constant in ι are trivially
continuous; so is the identity ι. Expressions of the form snı with n ≥ 1 are only upper
semi-continuous (rule cont-co), but not lower semi-continuous.

Now we discuss some rules to construct semi-continuous types and type constructors.

cont-arr
−∆; � `ı	 A : ∗ ∆; Π `ı⊕ B : ∗

∆; Π `ı⊕ A → B : ∗

24

Strictly positive contexts.
Π ::= � | Π, X :+κ∗

Semi-continuity ∆;Π `ıq F : κ for q ∈ {⊕,	}.

cont-co
∆, ı :+ord ` F : κ p ≤ +

∆, ı :pord; Π `ı⊕ F : κ
cont-contra

∆, ı :−ord ` F : κ p ≤ −
∆, ı :pord; Π `ı	 F : κ

cont-in
∆ ` F : κ

∆, ı :pord; Π `ıq F : κ
cont-var

X :pκ ∈ ∆,Π p ≤ +
∆; Π `ıq X : κ

cont-abs
∆, X :pκ; Π `ıq F : κ′

∆; Π `ıq λX :κ. F : pκ → κ′
X 6= ı

cont-app
∆, ı :p′ord; Π `ıq F : pκ → κ′ p−1∆ ` G : κ

∆, ı :p′ord; Π `ıq F G : κ′

cont-sum
∆; Π `ıq A : ∗ ∆; Π `ıq B : ∗

∆; Π `ıq A + B : ∗

cont-prod
∆; Π `ıq A : ∗ ∆; Π `ıq B : ∗

∆; Π `ıq A×B : ∗

cont-arr
−∆; � `ı	 A : ∗ ∆; Π `ı⊕ B : ∗

∆; Π `ı⊕ A → B : ∗
cont-∀ ∆; Π `ı⊕ F : ◦κ → ∗

∆; Π `ı⊕ ∀κF : ∗

cont-mu
∆; Π, X :+κ∗ `ı	 F : κ∗ ∆ ` a : ord

∆; Π `ı	 µa(λX :κ∗. F) : κ∗
a = ı or ı 6∈ FV(a)

cont-nu
∆; Π, X :+κ∗ `ı⊕ F : κ∗ ∆ ` a ord

∆; Π `ı⊕ νa(λX :κ∗. F) : κ∗

Pure ordinal expressions ∆ ` a ord .

ord-∞
∆ ` ∞ ord

ord-var
(ı :pord) ∈ ∆ p ≤ +

∆ ` ı ord
ord-s

∆ ` a ord
∆ ` s a ord

Figure 3: Fω̂: Semi-continuous constructors and recursion types.

This rule incarnates Thm. 4.7. Note that, because A is to the left of the arrow, the polarity
of all ordinary variables in A is reversed, and A may not contain strictly positive variables.

cont-nu
∆; Π, X :+κ∗ `ı⊕ F : κ∗ ∆ ` a ord

∆; Π `ı⊕ νa(λX :κ∗. F) : κ∗

Rule cont-nu states that strictly positive coinductive types are upper semi-continuous.
The ordinal a must be ∞ or sn for some :ord ∈ ∆ (which may also be identical to ı).

25

Lemma 6.1. Assume ∆ ` a ord and let θ ∈ J∆K, ı an ordinal variables, and

φ := (α 7→ JaKθ[ı7→α]) ∈ JordK → JordK.

Then for all limit ordinals λ ≥ ω, either lim infλ φ = φ(λ), or both sides are ≥ ω.

Proof. φ is either constant or affine (φ(α) = minα + n,>ord for some n ∈ N), and such φ
have the required property.

Theorem 6.2 (Soundness of Continuity Derivations). Assume ∆; ~X :+~κ `ıq F : κ. Let θ

a valuation of the variables in ∆ and set Fα(~G) = JF Kθ[ı7→α][~X 7→~G].

(1) If q = 	 then the family F is lim inf-pullable.
(2) If q = ⊕ then the family F is lim sup-pushable.

