
Connecting a Logical Framework to a
First-Order Logic Prover (Extended Version)?

Andreas Abel, Thierry Coquand, and Ulf Norell

Department of Computing Science, Chalmers University of Technology
{abel,coquand,ulfn}@cs.chalmers.se

Abstract. We present one way of combining a logical framework and
first-order logic. The logical framework is used as an interface to a first-
order theorem prover. Its main purpose is to keep track of the structure
of the proof and to deal with the high level steps, for instance, induction.
The steps that involve purely propositional or simple first-order reasoning
are left to a first-order resolution prover (the system Gandalf in our
prototype). The correctness of this interaction is based on a general meta-
theoretic result. One feature is the simplicity of our translation between
the logical framework and first-order logic, which uses implicit typing.
Implementation and case studies are described.

Introduction

We work towards human-readable and machine-verifiable proof documents for
mathematics and computer science. As argued by de Bruijn [dB80], dependent
type theory offers an ideal formal system for representing reasoning steps, such
as introducing parameters or hypotheses, naming constants or lemmas, using
a lemma or a hypothesis. Type theory provides explicit notations for these
proof steps, with good logical properties. Using tools like Coq [BC04], Epigram
[AMM05], or Agda [CC99] these steps can be performed interactively. But low
level reasoning steps, such as simple propositional reasoning, or equality reason-
ing, substituting equals for equals, are tedious if performed in a purely interactive
way. Furthermore, propositional provers, and even first-order logic (FOL) provers
are now very efficient. It is thus natural to create interfaces between logical frame-
works and automatic propositional or first-order provers [BHdN02,ST95,MP04].
But, in order to arrive at proof documents which are still readable, only trivial
proof steps should be handled by the automatic prover. Since different readers
might have different notions of trivial, the automatic prover should not be a
black box. With some effort by the human, the output of the prover should be
understandable.

In this paper, we are exploring connections between a logical framework
MLFProp based on type theory and resolution-based theorem provers. One prob-

? Research supported by the coordination action TYPES (510996) and thematic net-
work Applied Semantics II (IST-2001-38957) of the European Union and the project
Cover of the Swedish Foundation of Strategic Research (SSF).



lem in such an interaction is that resolution proofs are hard to read and under-
stand in general. Indeed, resolution proof systems work with formulæ in clause
normal form, where clauses are (the universal closures of) disjunctions of literals,
a literal being an atom or a negated atom. The system translates the negation of
the statement to be proved to clause form, using skolemisation and disjunctive
normal form. It then generates new clauses using resolution and paramodula-
tion, trying to derive a contradiction. If successful, the system does pruning on
the (typically high number of) generated clauses and outputs only the relevant
ones.1

We lose the structure of the initial problem when doing skolemisation and
clausification. Typically, a problem such as

∀x.∃y.∀z.R(x, y) ⇒ R(x, z) (1)

is negated and translated into the two contradictory unit clauses

∀y. R(a, y), ∀y.¬R(a, f(y)), (2)

but the connection between the statement (1) and the refutation of (2) is not so
intuitive.

We do not solve this problem here, but we point out that, if we restrict our-
selves to implicitely universally quantified propositional formulæ, in the following
called open formulæ, this problem does not arise. Furthermore, when we restrict
to this fragment, we can use the idea of implicit typing [Bee05,WM89]. In this
way, the translation from framework types to FOL formulæ is particularly simple.
Technically, this is reflected by a general meta-theorem which ensures that we
can lift a first-order resolution proof to a framework derivation. If we restrict the
class of formulæ further to so-called geometrical open formulæ [CLR01,BC03],
then the translation to clausal form is transparent. Indeed, any resolution proof
for this fragment is intuitionistically valid and can be interpreted as it is in type
theory. This meta-theorem is also the theoretical justification for our interface
between MLFProp and a resolution-based proof system.

We have implemented a prototype version of a type system in Haskell, with a
connection to the resolution prover Gandalf [Tam97]. By restricting ourselves to
open formulæ we sacrifice proof strength, but preliminary experiments show that
the restriction is less severe than it may seem at first since the steps involving
quantification are well handled at the framework level. Also, the proof traces
produced by Gandalf are often readable (and surprisingly clever in some cases).

We think that we can represent Leslie Lamport proof style [Lam93] rather
faithfully in this system. The high level steps such as introduction of hypotheses,
case analysis, induction steps are handled at the framework level, and only the
trivial steps are sent to the FOL automatic prover.

One can think also of other plug-in extensions, e.g., rewriting systems and
computer algebra systems. We have experimented with a QuickCheck [CH00]
1 If the search is not successful, it is quite hard to get any relevant information from

the clauses that are generated. We have not yet analyzed the problem of getting
useful feedback in this case.

2



plug-in, that allows random testing of some propositions. In general, each plug-
in extension of our logical framework should be justified in the same way as
the one we present in this paper: we prove a conservativity result which ensures
that the use of this plug-in can be, if desired, replaced by a direct proof in
the framework. This way of combining various systems works in practice, as
suggested by preliminary experiments, and it is theoretically well-founded.

This paper is organized as follows. We first describe the logical framework
MLFProp. We then present the translation from some LF types to FOL formulæ.
The main technical result is then a theorem that shows that any resolution and
paramodulation step, with one restriction, can be lifted to the framework level.
Finally, we present some examples and extensions, and a discussion of related
work.

1 The Logical Framework MLFProp

This section presents an extension of Martin-Löf’s logical framework [NPS00] by
propositions and local definitions.

Expressions (terms and types). We assume countable sets of variables Var and
constants Const. Furthermore, we have a finite number of built-in constants to
construct the primitives of our type language. A priori, we do not distinguish
between terms and types. The syntactic entities of MLFProp are given by the
following grammar.

Var 3 x, y, z variables
Const 3 c, f, p constants
BuiltIn 3 ĉ ::= Fun | El | Set | () | Prf | Prop built-in constants
Exp 3 r, s, P,Q ::= ĉ | c | x | λxr | r s | let x :T =r in s expressions
Ty 3 T,U ::= Set | El s | Prop | Prf P | Fun T (λxU) types
Cxt 3 Γ ::= � | Γ, x :T typing contexts
Sig 3 Σ ::= � | Σ, c :T | Σ, c :T =r signatures

We identify terms and types up to α-conversion and adopt the convention that
in contexts Γ , all variables must be distinct; hence, the context extension Γ, x :T
presupposes (x :U) 6∈ Γ for any U . Similarly, a constant c may not be declared in
a signature twice. We abbreviate a sequence of context entries x1 :T, . . . , xn :T
of the same type by x1, . . . , xm : T . Multiple application r s1 . . . sn is expressed
as r s. (Capture-avoiding) substitution of r for x in s is written as s[r/x], or s[r]
if x is clear from the context of discourse.

For dependent function types Fun T (λxU) we introduce the notation (x :
T ) → U . Curried functions spaces (x1 :T1) → . . . (xk :Tk) → U are shortened to
(x1 :T1, . . . , xk :Tk) → U , which explains the notation (Γ ) → U . Non-dependent
functions ( :T ) → U are written T → U . The inhabitants of Set are type codes;
El maps type codes to types. E. g., (a : Set) → El a → El a is the type of the
polymorphic identity λaλxx. Similarly Prop contains formal propositions P and
Prf P proofs of P .

