

Lehr- und Forschungseinheit Theoretische Informatik Hauptseminar Programmanalyse SS 2009

Abstrakte Interpretation I

Prof. Dr. Martin Hofmann Referent: N.Mikhaylova

Universität ___ München ____

Gliederung

- I. Grundlagen der abstrakten Interpretation
- II. Approximation der Fixpunkte
 - 1. Grundbegriffe
 - 2. Widening Operators
 - 3. Narrowing Operators
- III. Zusammenfassung

I. Grundlagen der Al

Prof. Dr. Patrick Cousot, Informatikprofessor an der École Normale Supérieure in Paris

Abstrakte Interpretation - ist eine allgemeine Theorie für semantische Approximation von diskreten dynamischen Systemen, z.B Berechnung eines Programms

I. Grundlagen der Al

Abstrakte Interpretation in der Programmanalyse:

- Model-Checking
- Approximation der Fixpunkte
- Software Steganographie
- Statische Analyse

AI in der Programmanalyse

Programme können häufig nicht vollständig analysiert werden:

- Es gibt unendlich viele Eingabewerte
- Variablen können die Belegungen aus einem unendlich großem Werteraum haben

I. Grundlagen der Al

Grundidee der abstrakten Interpretation:

das Programm nicht auf den eigentlichen "konkreten" Werten, sondern auf Abstraktionen der Datentypen analysieren

Abstraktion in Galois Verbindungen

Es werden zwei Funktionen definiert:

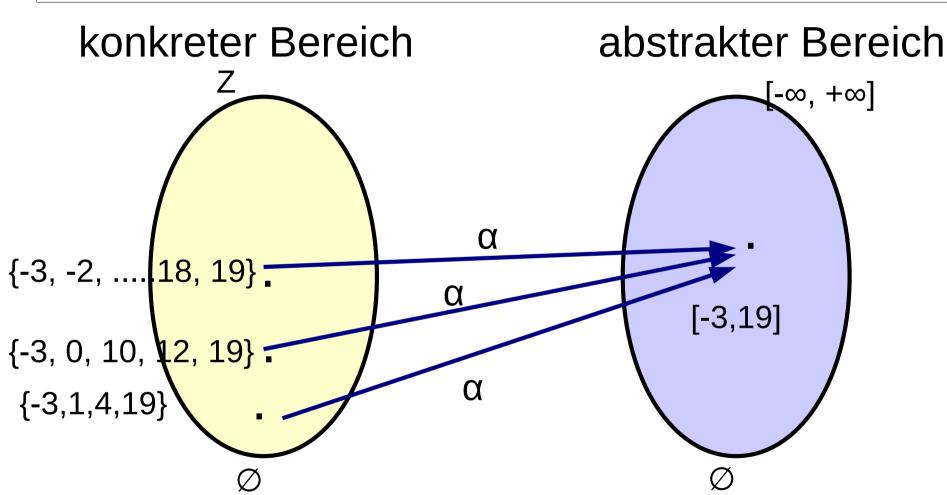
 Abstraktion α, die jeden Wert auf auf seinen abstrakten Wert abbildet

$$\alpha:L\to M$$

• Konkretisierung γ, die einem abstrakten Wert alle konkrete Werte zuordnet, für die er steht