Proof. By induction on the continuity derivation. Some cases:

cont-nu
∆; ~X :~κ,X :+κ∗ `ı⊕ F : κ∗ ∆ ` a ord

∆; ~X :~κ `ı⊕ νa(λX :κ∗. F) : κ∗

Let Fα(~G)(H) = JF Kθ[ı7→α][~X 7→~G][X 7→H] and φ(α) = JaKθ[ı7→α]. By Lemma 6.1, φ is either
constant or affine, and by induction hypothesis, F is lim sup-pushable. Thus, we can apply
Thm. 4.15 to infer the goal.

cont-mu
∆; Π, X :+κ∗ `ı	 F : κ∗ ∆ ` a : ord

∆; Π `ı	 µa(λX :κ∗. F) : κ∗
a = ı or ı 6∈ FV(a)

φ(α) := JaKθ[ı7→α] is either constant or the identity, hence, it is monotone and continuous.
The goal follows from Thm. 4.18.

Now we are able to formulate the syntactical admissibility criterion for types of (co)re-
cursive functions.

Definition 6.3 (Syntactic admissibility).

Γ ` A fixµ
n-adm iff Γ, ı :◦ord ` A ı = ∀ ~X :~κ.B1 → · · · → Bn → µıF ~H → C : ∗

and Γ, ı :◦ord; � `ı⊕ ∀ ~X :~κ.B1..n → µıF ~H → C : ∗

Γ ` A fixν
n-adm iff Γ, ı :◦ord ` A ı = ∀ ~X :~κ.B1 → · · · → Bn → νıF ~H : ∗

and Γ, ı :◦ord; � `ı⊕ ∀ ~X :~κ.B1..n → νıF ~H : ∗

It is easy to check that admissible types fulfill the semantic criteria given at the end of
Section 3. We prove Assumption 3.5, restated as the following theorem.

Theorem 6.4 (Soundness of admissibility). If Γ ` A fix∇n-adm and θ(X) ∈ JκK for all
(X :κ) ∈ JΓK then A := JAKθ ∈ JordK → J∗K has the following properties:

(1) Shape: A(α) =
⋂

k∈K B1(k, α) → . . . → Bn(k, α) → B(k, α) for some K and some
B1, . . . ,Bn,B ∈ K × JordK → J∗K. In case ∇ = µ, B(k, α) = I(k, α)µ → C(k, α) for
some I, C. Otherwise, B(k, α) = C(k, α)ν for some C.

(2) Bottom-check: I(k, 0)µ = ⊥∗ in case ∇ = µ and C(k, 0)ν = >∗ in case ∇ = ν.
(3) Limit-check: infα<λA(α) ⊆ A(λ) for all limit ordinals λ ∈ JordK \ {0}.

Proof. Set K := Jκ1K× . . . JκmK with m := |~κ| and Bi(k, α) := JBiKθ[~X 7→k][ı7→α] for i = 1..n.
Further, let F(k)(α) := JF Kθ[~X 7→k][ı7→α] and Hj(k)(α) := JHjKθ[~X 7→k][ı7→α].

26

In case ∇ = µ, first let C(k, α) = JCKθ[~X 7→k][ı7→α]. Define ∅~p~κ→∗(~G) = ∅ and observe that

for any f ∈ JκK +→ JκK, µαfµ = (fµ)α(⊥κ) = ((f ◦ (−)µ)α(∅κ))µ. (Induction on α, using
∅µ = ⊥ and sup-continuity of (−)µ.) Thus, we can set

I(k, α) = (((F(k)(α) ◦ (−)µ)α(∅))(~H)

and have I(k, α)µ = JµıF ~HKθ[~X 7→k][ı7→α]. Properties (1) and (2) are hence satisfied. By
Thm. 6.2, the type A is upper semi-continuous which implies (3).

For case ∇ = ν, define (out · >~p~κ→∗)(~G) = out · >∗. Then (out · >)ν = >. Observe that
ναfν = (fν)α(>) = ((f ◦ (−)ν)α(out · >))ν and set

C(k, α) = (((F(k)(α) ◦ (−)ν)α(out · >))(~H).

Then C(k, α)ν = JνıF ~HKθ[~X 7→k][ı7→α]. Using Thm. 6.2, all three properties hold.

Example 6.5 (Inductive type inside coinductive type). Rule cont-nu allows the type
system to accept the following definition, which assigns an informative type to the stream
nats of all natural numbers in ascending order:

nats : ∀ı. Streamı Natı

nats := fixν
0λnats. 〈zero, mapStream succ nats〉

mapStream : ∀A∀B. (A → B) → ∀ı. StreamıA → StreamıB
mapStream := λffixν

1λmapsλs. in〈f (fst (out s)), maps (snd (out s))〉
The type of nats expresses that if you read the first n elements of the stream, these are
numbers < n. In particular, the ith element of nats is at most i − 1. This is the most
information a type of nats can carry in our type system.