3



Types of the shape (Γ ) → Prf P are called proof types. A context Γ := x1 :
T1, . . . , xn : Tn is a set context if and only if all Ti are of the form (∆) → El S.
In particular, if P : Prop, then the proof type (Γ ) → Prf P corresponds to a
universal first-order formula ∀x1 . . .∀xnP with quantifier-free kernel P .

Judgements. The type theory MLFProp is presented via five judgements, which
are all relative to a (user-defined) signature Σ.

Γ `Σ Γ is a well-formed context
Γ `Σ T T is a well-formed type
Γ `Σ r : T r has type T
Γ `Σ T = T ′ T and T ′ are equal types
Γ `Σ r = r′ : T r and r′ are equal terms of type T

All five judgements are defined simultaneously. Since the signature remains fixed
in all judgements we will omit it. In this article, we only spell out the typing
rules (see appendix). Judgmental type and term equality are generated from
expansion of signature definitions as well as from β-, η-, and let-equality, the
latter of which is given by (let x :T = r in s) = s[r/x]. The rules for equality are
similar to the ones of MLFΣ [AC05], and type-checking of normal terms with
local definitions is decidable.

Natural deduction. We assume a signature Σnd (see appendix) which assumes the
infix logical connectives op ::= ∧,∨,⇒, plus the defined ones, ¬ and ⇔. Further-
more, it contains a set PredSym of basic predicate symbols p of type (Γ ) → Prop
where Γ is a (possibly empty) set context. Currently we only assume truth >, ab-
surdity ⊥, and typed equality Id, but user defined signatures can extend PredSym
by their own symbols. For each logical constructs, there are appropriate proof
rules, e. g., a constant impI : (P,Q :Prop) → (Prf P → Prf Q) → Prf (P ⇒ Q).

First-order logic assumes that every set is non-empty, and our use of a first-
order prover is only sound under this assumption. Hence, we add a special con-
stant ε : (D :Set) → El D to Σnd which enforces this fact. Notice that this implies
that all set contexts are inhabited2.

Classical reasoning can be performed in the signature Σclass, which we define
as the extension of Σnd by EM : (P : Prop) → Prf (P ∨ ¬P ), the law of the
excluded middle.

The fol rule. This article investigates conditions under which the addition
of the following rule is conservative over MLFProp + Σnd and MLFProp + Σclass,
respectively.

fol
Γ ` T

Γ ` () : T
Γ `FOL T

2 Semantically, it may be fruitful to think of terms of type Set as inhabited Partial
Equivalence Relations, while terms of type Prop are PERs with at most one inhabi-
tant.

4



The side condition Γ `FOL T expresses that T is a proof type and that the first-
order prover can deduce the truth of the corresponding first-order formula from
the assumptions in Γ . It ensures that only tautologies have proofs in MLFProp,
but it is not considered part of the type checking. Meta-theoretical properties
of MLFProp like decidability of equality and type-checking hold independently of
this side condition.

Conservativity fails if we have to compare proof objects during type-checking.
This is because the rule fol produces a single proof object for all (true) propo-
sitions, whereas upon removal of fol the hole has to be filled with specific proof
object. Hence two equal objects which each depend on a proof generated by fol
could become inequal after replacing fol. To avoid this, it is sufficient to restrict
function spaces (x :T ) → U : if T is a proof type, then also U .

In the remainder of the paper, we use LF as a synonym for MLFProp.

2 Translation from MLFProp to FOL

We shall define a partial translation from some LF types to FOL propositions.
We translate only types of the form

(x1 :T1, . . . , xk :Tk) → Prf (P (x1, . . . , xk)),

and these are translated to open formulæ [P (x1, . . . , xk)] of first-order logic. All
the variables x1, . . . , xk are considered universally quantified. For instance,

(x :El N) → Prf (Id N x x ∧ Id N x (add 0 x))

will be translated to x = x ∧ x = add 0 x. If we have a theory of lattices, that
is, we have added

D : Set
sup : El D → El D → El D
≤ : El D → El D → Prop

to the current signature, then (x, y : El D) → Prf (sup x y ≤ x ⇔ y ≤ x) would
be translated to sup x y ≤ y ⇔ y ≤ x.

The translation is done at a syntactical level, without using types. We will
demonstrate that we can lift a resolution proof of a translated formula to a LF
derivation in the signature Σclass (or in Σnd, in some cases).

2.1 Formal Description of the Translation

We translate normal expressions, which means that all definitions have been un-
folded and all redexes reduced. Three classes of normal MLFProp-expressions are
introduced: (formal) first-order terms and (formal) first-order formulæ, which
are quantifier free formulæ over atoms possibly containing free term variables,

5



and translatable formulæ, which are first-order formulæ prefixed by quantifica-
tion over set elements.

t, u ::= x | f t first-order terms
A,B ::= p t | IdS t1 t2 atoms
W ::= A | W op W ′ first-order formulæ
φ ::= (∆) → Prf W translatable formulæ (∆ set context)

Proper terms are those which are not just variables. For the conservativity result
the following fact about proper terms will be important: In a well-typed proper
term, the types of its variables are uniquely determined. For this reason, a formal
first-order term t may neither contain a binder (λ or let) nor a variable which is
applied to something, for instance, xu.

An example of a first-order formula is Wex := IdD x (f y) ⇒ (Less x (f y) ⇒
⊥), which is well-typed in the extension D : Set, f : El D → El D, Less : El D →
El D → Prop of signature Σnd.

On the FOL side, we consider a language with equality (=), one binary func-
tion symbol app and one constant for each constant introduced in the logical
framework. Having an explicit “app” allows partial application of function sym-
bols.

Let ∆ = x1 :T1, . . . , xn :Tn be a set context. A type of the form

φ := (∆) → Prf W

is translated into a universal formula [φ] = ∀x1 . . .∀xn[W ]. The translation [W ]
of first-order formulæ and the translation 〈t〉 of first-order terms depends on ∆
and is defined recursively as follows:

[W1 op W2] := [W1] op [W2] logical connectives
[IdS t1 t2] := 〈t1〉 = 〈t2〉 equality
[p t1 . . . tn] := p(〈t1〉, . . . , 〈tn〉) predicates, including >,⊥
〈xi〉 := xi variables in ∆
〈x〉 := cx variables not in ∆
〈c〉 := c 0-ary functions
〈f t1 . . . tn〉 := f(〈t1〉, . . . , 〈tn〉) n-ary functions

where we write f(t1, . . . , tn) for app(. . . app(app(f, t1), t2), . . . , tn). Note that the
translation is purely syntactical, and does not use type information. It is even
homomorphic with two exceptions: (a) the typed equality of MLFProp is translated
into the untyped equality of FOL, and (b) variables bound outside φ have to be
translated as constants.