$$y: M \rightarrow L$$

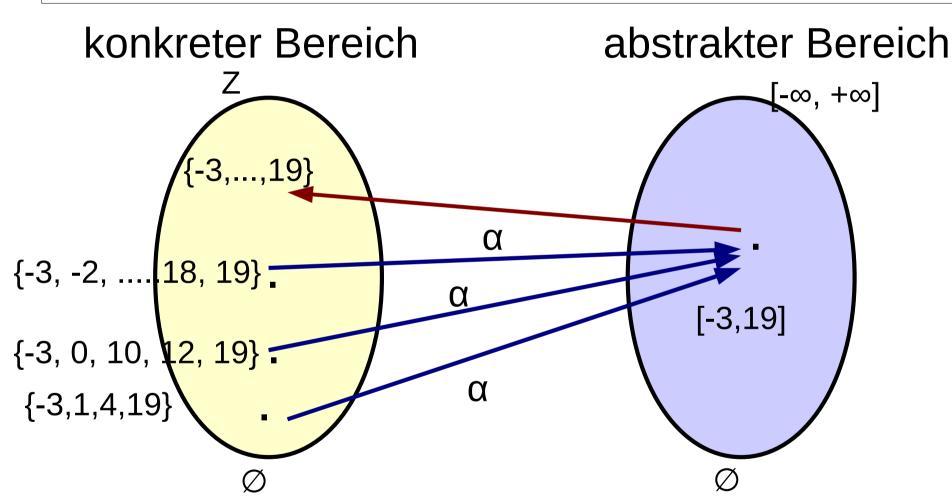
Abstraktion in Galois Verbindungen



Ludwig ——— Maximilians — Universität —

München ___

Abstraktion in Galois Verbindungen



Maximilians —
Universität —
München —

Möglichkeiten der Abstraktion

Zahlen durch even/odd abstrahieren

$$\alpha$$
: Z \rightarrow {even, odd}

$$\alpha(x) = \begin{cases} \{\text{even}\}, & \text{falls x gerade} \\ \{\text{odd}\}, & \text{falls x ungerade} \end{cases}$$

(B. König)

Beispiel "Korrektheit der arithmetischen Berechnung":

$$373 * 8847 + 12345 = 3312266$$

München

I. Grundlagen der Al

Beispiel "Korrektheit der arithmetischen Berechnung":

 eine Zahl ist durch 9 teilbar, genau dann wenn ihre Quersumme durch 9 teilbar ist
 [a+b mod 9] = [((a mod 9)+(b mod 9)) mod 9]

Maximilians —
Universität —
München

I. Grundlagen der Al

$$L = IN$$

$$M = \{0, ..., 8\}$$

$$\alpha(x) = x \mod 9$$

$$\alpha_1 \oplus \alpha_2 = (\alpha_1 + \alpha_2) \mod 9$$

$$\alpha_1 \otimes \alpha_2 = (\alpha_1 * \alpha_2) \mod 9$$

$$I_1 * I_2 + I_3 = I_4 => \alpha(I_1) * \alpha(I_2) + \alpha(I_3) = \alpha(I_4)$$

I. Grundlagen der Al

$$373 * 8847 + 12345 = 3312266$$

- $QS[373] 13 \mod 9 = 4$
- $QS[8847] 27 \mod 9 = 0$
- $QS[12345] 15 \mod 9 = 6$
- $QS[3312266] 23 \mod 9 = 5$

Maximilians —
Universität —
München —

I. Grundlagen der Al

$$373 * 8847 + 12345 = 3312266$$

- $QS[373] 13 \mod 9 = 4$
- $QS[8847] 27 \mod 9 = 0$
- $QS[12345] 15 \mod 9 = 6$
- QS[3312266] 23 mod 9 = 5

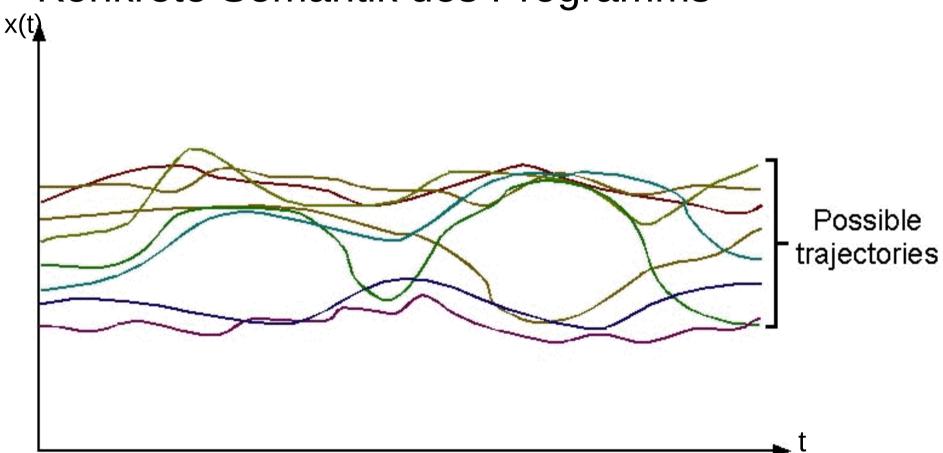
$$4*0+6=5$$

$$6 \neq 5$$

Die Anwendung der abstrakten Interpretation intuitiv:

Durch die abstrakte Semantik wird schließlich ein Gleichungssystem aufgebaut, dass für jeden Programmpunkt alle mögliche Zustände des Programms in allen möglichen Umgebungen berechnet

Konkrete Semantik des Programms



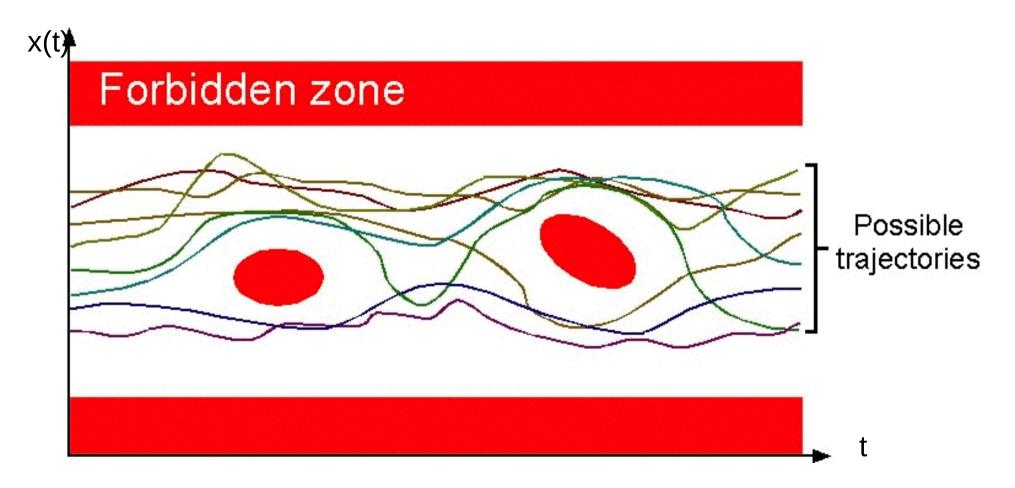
Unentscheidbarkeit

- konkrete Semantik des Programms ist im Allgemeinen als ein unendliches mathematisches Objekt nicht berechenbar
- Viele Fragen bezüglich konkreter Semantik des Programms sind unentscheidbar (z.B Terminierung des Programms)

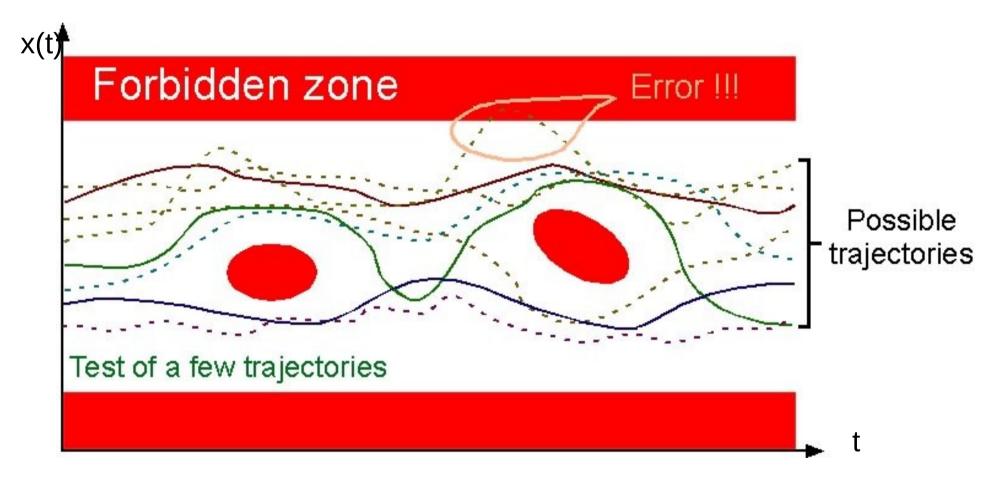
Prüfen die sicheren Pfaden

 die Verifikation der sicheren Pfaden besteht in Überprüfung, ob die konkrete Semantik sich mit der unzulässigen Zonen nicht überkreuzt