Example 6.6 (Inductive type inside inductive type). In the following, we describe breadth-
first traversal of rose (finitely branching) trees whose termination is recognized by Fω̂.

Rose : ord
+→ ∗ +→ ∗

Rose := λıλA. GRoseı List∞A = λıλA. µı
∗λX.A× List∞X

The step function, defined by induction on , traverses a list of rose trees of height < ı + 1
and produces a list of the roots and a list of the branches (height < ı).

step : ∀∀A∀ı. List(Roseı+1 A) → List A× List∞(Roseı A)

step := fixµ
0λstepλl. match l with
nil 7→ 〈nil, nil〉
cons 〈a, rs ′〉 rs 7→ match step rs with

〈as, rs ′′〉 7→ 〈cons a as, append rs ′ rs ′′〉
Now, bf iterates step on a non-empty forest, which is represented by a single rose tree r
and a possibly empty list of rose trees rs. It is defined by induction on ı, the strict upper
bound of the tree heights.

bf : ∀ı∀A.Roseı A → List∞(Roseı A) → List∞A
bf := fixµ

0λbf λrλrs. match step (cons r rs) with
〈as, nil〉 7→ as
〈as, cons r′ rs ′〉 7→ append as (bf r′ rs ′)

Function bf terminates because the recursive-call trees in forest cons r′ rs ′ are smaller than
the input trees in forest cons r rs. This information is available to the type system through

27

the type of step. The type of bf is admissible for recursion since List∞ (Roseı A) is lower
semi-continuous in ı—thanks to Thm. 4.18 and rule cont-mu.

It is clear that admissibility is no way complete. One can find trivial examples of ter-
minating programs which are refused by the type system because they fail the admissibility
check. For instance, take the recursive identity function of type ∀ı. Natı → Natı and add an
unused argument of type Nat∞ → Natı:

loopnot : ∀ı. Natı → (Nat∞ → Natı) → Natı

loopnot 0 g = 0
loopnot (n + 1) g = 1 + loopnot n (shift g)

Its type is not upper semi-continuous, but of course loopnot is terminating.

7. Conclusions

We have motivated the importance of semi-continuity for the soundness of type-based
termination checking, explored the realm of semi-continuous functions from ordinals to se-
mantic types, and developed a calculus for semi-continuous types. We have seen a few
interesting examples involving semi-continuous types, many more can be found in the au-
thor’s thesis [Abe06b, Ch. 6]. These examples cannot be handled by type-based termination
à la Barthe et al. [BFG+04, BGP05], but our developments could be directly incorporated
into their calculus.

In previous work [Abe03], I have already presented a calculus for admissible recur-
sion types. But the language had neither polymorphism, higher-kinded types, nor semi-
continuous types inside each other (Streamı Natı). Hughes, Pareto, and Sabry [HPS96] have
also given criteria for admissible types similar to ours, but rather ad-hoc ones, not based
on the mathematical concept of semi-continuity. Also, a crucial difference is that we also
treat infinitely branching data structures. To be fair, I should say that their work has been
a major source of inspiration for me.

As a further direction of research, I propose to develop a kinding system where semi-
continuity is first class, i. e., one can abstract over semi-continuous constructors, and kind
arrows can carry the corresponding polarities 	 or ⊕. First attempts suggest that such a
calculus is not straightforward, and a more fine-grained polarity system will be necessary.
Important is also the study of semi-continuity properties of dependent types, in order to
apply these results to type-based termination in type-theoretic proof assistants.

7.1. Acknowledgments. I would like to thank my supervisor, Martin Hofmann, for dis-
cussions on Fω̂. Thanks to John Hughes for lending his ear in difficult phases of this work,
for instance, when I was trying to prove upper semi-continuity of inductive types but then
found the Hungry counterexample. Thanks to the anonymous referees of previous versions
of this paper who gave insightful and helpful comments.

References

[Abe03] Andreas Abel. Termination and guardedness checking with continuous types. In M. Hofmann,
editor, Typed Lambda Calculi and Applications (TLCA 2003), Valencia, Spain, volume 2701 of
Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, June 2003.

[Abe04] Andreas Abel. Termination checking with types. RAIRO – Theoretical Informatics and Applica-
tions, 38(4):277–319, 2004. Special Issue: Fixed Points in Computer Science (FICS’03).