For instance, the formula (y :El D) → Wex is translated as ∀y. cx = f(y) ⇒
(Less(cx, f(y)) ⇒ ⊥). Examples of types that cannot be translated are

(x :Prop) → Prf x, Prf (F (λxx)), (y : El D → El D) → Prf (P (y x)).

We shall also use the class of geometrical formulæ, given by the following
grammar:

G ::= H | H → G | G ∧G geometrical formula
H ::= A | H ∧H | H ∨H positive formula

6



The above example Wex is geometrical. As we will show, (classical) first-order
proofs of geometrical formulæ can be mapped to intuitionistic proofs in the
logical framework with Σnd.

2.2 Resolution Calculus

It will be convenient to use the following non-standard presentation of the reso-
lution calculus [Rob65]. A clause C is an open first-order formula of the form

A1 ∧ · · · ∧An ⇒ B1 ∨ · · · ∨Bm

where we can have n = 0 or m = 0 and Ai and Bj are atomic formulæ. Following
Gentzen [Gen35], we write such a clause on the form

A1, . . . , An ⇒ B1, . . . , Bm,

that is, X ⇒ Y , where X and Y are finite sets of atomic formulæ. An empty X
is interpreted as truth, an empty Y as absurdity.

Resolution is forward reasoning. Figure 1 lists the rules for extending the
current set of derived clauses: if all clauses mentioned in the premise of a rule
are present, this rule can fire and the clause of the conclusion is added to the
clause set.

ax
A ⇒ A

sub
X ′ ⊇ X X ⇒ Y Y ⊆ Y ′

X ′ ⇒ Y ′

res
X1 ⇒ Z1, Y1 X2, Z2 ⇒ Y2

(X1, X2 ⇒ Y1, Y2)σ
σ = mgu(Z1, Z2)

refl · ⇒ x = x
para

X1 ⇒ t = u, Y1 X2[t′] ⇒ Y2[t′]

(X1, X2[u] ⇒ Y1, Y2[u])σ
σ = mgu(t, t′)

Fig. 1. Resolution calculus.

In our formulation, all rules are intuitionistically valid3, and can be justified
in MLFProp + Σnd. It can be shown, classically, that these rules are complete in
the following sense: if a clause is a semantical consequence of other clauses then
it is possible to derive it using the resolution calculus. Hence, any proof in FOL
can be performed with resolution4.

3 In the standard formulation, the ax rule would read ¬A ∨A—the excluded middle.
4 To deal with existential quantification we also need skolemisation.

7



It can be pointed out that the sub rule is only necessary at the very end—
any resolution proof can be normalized to a proof that only uses sub in the final
step.

Let the restricted paramodulation rule denote the version of para where both
t and t′ are proper terms (not variables).

2.3 Proof of Correctness

In this section, we show that every FOL proof of a translated formula [φ] can
be lifted to a proof in MLFProp + Σclass, provided the resolution proof confines
to restricted paramodulation. This is not trivial because FOL is untyped and
MLFProp is typed, and our translation forgets the types. The crucial insight is
that every resolution step preserves well-typedness.

Fix a signature Σ. A first-order term t is well-typed iff there exists a context
∆, giving types to the variables x1, . . . , xn of t, such that in the given signature,
∆ ` t : T for some type T . For example, in the signature

D : Set f : El D → El D
F : El D → Prop g : (x :El D) → Prf (F x)

the proper first-order terms f x, F y, and g z are well-typed, but F x y is not.
Notice that if a proper FOL term is well-typed, then there is only one way to
assign types to its variables.

Lemma 1. If two proper first-order terms t1, t2 over disjoint variables are well-
typed and unifiable, then the most general unifier mgu(t1, t2) is well-typed.

For instance, add x 0 and add (S y) z are unifiable and well-typed and the
most general unifier {x7→S y, z 7→0} is well-typed. The lemma is proven in the
appendix.

Using this lemma, we can lift any FOL resolution step to an LF resolution
step. The same holds for any restricted paramodulation step, which justifies the
translation of Id S t u as 〈t〉 = 〈u〉 in FOL, Indeed, in the paramodulation step
between X1 ⇒ t = u, Y1 and X2[t′] ⇒ Y2[t′] we unify t and t′ and for Lemma 1
to be applicable both t and t′ have to be proper terms. Similar arguments have
been put forth by Beeson [Bee05] and Wick and McCune [WM89].

A clausal type is a formula which translates to a clause.

Lemma 2. If two FOL clausal types (Γ1) → Prf (W1) and (Γ2) → Prf (W2) are
derivable, and C is a resolution of [W1] and [W2] then there exists a context Γ
and a derivable (Γ ) → Prf W such that C = [W ]. The same holds if C is derived
from [W1] and [W2] by restricted paramodulation. Furthermore in both cases, Γ
is a set context if both Γ1 and Γ2 are set contexts.

In the next theorems, φ, φ1, . . . , φk are translatable formulæ of the form
(Γ ) → Prf W where Γ is a set context.

The following theorem is a consequence of Lemma 2, since an open formula
is (classically) equivalent to a conjunction of clauses.

8



Theorem 3. If we can derive [φ] from [φ1], . . . , [φk] by resolution and restricted
paramodulation then φ is derivable from φ1, . . . , φk in any extension of the sig-
nature Σclass.

A resolution proof, as we have presented it, is intuitionistically valid. The only
step which may not be intuitionistically valid is when we express the equivalence
between an open formula and a conjunction of clauses. For instance the open
formula ¬P∨Q is not intuitionistically equivalent to the clause P ⇒ Q in general.
This problem does not occur if we start with geometrical formulæ [BC03].

Theorem 4. If we can derive [φ] from [φ1], . . . , [φk] by resolution and restricted
paramodulation and φ, φ1, . . . , φk are geometric formulæ, then φ is derivable from
φ1, . . . , φk in any extension of the signature Σnd.

It is important for the theorem that all set contexts are inhabited: if D : Set
and P : Prop (with x not free in P ), then both

φ1 = (x :El D) → Prf P and φ2 = Prf P

are translated to the same FOL proposition [φ1] = [φ2] = P but we can derive
φ2 from φ1 in Σnd, D : Set, P : Prop only because El D is inhabited.

As noticed above, if we allow paramodulation from a variable, we could derive
clauses that are not well-typed. For instance, in the signature

N1 : Set, 0 : El N1, h : (x : El N1) → Prf (Id N1 x 0), A : Set, a : El A

the type of h becomes x = 0 in FOL and from this we could derive, by paramod-
ulation from the variable x, a = 0 which is not well-typed. This problem is also
discussed in [Bee05,WM89] and the solution is simply to forbid the FOL prover
to use paramodulation from a variable5.

We can now state the conservativity theorem.

Theorem 5. If a type is inhabited in the system MLFProp + fol + Σclass then it
is inhabited in MLFProp + Σclass.

Proof. By induction on the typing derivation, using Thm. 3 for fol derivations.