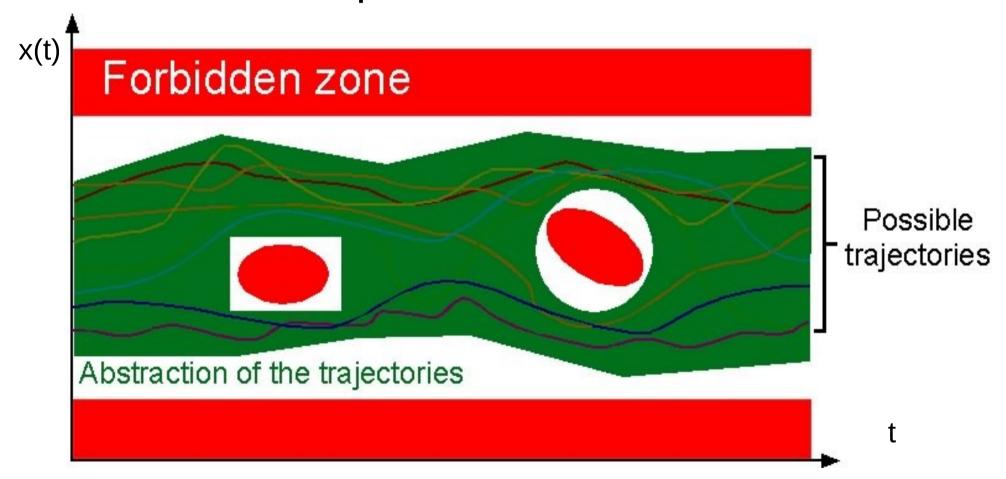
Sicherheitseingenschaften



Testen



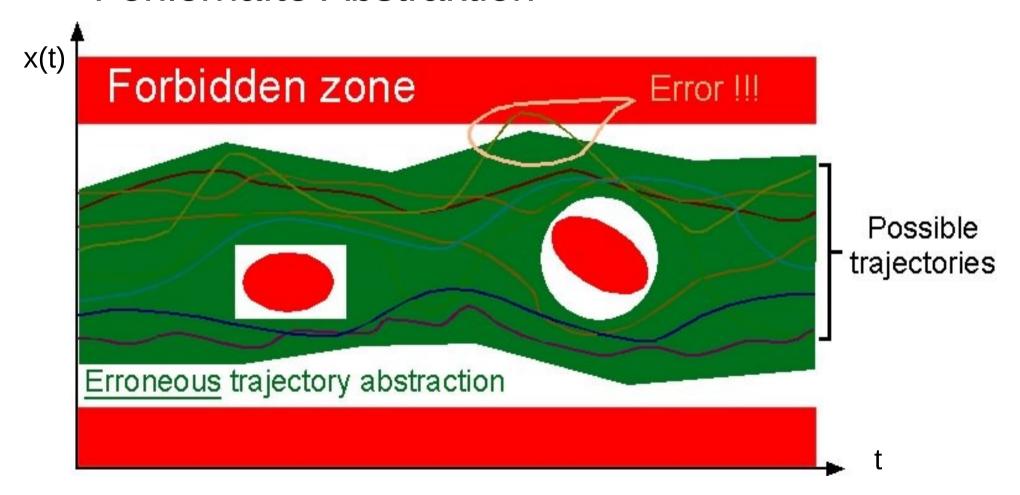
Abstrakte Interpretation



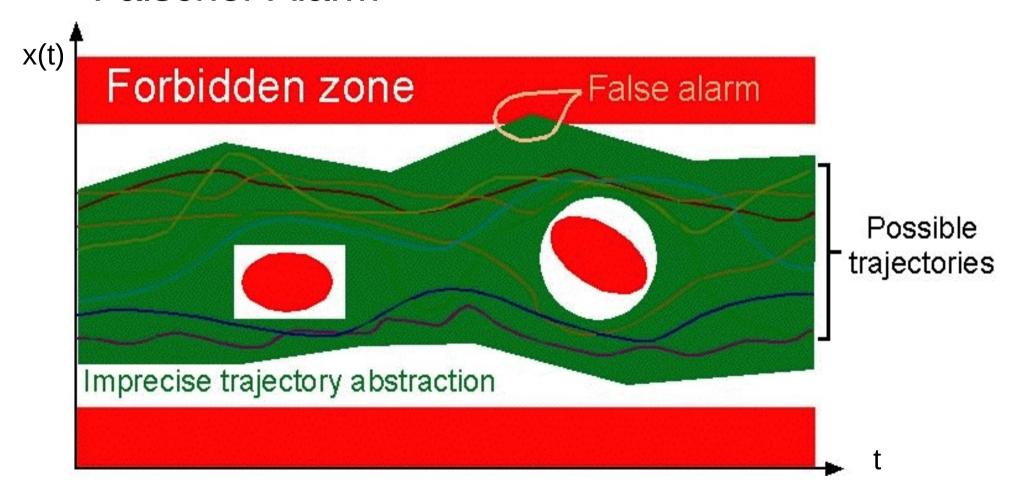
Formale Methoden

- Model-Checking Technik zum Beweisen der Gültigkeit einer Spezifikationen im Bezug auf ein Programm
- Deduktive Methoden spezifizieren die Verifikation der Bedingungen mit induktiven Schritten (Verwendung der Logikkalküls und Beweisregeln)
- Statische Analyse –abstrakte Semantik wird automatisch errechnet durch die vordefinierte Approximation

Fehlerhafte Abstraktion



Falscher Alarm



Abstrakte Interpretation in der Programmanalyse:

- Model-Checking
- Approximation der Fixpunkte
- Software Steganographie
- Statische Analyse

Abstrakte Interpretation I

II. Approximation der Fixpunkte

II. Approximation der Fixpunkte

Begriffe:

- Vollständiger Verband (complete lattices)
- Fixpunkte
- Upper Bound Operator
- Widening
- Narrowing

München

Vollständiger Verband

Ein Tupel (L, \sqsubseteq), bestehend aus einer Menge L und einer partiellen Ordnung auf L heißt vollständiger Verband, wenn jede Teilmenge Y von L eine kleinste obere (Supremum) und eine größte untere (Infimum) Schranke hat. Dies muss insbesondere für Y = \varnothing gelten. Man definiert