28

[Abe06a] Andreas Abel. Polarized subtyping for sized types. In Dima Grigoriev, John Harrison, and Ed-
ward A. Hirsch, editors, Computer Science - Theory and Applications, First International Com-
puter Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Pro-
ceedings, volume 3967 of Lecture Notes in Computer Science, pages 381–392. Springer-Verlag,
2006.

[Abe06b] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis,
Ludwig-Maximilians-Universität München, 2006.

[Abe06c] Andreas Abel. Semi-continuous sized types and termination. In Zoltán Ésik, editor, Computer
Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL,
Szeged, Hungary, September 21-24, 2006, Proceedings, volume 4207 of Lecture Notes in Computer
Science, pages 72–88. Springer-Verlag, 2006.

[ACG98] Roberto M. Amadio and Solange Coupet-Grimal. Analysis of a guard condition in type theory
(extended abstract). In Maurice Nivat, editor, Foundations of Software Science and Computa-
tion Structure, First International Conference, FoSSaCS’98, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28
- April 4, 1998, Proceedings, volume 1378 of Lecture Notes in Computer Science, pages 48–62.
Springer-Verlag, 1998.

[Alt01] Thorsten Altenkirch. Representations of first order function types as terminal coalgebras. In
Typed Lambda Calculi and Applications, TLCA 2001, number 2044 in Lecture Notes in Computer
Science, pages 8 – 21. Springer-Verlag, 2001.

[AM04] Andreas Abel and Ralph Matthes. Fixed points of type constructors and primitive recursion. In
Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th International
Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 20-24,
2004, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages 190–204. Springer-
Verlag, 2004.

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using gener-
alized inductive types. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors, Computer Science
Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL, Madrid,
Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer Science,
pages 453–468. Springer-Verlag, 1999.

[BFG+04] Gilles Barthe, Maria J. Frade, Eduardo Giménez, Luis Pinto, and Tarmo Uustalu. Type-based
termination of recursive definitions. Mathematical Structures in Computer Science, 14(1):1–45,
2004.

[BGP05] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Practical inference for type-based
termination in a polymorphic setting. In Pawel Urzyczyn, editor, Typed Lambda Calculi and
Applications (TLCA 2005), Nara, Japan, volume 3461 of Lecture Notes in Computer Science,
pages 71–85. Springer-Verlag, 2005.

[Bla04] Frédéric Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite
systems. In Vincent van Oostrom, editor, Rewriting Techniques and Applications, 15th Interna-
tional Conference, RTA 2004, Aachen, Germany, June 3 – 5, 2004, Proceedings, volume 3091 of
Lecture Notes in Computer Science, pages 24–39. Springer-Verlag, 2004.

[Bla05] Frédéric Blanqui. Decidability of type-checking in the Calculus of Algebraic Constructions with
size annotations. In C.-H. Luke Ong, editor, Computer Science Logic, 19th International Work-
shop, CSL 2005, 14th Annual Conference of the EACSL, Oxford, UK, August 22-25, 2005, Pro-
ceedings, volume 3634 of Lecture Notes in Computer Science, pages 135–150. Springer-Verlag,
2005.

[BP99] Richard S. Bird and Ross Paterson. De Bruijn notation as a nested datatype. Journal of Func-
tional Programming, 9(1):77–91, 1999.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceedings of the fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’99), Paris, France, vol-
ume 34 of SIGPLAN Notices, pages 233–248. ACM Press, 1999.

[DC99] Dominic Duggan and Adriana Compagnoni. Subtyping for object type constructors, January
1999. Presented at FOOL 6.

[Gim98] Eduardo Giménez. Structural recursive definitions in type theory. In K. G. Larsen, S. Skyum,
and G. Winskel, editors, Automata, Languages and Programming, 25th International Colloquium,

29

ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture Notes in
Computer Science, pages 397–408. Springer-Verlag, 1998.

[Han02] Peter Hancock. The step to the next number class. http://www.dcs.ed.ac.uk/home/pgh/number-
classes.html, 2002.

[Hin00a] Ralf Hinze. Efficient generalized folds. In Johan Jeuring, editor, Proceedings of the Second Work-
shop on Generic Programming, WGP 2000, Ponte de Lima, Portugal, July 2000.

[Hin00b] Ralf Hinze. Generalizing generalized tries. Journal of Functional Programming, 10(4):327–351,
July 2000.