2.4 Simple Examples

Figure 2 shows an extension of Σnd by natural numbers, induction and an ad-
dition function defined by recursion on the second argument. Now consider
the goal (x : El N) → Id N (add 0 x) x. Using the induction schema and the
propositional proof rules, we can give the proof term

indN (λx. Id N (add 0 x) x) () (λa. impI (λih ()))
5 This is possible in Otter. In Gandalf, this could be checked from the trace. Paramod-

ulation from a variable is highly non-deterministic. For efficiency reasons, it was not
present in some version of Gandalf, but it was added later for completeness. In the
examples we have tried, this restriction is not a problem.

9



N : Set natural numbers

0 : El N zero
S : El N → El N successor

indN : (P :El N → Prop) → P 0
→ ((x :El N) → P x ⇒ P (S x))
→ (n :El N) → P n induction

add : El N → El N → El N addition

add0 : (x :El N) → Id N (add x 0) x axiom 1 of add
addS : (x, y :El N) → Id N (add x (S y)) (S (add x y)) axiom 2 of add

Fig. 2. A Signature of Natural Numbers and Addition.

in the logical framework, which contains these two FOL goals:

`FOL Id N (add 0 0) 0
a :El N, ih : Id N (add 0 a) a `FOL Id N (add 0 (S a)) (S a)

Both goals can be handled by the FOL prover. The first goal becomes add 0 0 = 0
and is proved from add x 0 = x, the translation of axiom add0. The second goal
becomes add 0 (S a) = S a. This is a first-order consequence of the translated
induction hypothesis add 0 a = a and add x (S y) = S (add x y), the translation
of axiom addS.

This example, though very simple, is a good illustration of the interaction
between LF and FOL: the framework is used to handle the induction step and
in the second goal, the introduction of the parameter a and the induction hy-
pothesis.

Here is another simple example which illustrates that we can call the FOL
prover even in a context involving non first-order operations. This example comes
from a correctness proof of Warshall’s algorithm. Let D : Set.

F : El D → (El D → El D → Prop) → El D → El D → Prop
F aR x y = R xy ∨ (R xa ∧R ay)

swap : (a, b, x, y : El D) → Prf (F a (F bR)x y ⇔ F b (F aR) x y)

The operation F is a higher-order operation. However, in the context R : El D →
El D → Prop, the goal swap can be handled by the FOL prover. The normal
form of F a (F bR) x y ⇔ F b (F aR)x y, where all defined constants (here only
F ) have been unfolded, is a translatable formula.

3 Implementation

To try out the ideas described in this paper we have implemented a prototype
type checker in Haskell. In addition to the logical framework, the type checker

10



supports implicit arguments and the extensions described in Section 6: sigma
types, datatypes and definitions by pattern matching.

3.1 Implicit Arguments

A problem with LF as presented here is its rather heavy notation. For instance,
to state that function composition is associative one would give the signature in
Figure 3. This is very close to being completely illegible due to the fact that

comp : (A, B, C : Set) → (El B → El C) → (El A → El B) → (El A → El C)
comp A B C f g = λx. f (g x)

assoc : (A, B, C, D : Set) →
(f : El C → El D, g : El B → El C, h : El A → El B) →
Prf (Id (El A → El D) (comp A C D f (comp A B C g h))

(comp A B D (comp B C D f g) h))

Fig. 3. Associativity without Implicit Arguments.

we have to be explicit about the type arguments to the composition function.
To solve the problem, we have implemented a mechanism for implicit arguments
which allows the omission of arguments that can be inferred automatically. Using
this mechanism the associativity example can be written as follows:

(◦)(A,B,C : Set) : (El B → El C) → (El A → El B) → (El A → El C)
f ◦ g = λx. f (g x)

assoc (A,B,C, D : Set) :
(f : El C → El D, g : El B → El C, h : El A → El B) →
Prf (f ◦ (g ◦ h) == (f ◦ g) ◦ h)

In general, we write x (∆) : T to say that x has type (∆) → T with (∆)
implicit. The scope of the variables in ∆ extends to the definition of x (if there
is one). For every use of x we require that the instantiation of (∆) can be inferred
using pattern unification [Mil92]. Note that when we have implicit arguments
we can replace Id with an infix operator (==) (D : Set) : El D → El D → Prop

We conjecture that the conservativity result can be extended to allow the
omission of implicit arguments when translating to first-order logic if they can
be inferred from the resulting first-order term. In this case we preserve the prop-
erty that for a well-typed FOL term there exists a unique typing, which is an
important lemma in the conservativity theorem. The kind of implicit arguments

11



we work with can most often be inferred in this way. It is doubtful, however, that
it would work for other kinds of implicit arguments such as implicit dictionaries
used for overloading.

Omitting the implicit arguments, the formula f ◦ (g ◦ h) = (f ◦ g) ◦ h in the
context A,B,C, D : Set, f : El C → El D, g : El B → El C, h : El A → El B is
translated to

f ◦ (g ◦ h) = (f ◦ g) ◦ h

With this translation, the first-order proofs are human readable and, in many
cases, correspond closely to a pen and paper proof.

3.2 The Plug-in Mechanism

The type checker is equipped with a general plug-in interface that makes it easy
to experiment with connections to external tools. A plug-in should implement
two functions: a type checking function which can be called on particular goals
in the program, and a finalization function which is called after type checking.

To control where the type checking function of a plug-in is invoked we intro-
duce a new form of expressions:

Exp ::= . . . | name−plugin(s1, . . . , sn) invoking a plug-in

where name is the name of a plug-in. It is possible to pass arguments (s1, . . . , sn)
to the plug-in. These arguments can be arbitrary expressions which are ignored
by the type checker. Hence it is possible to pass ill-typed terms as arguments to
a plug-in; it is the responsibility of the plug-in to interpret the arguments. Most
plug-ins, of course, expect well-typed arguments and in this case, the plug-in has
to invoke the type checker explicitly on its arguments.

3.3 The FOL Plug-in

The connection between LF and FOL has been implemented as a plug-in using
the mechanism described above. With this implementation we replace the built-
in constant () by a call to the plug-in. The idea is that the plug-in should be
responsible for checking the side condition Γ `FOL P in the fol rule.

An important observation is that decidability of type checking and equality
do not depend on the validity of the propositions being checked by the FOL
plug-in—nothing will break if the type checker is led to believe that there is an
s : Prf⊥. This allows us to delay all first-order reasoning until after type checking.
The rationale for doing this is that type checking is cheap and first-order proving
is expensive.

Another observation is that it is not feasible to pass the entire context to
the prover. Typically, the context contains lots of things that are not needed for
the proof, but would rather overwhelm the prover. To solve this problem, we
require that any axioms or lemmas needed to prove a particular goal are passed
as arguments to the plug-in. This might seem a severe requirement, but bear in

12



mind that the plug-in is intended for simple goals where you already have an
idea of the proof.

More formally, the typing rule for calls to the FOL plug-in is

Γ ` φ Γ ` s1 : φ1 . . . Γ ` sn : φn

Γ ` fol−plugin(s1, . . . , sn) : φ
φ1, . . . , φn `FOL φ.