$$T = \sup L \text{ (top)}$$

$$\perp$$
 = inf L (bottom)

Maximilians—

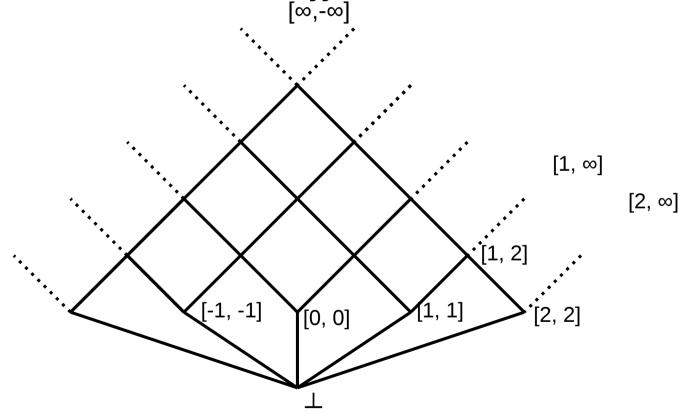
Universität ___ München ____

Vollständiger Verband

Intervall = $\{\bot\}$ oder $\{[z_1, z_2] \mid z_1 \le z_2, z_1, z_2 \in N,$

$$N = \{-\infty, ..., -1, 0, 1, ..., \infty\}\}$$

$$\vdots$$



Fixpunkt-Theorie

Sei $f: L \rightarrow L$ eine Funktion auf einem vollständigen Verband L. Die Menge aller Fixpunkte:

$$Fix(f) = \{l \in L \mid f(l) = l \}$$

Fixpunkt-Theorie

Die Menge aller Präfixpunkte:

$$Pre(f) = \{l \in L \mid f(l) \sqsubseteq l\}$$

Die Menge aller Postfixpunkte:

$$Post(f) = \{l \in L \mid f(l) \supseteq l\}$$

Fixpunkt-Theorie

Der kleinste Fixpunkt (least fixed point):

$$lfp(f) = \sqcap Fix(f)$$

Der größte Fixpunkt (greatest fixed point):

$$gfp(f) = \coprod Fix(f)$$

Theorem von Knaster-Tarski

Sei (L, \sqsubseteq) ein vollständiger Verband und $f:L\to L$ eine monotone Funktion. Dann gilt:

$$lfp(f) = \Box Pre(f) \in Fix(f)$$

 $gfp(f) = \Box Post(f) \in Fix(f)$

Folgerungen:

- jede monotone Funktion besitzt mind. einen Fixpunkt
- Die Menge aller Fixpunkte bildet einen vollständigen verband

Fixpunkt-Iteration

Sei f eine monotone Funktion auf L, nach dem Satz von Kleene gilt:

$$lfp(f) = \bigsqcup_{n=0}^{\infty} f^n(\bot) = f^m(\bot)$$

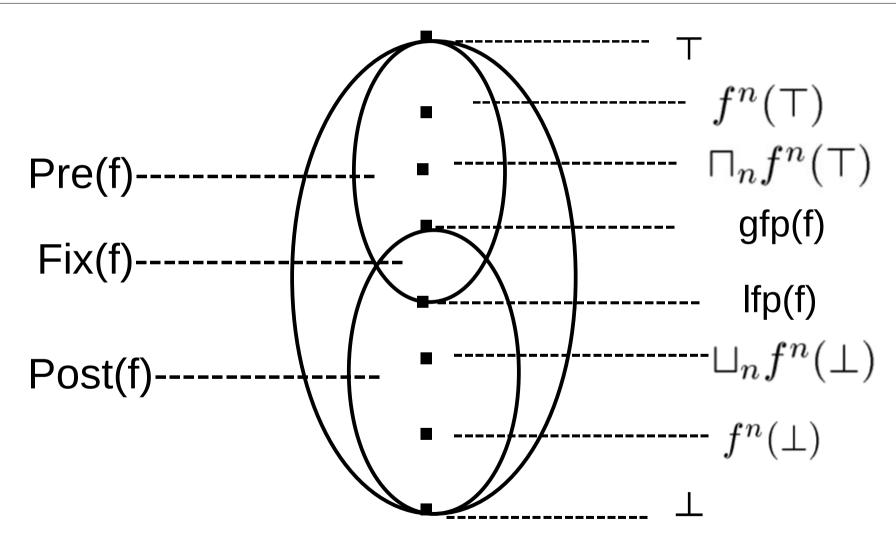
man berechnet $f(\bot) \bigsqcup f(f(\bot)) \bigsqcup ... \bigsqcup f'(\bot) \bigsqcup ...$ bis die Folge stationär ist und erhält dann den kleinsten Fixpunkt

Ludwig-

Universität ___

München ____

Fixpunkte



München

Upper Bound Operator

Operator $\biguplus: L \times L \to L$ auf dem vollständigen Verband $L = (L, \sqsubseteq)$ heißt Upper Bound Operator, wenn:

$$l_1 \sqsubseteq (l_1 \biguplus l_1 \sqsupseteq l_2)$$

für alle $11, 12 \in L$

Zurückgeliefert wird der Wert, der immer größer beider Argumente ist

Widening Operator

Operator $\nabla: L \times L \to L$ auf dem vollständigen Verband ist ein Widening Operator nur dann, wenn:

- Das ist ein Upper Bound Operator, und
- die aufsteigende Kette $(l_n^{\nabla})_n$ wird letztendlich stabil für alle aufsteigenden Ketten $(l_n)_n$

Widening Operator

Widening Operator auf einem Intervall:

$$[l_0, u_0] \nabla [l_1, u_1] = [if l_1 < l_0 \text{ then } -\infty \text{ else } l_0;$$

if $u_1 > u_0 \text{ then } +\infty \text{ else } u_0]$

München

Widening Operator

Widening Operator auf einem Intervall:

$$[l_0, u_0] \nabla [l_1, u_1] = [if l_1 < l_0 \text{ then } -\infty \text{ else } l_0;$$

if $u_1 > u_0 \text{ then } +\infty \text{ else } u_0]$

$$[0,1] \nabla [0, 2] = [0, +\infty]$$

$$[0,2] \nabla [0,2] = [0,2]$$

München ____

Widening Operator

Mit dem Widening Operator und einer monotonen Funktion f : L x L \rightarrow L kalkuliert man die Sequenz $(f_{\nabla}^n)_n$