[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized
types. In 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’96, pages 410–423, 1996.

[Men87] Nax P. Mendler. Recursive types and type constraints in second-order lambda calculus. In Pro-
ceedings of the Second Annual IEEE Symposium on Logic in Computer Science, Ithaca, N.Y.,
pages 30–36. IEEE Computer Society Press, 1987.

[Par00] Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of Technology, 2000.
[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[PM92] Christine Paulin-Mohring. Inductive definitions in the system Coq—rules and properties. Tech-

nical report, Laboratoire de l’Informatique du Parallélisme, December 1992.
[Ste98] Martin Steffen. Polarized Higher-Order Subtyping. PhD thesis, Technische Fakultät, Universität

Erlangen, 1998.
[Vou04] Jérôme Vouillon. Subtyping union types. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,

Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture Notes
in Computer Science, pages 415–429. Springer-Verlag, 2004.

[Xi01] Hongwei Xi. Dependent types for program termination verification. In Proceedings of 16th IEEE
Symposium on Logic in Computer Science, Boston, USA, June 2001.

Appendix A. Complete Specification of Fω̂

The following figures display all constructs and rules of Fω̂.

30

Syntactic categories.

p ::= + | − | ◦ polarity
κ ::= ∗ | ord | pκ → κ′ kind
κ∗ ::= ∗ | pκ∗ → κ′∗ pure kind
a, b, A,B, F,G ::= C | X | λX :κ. F | F G (type) constructor
C ::= 1 | + | × | → | ∀κ | µκ∗ | νκ∗ | s | ∞ constructor constant
∆ ::= � | ∆, X :pκ polarized context

The signature Σ assigns kinds to constants (κ
p→ κ′ means pκ → κ′).

1 : ∗ unit type

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

µκ∗ : ord
+→ (κ∗

+→ κ∗)
+→ κ∗ inductive constructors

νκ∗ : ord
−→ (κ∗

+→ κ∗)
+→ κ∗ coinductive constructors

s : ord
+→ ord successor of ordinal

∞ : ord infinity ordinal

Notation.

∇ for µ or ν ∇a for ∇a

∀X :κ. A for ∀κ(λX :κ. A) ∀XA for ∀X :κ. A λXF for λX :κ. F

A + B for +A B A×B for ×A B A → B for →A B

Ordering and composition of polarities.

p ≤ p ◦ ≤ p +p = p −− = + ◦p = ◦ pp′ = p′p

Inverse application of a polarity to a context.

p−1� = �
+−1∆ = ∆
−−1(∆, X :pκ) = (−−1∆), X : (−p)κ

◦−1(∆, X :◦κ) = (◦−1∆), X :◦κ
◦−1(∆, X :+κ) = ◦−1∆
◦−1(∆, X :−κ) = ◦−1∆

Kinding ∆ ` F : κ.

kind-c
C :κ ∈ Σ
∆ ` C : κ

kind-var
X :pκ ∈ ∆ p ≤ +

∆ ` X : κ

kind-abs
∆, X :pκ ` F : κ′

∆ ` λX :κ. F : pκ → κ′
kind-app

∆ ` F : pκ → κ′ p−1∆ ` G : κ

∆ ` F G : κ′

Figure 4: Fω̂: Kinds and constructors.

31

Constructor equality ∆ ` F = F ′ : κ.

eq-∞
∆ ` s∞ = ∞ : ord

eq-β
∆, X :pκ ` F : κ′ p−1∆ ` G : κ

∆ ` (λX :κ. F) G = [G/X]F : κ′
eq-η

∆ ` F : pκ → κ′

∆ ` (λX :κ. F X) = F : pκ → κ′

eq-var
X :pκ ∈ ∆ p ≤ +

∆ ` X = X : κ
eq-λ

∆, X :pκ ` F = F ′ : κ′

∆ ` λX :κ. F = λX :κ. F ′ : pκ → κ′

eq-c
C :κ ∈ Σ

∆ ` C = C : κ
eq-app

∆ ` F = F ′ : pκ → κ′ p−1∆ ` G = G′ : κ

∆ ` F G = F ′G′ : κ′

eq-sym
∆ ` F = F ′ : κ

∆ ` F ′ = F : κ
eq-trans

∆ ` F1 = F2 : κ ∆ ` F2 = F3 : κ

∆ ` F1 = F3 : κ

Constructor subtyping ∆ ` F ≤ F ′ : κ.