When faced with a call to a plug-in the type checker calls the type checking
function of the plug-in. In this case, the type checking function of the FOL plug-
in will verify that the goal is a translatable formula and that the arguments
are well-typed proofs of translatable formulæ. If this is the case it will report
success to the type checker and store away the side condition in its internal
state. After type checking the finalization function of the FOL plug-in is called.
For each constraint φ1, . . . , φn `FOL φ, this function verifies that [φ] is derivable
from [φ1], . . . , [φn] in the resolution calculus by translating the formulæ to clause
normal form and feeding them to an external first-order prover (Gandalf, at the
moment). If the prover does not manage to find a proof within the given time
limit, the plug-in reports an error.

3.4 A QuickCheck Plug-in

The plug-in mechanism is sufficiently general to allow many different kinds of
plug-ins. One such plug-in that we have added is a QuickCheck [CH00] plug-in
that allows the LF user to generate and run random test cases for a certain class
of propositions. The QuickCheck plug-in works in a similar way to the FOL
plug-in, in that the main work is done during the finalization phase. A difference
is that since QuickCheck is implemented in Haskell there is no need to call any
external tools, we can simply include the QuickCheck implementation in the
type checker.

For the QuickCheck plug-in there is no hope of being able to prove conser-
vativity in the way we have done for the FOL plug-in—as is well known, testing
can only prove the presence of bugs, never the absence. This raises the question
of what the status of a tested proposition should be. Clearly, it should not have
the same status as a proved proposition, since that would make the system un-
sound. Our solution is to define a signature Σqc containing a constant Tested for
representing tested proposition together with proof rules for tested propositions:

Tested : Prop → Prop
testI : (P : Prop) → Prf P → Prf (Tested P )
testAndI : (P1, P2 : Prop) → Prf (Tested P1) → Prf (Tested P2) →

Prf (Tested (P1 ∧ P2))
...

This allows us to reason about propositions that have only been tested in a
controlled way.

13



4 Examples

The code in this section has been type checked successfully by our prototype type
checker. In fact, the typeset version is automatically generated from the actual
code. The type checker can infer which types are Sets and which are Props, so
we omit El and Prf in the types.

4.1 Relational Algebra

Natural numbers can be added to the framework by three new constants Nat , zero, succ
plus an axiom for mathematical induction.

Nat ∈ Set
zero ∈ Nat
succ ∈ Nat → Nat
indNat (P ∈ Nat → Prop) ∈ P zero → ((n ∈ Nat) → P n → P (succ n)) →

(m ∈ Nat) → P m

Now we fix a set A and consider relations over A. We want to prove that
the transitive closure of a symmetric relation is symmetric as well. We define
the notion of symmetry and introduce a symbol for relation composition. We
could define R ◦ R′ = λxλz∃z. x R y ∧ y R′ z, but here we only assume that a
symmetric relation composed with itself is also symmetric.

A ∈ Set
sym ∈ (A → A → Prop) → Prop
sym R ≡ (x , y ∈ A) → R x y =⇒ R y x

( ◦ ) ∈ (A → A → Prop) → (A → A → Prop) → (A → A → Prop)
axSymO ∈ (R ∈ A → A → Prop) → sym R → sym (R ◦ R)

We define a monotone chain of approximations R(n) (in the source: Rˆn) of
the transitive closure, such that two elements will be related in the transitive
closure if they are related in some approximation. The main lemma states that
all approximations are symmetric, if R is symmetric.

(ˆ ) ∈ (A → A → Prop) → Nat → (A → A → Prop)
axTc ∈ (R ∈ A → A → Prop) → (x , y ∈ A) → (n ∈ Nat) →

((R ˆ succ n) x y ⇔ (R ˆ n) x y ∨ ((R ˆ n) ◦ (R ˆ n)) x y)
∧ ((R ˆ zero) x y ⇔ R x y)

main ∈ (R ∈ A → A → Prop) → sym R → (n ∈ Nat) → sym (R ˆ n)
main R h ≡ indNat

fol−plugin (h, axTc R)

14



(λn ih → fol−plugin (h, axSymO (R ˆ n) ih, axTc R, ih))

Induction is performed at the framework level, base and step case are filled
by Gandalf. Pretty printed, Gandalf produces the following proof of the step
case:

(1) ∀xy. (R(n) ◦R(n)) x y =⇒ (R(n) ◦R(n)) y x
(2) ∀mxy. R(succ m) x y =⇒ (R(m) ◦R(m))x y ∨R(m) x y
(3) ∀mxy. (R(m) ◦R(m)) x y =⇒ R(succ m) x y
(4) ∀mxy. R(m) x y =⇒ R(succ m) x y
(5) ∀xy. R(n) x y =⇒ R(n) y x
(6) R(succ n) a b
(7) R(succ n) b a =⇒ ⊥
(8) (R(n) ◦R(n)) a b ∨R(n) a b (2), (6)
(9) (R(n) ◦R(n)) b a ∨R(n) a b (1), (8)

(10) R(n) a b (3), (7), (9)
(11) R(n) b a (5), (10)
(12) ⊥ (4), (7), (11)

The transitive closure is now defined as TC R xy = ∃n. R(n)xy. To formalize
this, we add existential quantification and its proof rules. The final theorem
demostrates how existential quantification can be handled in the framework.

Exists (A ∈ Set ) ∈ (A → Prop) → Prop
existsI (A ∈ Set )(P ∈ A → Prop) ∈ (x ∈ A) → P x → Exists P
existsE (A ∈ Set )(P ∈ A → Prop)(C ∈ Prop) ∈

Exists P → ((x ∈ A) → P x → C ) → C

TC ∈ (A → A → Prop) → A → A → Prop
TC R x y ≡ Exists (λn → (R ˆ n) x y)

thm ∈ (R ∈ A → A → Prop) → sym R → sym (TC R)
thm R h x y ≡ impI (λ p →

existsE p (λn q → existsI n fol−plugin(q , main R h n)))

4.2 Category Theory

One application of the FOL plug-in is to category theory. Typically, proofs in
category contain a fair amount of symbolic manipulation, something which we
can leave to the plug-in.

To reason about category theory we introduce the appropriate constants
together with their axioms.

Obj ∈ Set
Hom ∈ Obj → Obj → Set

15



id (a ∈ Obj ) ∈ Hom a a
( ◦ ) (a, b, c ∈ Obj ) ∈ Hom b c → Hom a b → Hom a c

axId1 (a, b ∈ Obj ) ∈ (f ∈ Hom a b) → f == id ◦ f
axId2 (a, b ∈ Obj ) ∈ (f ∈ Hom a b) → f == f ◦ id

assoc (a, b, c, d ∈ Obj ) ∈
(f ∈ Hom c d) → (g ∈ Hom b c) → (h ∈ Hom a b) →
(f ◦ g) ◦ h == f ◦ (g ◦ h)

Now we can define what it means for a morphism to be epi and prove that if
the composition of two morphisms is epi then the first morphism must also be
epi.

isEpi (a, b ∈ Obj ) ∈ Hom a b → Prop
isEpi f ≡ (c ∈ Obj ) → (g , h ∈ Hom b c) →

g ◦ f == h ◦ f =⇒ g == h

epiI (a, b ∈ Obj )(f ∈ Hom a b) ∈ isEpi f → isEpi f

prop (a, b, c ∈ Obj ) ∈ (f ∈ Hom b c) → (k ∈ Hom a b) →
isEpi (f ◦ k) =⇒ isEpi f

prop f k ≡ impI (λepi kf → fol−plugin(assoc, epi kf ))

Gandalf has no problem proving this (very simple) proposition and, more
importantly, the proof that Gandalf produces is very close the proof we would
write by hand. Pretty printed, the proof we get looks as follows.