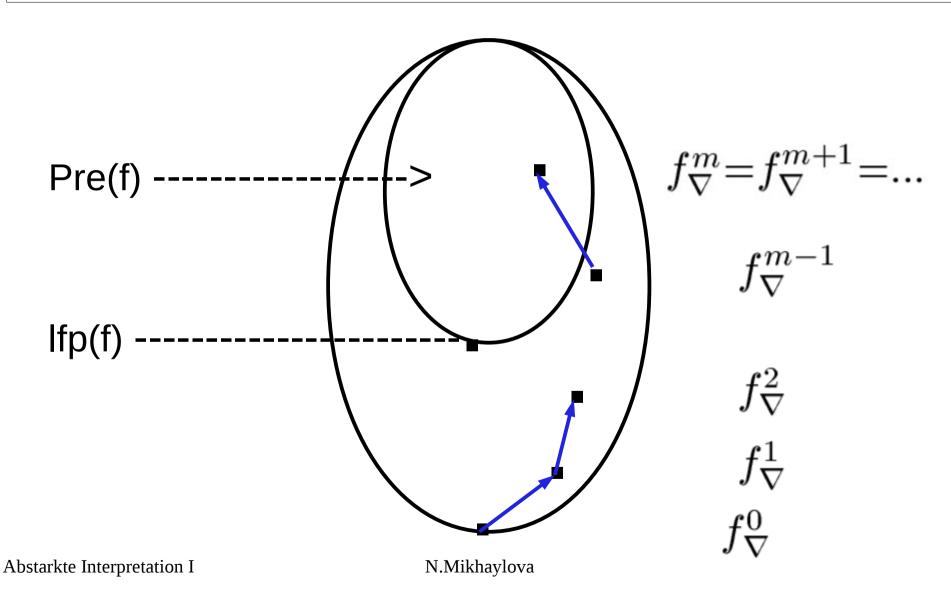
$$(f_{\nabla}^n) = \begin{cases} \bot &, \ falls \ n = 0 \\ (f_{\nabla}^n - 1) &, \ falls \ n \ge 0 \land f(f_{\nabla}^n - 1) \sqsubseteq (f_{\nabla}^n - 1) \\ (f_{\nabla}^n - 1) \nabla f(f_{\nabla}^n - 1) &, sonst \end{cases}$$

Ludwig-

Universität ___

München ____

Widening Operator



Narrowing Operator

Operator Δ ist auf dem vollständigen Verband Lein Narrowing Operator nur dann, wenn

$$l_2 \sqsubseteq l_1 \rightarrow l_2 \sqsubseteq (l_1 \Delta l_2) \sqsupseteq l_1$$

für alle $11, 12 \in L$ und

• für alle absteigenden Ketten $(l_n)_n$ wird die Sequenz $(l_n^{\nabla})_n$ letztendlich stabil

München ____

Narrowing Operator

• Nach Verwendung des Widening kann das Intervall sehr ungenau sein => Narrowing Operator versucht, die möglichen Werte wieder einzuschränken. Die Sequenz $(f_{\Delta}^n)_n$ wird berechnet:

$$(f_{\Delta}^{n}) = \begin{cases} f_{\nabla}^{m} & , \ falls \ n = 0 \\ f_{\Delta}^{n-1} \ \Delta \ f(f_{\Delta}^{n-1}) & , \ falls \ n \ge 0 \end{cases}$$

München___

Narrowing Operator

Folgerung: wenn Δ Narrowing Operator und

$$f(f_{\Delta}^m) \sqsubseteq f_{\Delta}^m$$
, dann

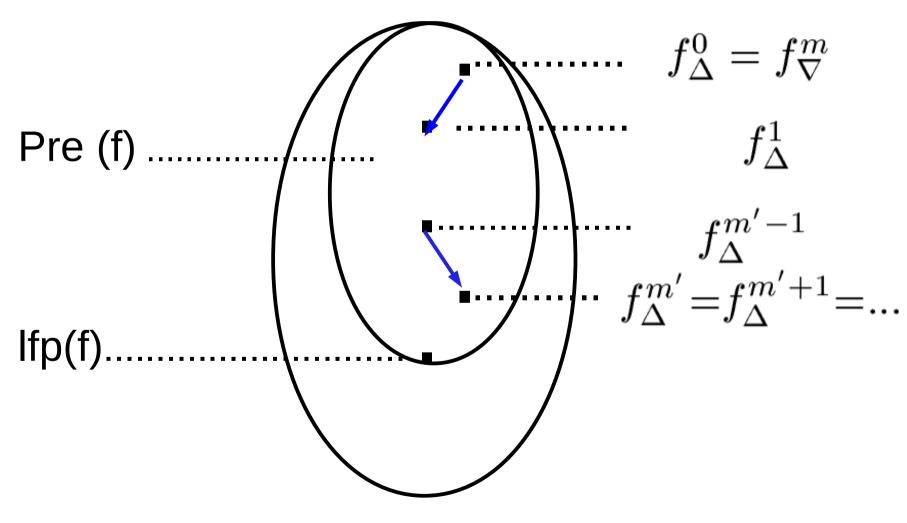
- $(f_{\Delta}^n)_n$ eine absteigende Kette, und
- $f_{\Delta}^n \supseteq f^n(f_{\Delta}^m) \supseteq lfp(f)$