leq-s-r
∆ ` a : ord

∆ ` a ≤ s a : ord
leq-∞ ∆ ` a : ord

∆ ` a ≤ ∞ : ord

leq-λ
∆, X :pκ ` F ≤ F ′ : κ′

∆ ` λX :κ. F ≤ λX :κ. F ′ : pκ → κ′

leq-app
∆ ` F ≤ F ′ : pκ → κ′ p−1∆ ` G : κ

∆ ` F G ≤ F ′G : κ′

leq-app+
∆ ` F : +κ → κ′ ∆ ` G ≤ G′ : κ

∆ ` F G ≤ F G′ : κ′

leq-app− ∆ ` F : −κ → κ′ −−1∆ ` G′ ≤ G : κ

∆ ` F G ≤ F G′ : κ′

leq-refl
∆ ` F = F ′ : κ

∆ ` F ≤ F ′ : κ
leq-trans

∆ ` F1 ≤ F2 : κ ∆ ` F2 ≤ F3 : κ

∆ ` F1 ≤ F3 : κ

leq-antisym
∆ ` F ≤ F ′ : κ ∆ ` F ′ ≤ F : κ

∆ ` F = F ′ : κ

Figure 5: Fω̂: Constructor equality and subtyping.

32

Syntactic categories.

r, s, t ::= c | x | λxt | r s term
c ::= 〈〉 | pair | fst | snd | inl | inr | case | in | out | fixµ

n | fixν
n constant (n ∈ N)

v ::= λxt | 〈〉 | pair t1 t2 | inl t | inr t | in t | c | pair t | fix∇ns t1..m value (m < n)
e() ::= s | fst | snd | case | out | fixµ

n s t1..n evaluation frame
E() ::= e1(. . . en() . . .) eval. cxt.(n ≥ 0)
Γ ::= � | Γ, x :A | Γ, X :pκ typing context

Notation:
〈r, s〉 for pair r s t1..n for t1 t2 . . . tn.

Reduction t −→ t′.

(λxt) s −→ [s/x]t
fst 〈r, s〉 −→ r
snd 〈r, s〉 −→ s
case (inl r) −→ λxλy. x r
case (inr r) −→ λxλy. y r

out (in r) −→ r
fixµ

n s t1..n (in t) −→ s (fixµ
n s) t1..n (in t)

out (fixν
n s t1..n) −→ out (s (fixν

n s) t1..n)

[s/x]t −→ [s′/x]t if s −→ s′

The signature Σ contains types for some constants:

pair : ∀A∀B. A → B → A×B
fst : ∀A∀B. A×B → A
snd : ∀A∀B. A×B → B

〈〉 : 1
inl : ∀A∀B. A → A + B
inr : ∀A∀B. B → A + B

case : ∀A∀B∀C. A + B → (A → C) → (B → C) → C

in : ∀F :κ +→ κ.∀G1 :κ1
∗ . . .∀Gn :κn

∗ .∀ı :ord. F (∇ı
κF) ~G → ∇ı+1

κ F ~G

out : ∀F :κ +→ κ.∀G1 :κ1
∗ . . .∀Gn :κn

∗ .∀ı :ord.∇ı+1
κ F ~G → F (∇ı

κF) ~G

(∇ ∈ {µ, ν}, κ = ~κ∗
~p→ ∗)

Well-formed typing contexts.

cxt-empty
� cxt

cxt-tyvar
Γ cxt

Γ, X :◦κ cxt
cxt-var

Γ cxt Γ ` A : ∗
Γ, x :A cxt

Typing Γ ` t : A.

ty-c
(c :A) ∈ Σ
Γ ` c : A

ty-var
(x :A) ∈ Γ Γ cxt

Γ ` x : A
ty-abs

Γ, x :A ` t : B

Γ ` λxt : A → B

ty-app
Γ ` r : A → B Γ ` s : A

Γ ` r s : B
ty-sub

Γ ` t : A Γ ` A ≤ B : ∗
Γ ` t : B

ty-gen
Γ, X :◦κ ` t : F X

Γ ` t : ∀κF
ty-inst

Γ ` t : ∀κ F Γ ` G : κ

Γ ` t : F G

ty-rec
Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı :ord. A ı → A (ı + 1)) → A a

Figure 6: Fω̂: Terms, reduction and typing.
33