(1) ∀X Y Z. (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z)
(2) ∀X Y. X ◦ (f ◦ k) = Y ◦ (f ◦ k) =⇒ X = Y
(3) g ◦ f == h ◦ f
(4) g == h =⇒ ⊥
(5) ∀X. g ◦ (f ◦X) == h ◦ (f ◦X) {(1), (3)}
(6) ⊥ {(2), (4), (5)}

See the appendix for an example involving algebra and induction.

5 Related Work

Smith and Tammet [ST95] also combine Martin-Löf type theory and first-order
logic, which was the original motivation for creating the system Gandalf. The
main difference to their work is that we use implicit typing and restrict to
quantifier-free formulæ. An advantage is that we have a simple translation, and
hence get a quite direct connection to resolution theorem provers. Hence, we

16



can hope, and this has been tested positively in several examples, that the proof
traces we get from the prover are readable as such and therefore can been used
as a proof certificate or as feedback for the user. For instance, the user can for-
mulate new lemmas suggested by this proof trace. We think that this aspect of
readability is more important than creating an explicit proof term in type theory
(which would actually be less readable). It should be stressed that our conserva-
tivity result contains, since it is constructive, an algorithm that can transform
the resolution proof to a proof in type theory, if this is needed.

Huang et. al. [HKK+94] present the design of Ω-MKRP6, a tool for the
working mathematician based on higher-order classical logic, with a facility of
proof planning, access to a mathematical database of theorems and proof tactics
(called methods), and a connection to first-order automated provers. Their article
is a well-written motivation for the integration of human and machine reasoning,
where they envision a similar division of labor as we have implemented. We have,
however, not addressed the problem of mathematical knowledge management
and proof tactics.

Wick and McCune [WM89] list three options for connecting type systems
and FOL: include type literals, put type functions around terms, or use implicit
typing. We rediscovered the technique of implicit typing and found out later
that it is present already in the work of Beeson [Bee05]. Our work shows that
this can also be used with dependent types, which is not obvious a priori. Our
formulation of the correctness properties, as a conservativity statement, requires
some care (with the role of the sort Prop), and is an original contribution.

Bezem, Hendriks, and de Nivelle [BHdN02] describe how to transform a res-
olution proof to a proof term for any first-order formula. However, the resulting
proof terms are hard to read for a human because of the use of skolemisation
and reduction to clausal forms. Furthermore, they restrict to a fixed first-order
domain.

Hurd’s work on a Gandalf-tactic for HOL [Hur99] is along the same lines. He
translates untyped first-order HOL goals to clause form, sends them to Gandalf
and constructs an LCF proof from the Gandalf output. In later work [Hur02,Hur03]
he handles types by having two translations: the untyped translation, and a
translation with explicit types. The typed translation is only used when the
untyped translation results in an ill-typed proof.

JProver [SLKN01] is a connection-based intuitionistic theorem prover which
produces proof objects. It has been integrated into NuPrl and Coq. The transla-
tion from type theory to first-order logic involves some heuristics when to include
or discard type information. Unfortunately, the description [SLKN01] does not
contain formal systems or correctness arguments, but focuses on the connection
technology.

Jia Meng and Paulson [MP04] have carried out substantial experiments on
how to integrate the resolution theorem prover Vampire into the interactive
proof tool Isabelle. Their translation from higher-order logic (HOL) to first-order
logic keeps type information, since HOL supports overloading via axiomatic type

6 Markgraf Karl Refutation Procedure.

17



classes and discarding type information for overloaded symbols would lead to un-
sound reasoning. They claim to cut down the search space via type information,
but this is also connected to overloading. The aim of their work is different to
ours: while they use first-order provers to do as much automatic proofs and
proof search as possible, we employ automation only to liberate the user from
seemingly trivial proof steps.

In Coq, NuPrl, and Isabelle, the user constructs a proof via tactics. We
provide type theory as a proof language in which the user writes down a proof
skeleton, consisting of lemmas, scoped hypotheses, invokation of induction, and
major proof steps. The first-order prover is invoked to solve (easy) subgoals. This
way, we hope to obtain human-readable proof documents (see our examples).

6 Conclusion and Future Work

We have described the implementation of a logical framework with proof-irrele-
vant propositions and its connection to the first-order prover Gandalf. Soundness
and conservativity of the connection have been established by general theorems.

It is natural to extend LF by sigma types, in order to represent, for instance,
mathematical structures. The extension of the translation to FOL is straight-
forward, we simply add a new binary function symbols for representing pairs.
A more substantial extension is the addition of data type and functions defined
by case [NPS90]. In this extension, it is possible to represent each connective
as a parameterized data type. Each introduction rule is represented by a con-
structor, and the elimination rules are represented by functions defined by cases.
This gives a computational justification of each of the axioms of the signature
Σnat. The extension of the translation to FOL is also straightforward: each de-
fined equations for functions becomes a FOL equality. One needs also to express
that each constructor is one-to-one and that terms with distinct constructors are
distinct.

We plan to the extend the conservativity theorem to implicit arguments as
presented in Section 3.1. We also think that we can extend our class of translat-
able formulæ, for instance, to include some cases of existential quantification.

One could think of adding more plug-ins, with the same principle that they
are justified by a general meta-theorem. For instance, one could add a plug-
in to a model checker, or a plug-in to a system with a decision procedure for
Presburger arithmetic.

Acknowledgments. We thank the members of the Cover project, especially Koen
Claessen for discussions on implicit typing and the clausification tool Santa for a
uniform connection to FOL provers, and Grégoire Hamon for programming the
clausifier of the FOL plug-in in a previous version.

References

[AC05] Andreas Abel and Thierry Coquand. Untyped algorithmic equality for
Martin-Löf’s logical framework with surjective pairs. In Pawe l Urzyczyn,

18



editor, Typed Lambda Calculi and Applications (TLCA 2005), Nara, Japan,
volume 3461 of Lecture Notes in Computer Science, pages 23–38. Springer,
April 2005.

[AMM05] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent
types matter. Manuscript, available online, April 2005.

[BC03] Marc Bezem and Thierry Coquand. Newman’s lemma – a case study in
proof automation and geometric logic. Bulletin of the EATCS, 79:86–100,
2003. Logic in Computer Science Column.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2004.

[Bee05] Michael Beeson. Otter-λ home page, 2005. URL:
http://mh215a.cs.sjsu.edu/.

[BHdN02] Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof
construction in type theory using resolution. Journal of Automated Rea-
soning, 29(3–4):253–275, 2002. Special Issue Mechanizing and Automating
Mathematics: In honour of N.G. de Bruijn.