Ludwig-

Universität ___

München____

Narrowing Operator



N.Mikhaylova

Maximilians—

Universität ___ München ____

Beispiel (1)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$X1 = [1, 1]$$

 $X2 = (X1 \top \text{ X3}) \cap [-\infty, 9999]$
 $X3 = X2 \Theta [1, 1]$
 $X4 = (X1 \top \text{ X3}) \cap [10000, ∞]$

Universität ___ München ____

Beispiel (2)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

4:

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [10000, \infty] \end{cases}$$

$$X1 = 2$$

$$X2 = \emptyset$$

$$X3 = \emptyset$$

$$X4 = \emptyset$$

Universität ___ München ____

Beispiel (3)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [10000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = \emptyset \\
X3 = \emptyset \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (4)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 1]
\end{aligned}$$

$$X3 = \emptyset$$

$$X4 = \emptyset$$
N.Mikhaylova

Universität ___ München ____

Beispiel (5)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

4:

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 1] \\
X3 = [2, 2] \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (6)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 2] \\
X3 = [2, 2] \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (7)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

4:

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 2] \\
X3 = [2, 3] \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (8)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 3] \\
X3 = [2, 3] \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (9)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

4:

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$X1 - [1, 1]$$
 $X2 = [1, 5]$
 $X3 = [2, 6]$

$$X4 = \emptyset$$

Ludwig — — — Maximilians — Universität.

München ____

Beispiel (10)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

4:

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, +\infty]
\end{cases}$$

$$X3 = [2, 6]$$

$$X4 = \emptyset$$

Universität ___ München ____

Beispiel (11)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, +\infty] \\
X3 = [2, +\infty] \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (12)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 9999] \\
X3 = [2, +\infty] \\
X4 = \emptyset
\end{cases}$$

Universität ___ München ____

Beispiel (13)

$$x := 1;$$

1:

while x < 10000 do

2:

$$x := x+1$$

3:

od;

4:

$$\begin{cases} X1 = [1, 1] \\ X2 = (X1 \ \Box \ X3) \cap [-\infty, 9999] \\ X3 = X2 \ \Theta \ [1, 1] \\ X4 = (X1 \ \Box \ X3) \cap [100000, \infty] \end{cases}$$

$$\begin{cases}
X1 = [1, 1] \\
X2 = [1, 9999] \\
X3 = [2, +10000] \\
X4 = \emptyset
\end{cases}$$

Ludwig-Maximilians -

Un iversität München ____

Beispiel (14)

$$x := 1;$$

while x < 10000 do

2:

$$x := x+1$$

3:

od;

X1 = [1, 1]
X2 = (X1
$$\stackrel{\square}{}$$
 X3)∩[-∞, 9999]
X3 = X2 $\stackrel{\square}{}$ [1, 1]
X4 = (X1 $\stackrel{\square}{}$ X3)∩[10000,∞]

$$X1 = [1, 1]$$

$$X3 = [2, +10000]$$

Universität ___ München ____

Beispiel (15)

$$x := 1;$$

1: $\{x = 1\}$

while x < 10000 do

 $2: \{x \in [1, 9999]\}$

x := x+1

3: $\{x \in [2, 10000]\}$

od;

4: $\{x = 10000\}$

$$X1 = [1, 1]$$

$$X2 = (X1 \cup X3) \cap [-\infty, 9999]$$

$$X3 = X2 \Theta [1, 1]$$

$$X1 = [1, 1]$$

$$X2 = [1, 9999]$$

$$X3 = [2, +10000]$$

$$X4 = [10000, 10000]$$

München ____

Abstrakte Interpretation I

III.Zusammenfassung