[CC99] Catarina Coquand and Thierry Coquand. Structured type theory. In Work-
shop on Logical Frameworks and Meta-languages (LFM’99), Paris, France,
September 1999.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

[CLR01] Michel Coste, Henri Lombardi, and Marie-Françoise Roy. Dynamical meth-
ods in algebra: Effective Nullstellensätze. Annals of Pure and Applied Logic,
111(3):203–256, 2001.

[dB80] Niklas G. de Bruijn. A survey of the project Automath. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays in combinatory logic,
lambda calculus and formalism, pages 579–606, London-New York, 1980.
Academic Press. Reprinted in: Selected Papers on Automath, edited by
R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer, Studies in Logic, vol. 133,
pp. 141-161. North-Holland 1994.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathema-
tische Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E.
Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–131,
North-Holland, 1969.

[HKK+94] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan
Nesmith, Jörn Richts, and Jörg H. Siekmann. Omega-MKRP: A proof de-
velopment environment. In Alan Bundy, editor, Automated Deduction -
CADE-12, 12th International Conference on Automated Deduction, Nancy,
France, June 26 - July 1, 1994, Proceedings, volume 814 of Lecture Notes
in Computer Science, pages 788–792. Springer, 1994.

[Hur99] Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek,
André Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem
Proving in Higher Order Logics, 12th International Conference, TPHOLs
’99, Nice, France, volume 1690 of Lecture Notes in Computer Science, pages
311–321. Springer, September 1999.

[Hur02] Joe Hurd. An LCF-style interface between HOL and first-order logic. In
Andrei Voronkov, editor, Automated Deduction - CADE-18, 18th Interna-
tional Conference on Automated Deduction, Copenhagen, Denmark, July
2002, Proceedings, volume 2392 of Lecture Notes in Artificial Intelligence,
pages 134–138. Springer, 2002.

19



[Hur03] Joe Hurd. First-order proof tactics in higher-order logic theorem provers.
In Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Appli-
cation of Strategies/Tactics in Higher Order Logics (STRATA’03), number
CP-2003-212448 in NASA Technical Reports, pages 56–68, September 2003.

[Lam93] Leslie Lamport. How to write a proof. In Global Analysis in Modern Mathe-
matics, pages 311–321. Publish or Perish, Houston, Texas, U.S.A., February
1993. Also appeared as SRC Research Report 94.

[Mil92] Dale Miller. Unification under a mixed prefix. J. Symb. Comput., 14(4):321–
358, 1992.

[MP04] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive
proof using resolution. In David A. Basin and Michaël Rusinowitch, edi-
tors, Automated Reasoning - Second International Joint Conference, IJCAR
2004, Cork, Ireland, July 4-8, 2004, Proceedings, volume 3097 of Lecture
Notes in Computer Science, pages 372–384. Springer, 2004.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin Löf ’s Type Theory: An Introduction. Clarendon Press, Oxford, 1990.

[NPS00] Bengt Nordström, Kent Petersson, and Jan Smith. Martin-Löf’s type theory.
In Handbook of Logic in Computer Science, volume 5. Oxford University
Press, October 2000.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[SLKN01] Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin.
JProver: Integrating connection-based theorem proving into interactive
proof assistants. In R. Gore, A. Leitsch, and T. Nipkow, editors, Automated
Reasoning - First International Joint Conference, IJCAR 2001, Siena, Italy,
June 2001, Proceedings, volume 2083 of Lecture Notes in Artificial Intelli-
gence, pages 421–426. Springer, 2001.

[ST95] Jan M. Smith and Tanel Tammet. Optimized encodings of fragments of
type theory in first-order logic. In Stefano Berardi and Mario Coppo, editors,
Types for Proofs and Programs, International Workshop TYPES’95, Torino,
Italy, June 5-8, 1995, Selected Papers, volume 1158 of Lecture Notes in
Computer Science, pages 265–287. Springer, 1995.

[Tam97] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204,
1997.

[WM89] Cynthia A. Wick and William McCune. Automated reasoning about ele-
mentary point-set topology. Journal of Automated Reasoning, 5(2):239–255,
1989.

20



Appendix

A Typing Rules of MLFProp

Figure 4 shows the typing rules of MLFProp. The rules fun-f and fun-i carry
a side condition (∗) that ensures that no type can depend on a proof, which is
needed for the conservativity theorem.

Wellformed contexts Γ `.

cxt-empty � ` cxt-ext
Γ ` T

Γ, x :T `

Wellformed types Γ ` T .

set-f
Γ `

Γ ` Set
prop-f

Γ `
Γ ` Prop

fun-f
Γ ` T Γ, x :T ` U

Γ ` (x :T ) → U
(∗)

set-e
Γ ` r : Set

Γ ` El r
prop-e

Γ ` P : Prop

Γ ` Prf P

Typing Γ ` r : T .

cst
Γ ` (c :T ) ∈ Σ

Γ ` c : T
hyp

Γ ` (x :T ) ∈ Γ

Γ ` x : T
conv

Γ ` r : T Γ ` T = U

Γ ` r : U

fun-i
Γ, x :T ` r : U

Γ ` λxr : (x :T ) → U
(∗) fun-e

Γ ` r : (x :T ) → U Γ ` s : T

Γ ` r s : U [s/x]

let
Γ ` r : T Γ ` s[r/x] : U

Γ ` let x :T =r in s : U

Side condition (∗): If T is a proof type, then also U .

Fig. 4. MLFProp rules for contexts and typing.

B A Signature for Natural Deduction

Figure 5 shows the signature Σnd for natural deduction proofs. Negation ¬ and
logical equivalence ⇔ are examples of defined constants in a signature.

C Welltypedness of Unifier

We say that the terms t1, . . . , tn fit a context ∆ = (x1 :T1, . . . , xn :Tn) in Γ iff
Γ ` ti : Ti[t1, . . . , ti−1] for all 1 ≤ i ≤ n.

21



Lemma 1. If two proper first-order terms t, u over disjoint variables are well-
typed and unifiable, then the most general unifier mgu(t, u) is well-typed.

Predicate symbols and logical connectives.

Const ⊇ PredSym 3 p ::= >,⊥, Id predicate symbols
Const ⊇ LogOp 3 op ::= ∧,∨,⇒ binary logical connectives

Formation rules for propositional logic.

>,⊥ : Prop truth, absurdity
∧,∨,⇒ : Prop → Prop → Prop conj., disj., impl.
¬ : Prop → Prop = λP. P ⇒ ⊥ negation
⇔ : Prop → Prop → Prop = λPλQ. (P ⇒ Q) ∧ (Q ⇒ P ) logical equivalence

Proof rules for propositional logic.

trueI : Prf >
falseE : (P :Prop) → Prf ⊥ → Prf P

andI : (P1, P2 :Prop) → Prf P1 → Prf P2 → Prf (P1 ∧ P2)
andEi : (P1, P2 :Prop) → Prf (P1 ∧ P2) → Prf Pi for i ∈ {1, 2}

orIi : (P1, P2 :Prop) → Prf Pi → Prf (P1 ∨ P2) for i ∈ {1, 2}
orE : (P1, P2, Q :Prop) → Prf (P1 ∨ P2) →

(Prf P1 → Prf Q) → (Prf P2 → Prf Q) → Prf Q

impI : (P, Q :Prop) → (Prf P → Prf Q) → Prf (P ⇒ Q)
impE : (P, Q :Prop) → Prf (P ⇒ Q) → Prf P → Prf Q

Equality.

Id : (D :Set) → El D → El D → Prop typed equality

refl : (D :Set, x :El D) → Prf (Id D x x) reflexivity
subst : (D :Set, P :El D → Prop, x, y :El D) →

Prf (Id D x y) → Prf (P x) → Prf (P y) substitutivity

Fig. 5. The signature Σnd for natural deduction.

The lemma is a consequence of the following stronger proposition: If t1, . . . , tn
and u1, . . . , un are lists of terms that fit the same context ∆ in Γ and σ is the
most general substitution such that tiσ = uiσ for 1 ≤ i ≤ n, then Γ ` σ(x) : A
for all (x :A) ∈ Γ .

Let Γ ` t : A and Γ ′ ` u : B. Since t and u are proper terms and unifiable,
t = f(t) and u = f(u) for some constant f : (∆) → C. Hence, t and u fit ∆ in
Γ, Γ ′, which is a valid context since Γ and Γ ′ are disjoint. Now the proposition
implies that mgu(t, u) is well-typed.

22



Proof (of the proposition). We follow the steps of a simple unification algorithm
and consider the unification problem

t1 = u1, . . . , tn = un

If both t1 and u1 are proper terms, they are of the form f(a1, . . . , ak) and
f(b1, . . . , bk) and we get a simpler unification problem

a1 = b1, . . . , ak = bk, t2 = u2, . . . , tn = un

If, for instance, t1 is a variable x, and x does not appear in u1, we claim that
all variables in u1 have a type which is independent of x. This holds if u1 is a
variable, since the type of u1 is the same as the one of x, but it also holds if u1

is a proper term, since the type of the variables in u1 are then determined by u1

alone, and x does not appear in u1. We can hence assume that all these variables
appear before x in Γ = Γ1, x :T, Γ2. We then get the simpler unification problem
in Γ1, Γ2[u1/x]

t2[u1/x] = u2[u1/x], . . . , tn[u1/x] = un[u1/x]

We proceed in this way until we get an empty list in the context in which the
most general unifier of the two terms is well-typed.

D Example Involving Computer Algebra

An example from M. Beeson [Bee05]. This example illustrates how we can com-
bine the interactive style of the logical framework, for instance for the induction
steps, with the first-order logic plugin.

In this example we want to reason about existentially quantified propositions
so we add some new constants to the signature.

Exists (A ∈ Set ) ∈ (A → Prop) → Prop
existsI (A ∈ Set ) ∈ (P ∈ A → Prop) → (x ∈ A) → P x → Exists P
existsE (A ∈ Set ) ∈ (P ∈ A → Prop) → Exists P →

(C ∈ Prop) → ((x ∈ A) → P x =⇒ C ) → C

We also need natural numbers. For this use the datatype extensions which
allows us to define recursive functions over the natural numbers. For instance,
we can write a recursive proof of the induction principle.

dataNat ∈ Set where
zero ∈ Nat
succ ∈ Nat → Nat

indNat ∈ (P ∈ Nat → Prop) → P zero →
((n ∈ Nat) → P n =⇒ P (succn)) →

23



(x ∈ Nat) → P x
indNat P a g zero ≡ a
indNat P a g (succn) ≡ impE (g n) (indNat P a g n)

The goal of the example is to prove that in an integral ring, the only nilpotent
element is zero. We start by defining what it means to be an integral ring.

isRing ∈ (R ∈ Set ) → (R → R → R) → (R → R → R) →
(R → R) → R → R → Prop

isRing R ( + ) ( ∗ )minus Zero One ≡
(x ∈ R) → (y ∈ R) → (z ∈ R) →
( (x + y) == (y + x )
∧ (x + Zero) == x
∧ (x + (minus x )) == Zero
∧ (x + (y + z )) == ((x + y) + z )
∧ (x ∗ (y + z )) == ((x ∗ y) + (x ∗ z ))
∧ ((y + z ) ∗ x ) == ((y ∗ x ) + (z ∗ x ))
∧ (x ∗ One) == x
∧ (One ∗ x ) == x
∧ (x ∗ (y ∗ z )) == ((x ∗ y) ∗ z )

)

isIntegral ∈ (R ∈ Set ) → (R → R → R) → R → Prop
isIntegral R ( ∗ )Zero ≡

(x ∈ R) → (y ∈ R) → x ∗ y == Zero =⇒
x == Zero ∨ y == Zero

In the following we work on a particular (but abstract) integral ring.

R ∈ Set
( + ) ∈ R → R → R
( ∗ ) ∈ R → R → R
minus ∈ R → R
Zero ∈ R
One ∈ R

axR ∈ isRing R ( + ) ( ∗ )minus Zero One
axI ∈ isIntegral R ( ∗ )Zero

power ∈ Nat → R → R
power zero x ≡ One
power (succn) x ≡ (power n x ) ∗ x

isZero ∈ R → Prop
isZero x ≡ x == Zero

24



isNilpotent ∈ R → Prop
isNilpotent x ≡ Exists (λn → isZero (power n x ))

This is all we need to start the proof. First we prove some lemmas.

lemCancel ∈ (x ∈ R) → (y ∈ R) → x + y == y =⇒ isZero x
lemCancel x y ≡

impI (λh →
let rem ∈ isZero (x + (y + minus y))

rem ≡ fol−plugin(h, axR)
in

fol−plugin(rem, axR)
)

The proof of Zero ∗ x == Zero is not trivial (but can be done purely auto-
matically if desired) so we give the main steps of one possible proof explicitely.

lemZero ∈ (x ∈ R) → isZero (Zero ∗ x )
lemZero x ≡

let rem1 ∈ Zero + One == One
rem1 ≡ fol−plugin(axR)
rem2 ∈ (Zero + One) ∗ x == Zero ∗ x + One ∗ x
rem2 ≡ fol−plugin(axR)
rem3 ∈ Zero ∗ x + One ∗ x == One ∗ x
rem3 ≡ fol−plugin(axR, rem1 , rem2 )

in
fol−plugin(rem3 , lemCancel)

lemOneZero ∈ (x ∈ R) → One == Zero =⇒ isZero x
lemOneZero x ≡ fol−plugin(axR, lemZero)

The main lemma is proved by induction explicitely at the framework level.

prop ∈ R → Nat → Prop
prop x n ≡ isZero (power n x ) =⇒ isZero x

lemMain ∈ (x ∈ R) → (n ∈ Nat) → prop x n
lemMain x ≡

let base ∈ prop x zero
base ≡ fol−plugin(lemOneZero)
step ∈ (n ∈ Nat) → prop x n =⇒ prop x (succn)
step n ≡ fol−plugin(axR, axI )

in

25



indNat (prop x ) base step

thm ∈ (x ∈ R) → isNilpotent x → isZero x
thm x h ≡ existsE (λn → isZero (power n x )) h (isZero x ) (lemMain x )

26


