
Verifying Program Optimizations in Agda

Case Study: List Deforestation

Andreas Abel

16 July 2009

This is a case study on proving program optimizations correct. We prove the foldr-unfold

fusion law, an instance of deforestation. As a result we show that the summation of the

�rst n natural numbers, implemented by producing the list n :: ... :: 1 :: 0 :: [] and

summing up the its elements, can be automatically optimized into a version which does

not use an intermediate list.

module Fusion where

open import Data.Maybe

open import Data.Nat

open import Data.Product

open import Data.List hiding (downFrom)
open import Relation.Binary.PropositionalEquality

import Relation.Binary.EqReasoning as Eq

From Data.List we import foldr which is the standard iterator for lists.

foldr : {a b : Set} → (a→ b→ b)→ b→ List a→ b

foldr c n [] = n

foldr c n (x :: xs) = c x (foldr c n xs)

Further, sum sums up the elements of a list by replacing [] by 0 and _::_ by +.

sum : List N→ N
sum = foldr _+_ 0

Finally, unfold is a generic list producer. It takes two parameters, f : B→ Maybe (A × B),
the transition function, and s : B, the start state. Now f is iterated on the start state.

If the result of applying f on the current state is nothing, an empty list is output and the

list production terminates. If the application of f yields just (x, s') then x is taken to be

the next element of the list and s' the new state of the production.

In Agda, everything needs to terminate, so we add a (hidden) parameter n : N which

is an upper bound on the number of elements to be produced. Each iteration decreases

1

this number. Consequently the type B : N → Set is now parameterized by n, and

f : ∀ {n} → B (suc n)→ Maybe (A × B n) can only be applied to a state B (suc n) where
still an element could be output.

unfold : {A : Set} (B : N→ Set)
(f : ∀ {n} → B (suc n)→ Maybe (A × B n))→
∀ {n} → B n→ List A

unfold B f {n = zero} s = []
unfold B f {n = suc n} s with f s

... | nothing = []

... | just (x, s') = x :: unfold B f s'

A typical instance of unfold is the function downFrom from the standard library with

the behavior downFrom 3 = 2 :: 1 :: 0 :: []. We reimplement it here, avoiding local

de�nitions as used in the standard library.

data Singleton : N→ Set where

wrap : (n : N)→ Singleton n

downFromF : ∀ {n} → Singleton (suc n)→ Maybe (N × Singleton n)
downFromF {n} (wrap ◦ (suc n)) = just (n,wrap n)

downFrom : N→ List N
downFrom n = unfold Singleton downFromF (wrap n)

sumFrom : N→ N
sumFrom zero = zero

sumFrom (suc n) = n + sumFrom n

Our goal is to show the theorem ∀ n→ sum (downFrom n) ≡ sumFrom n.

The theorem follows from general considerations:

• sum is a foldr, it consumes a list.

• downFrom is a unfold, it produces a list.

The list is only produced to be consumed again. Can we optimize away the intermediate

list?

Removing intermediate data structures is called deforestation, since data structures

are tree-shaped in the general case.

In our case, we would like to fuse an unfold followed by a foldr into a single function

foldUnfold which does not need lists. We observe that a foldr after an unfold satis�es the

following equations:

foldr c n (unfold B f {zero} s) = n

foldr c n (unfold B f {suc m} s | f s = nothing) = n

foldr c n (unfold B f {suc m} s | f s = just (x, s'))

2

= foldr c n (x :: unfold B f s')
= c x (foldr c n (unfold B f s'))

In the recursive case, the pattern foldr c n ◦ unfold B f resurfaces, and it contains all the

recursive calls to foldr and unfold. Hence, we can introduce a new function foldUnfold as

foldUnfold c n B f = foldr c n ◦ unfold B f

foldUnfold : {A C : Set} → (A→ C→ C)→ C→
(B : N→ Set)→ (∀ {n} → B (suc n)→ Maybe (A × B n))→
{n : N} → B n→ C

foldUnfold c n B f {zero} s = n

foldUnfold c n B f {suc m} s with f s

... | nothing = n

... | just (x, s') = c x (foldUnfold c n B f {m} s')

foldUnfold does not produce an intermediate list.

It is easy to show that the de�nition of foldUnfold is correct.

foldr-unfold : {A C : Set} → (c : A→ C→ C)→ (n : C)→
(B : N→ Set)→ (f : ∀ {n} → B (suc n)→ Maybe (A × B n))→
{m : N} → (s : B m)→
foldr c n (unfold B f s) ≡ foldUnfold c n B f s

foldr-unfold c n B f {zero} s = re�

foldr-unfold c n B f {suc m} s with f s

... | nothing = re�

... | just (x, s') = cong (c x) (foldr-unfold c n B f {m} s')

sumFrom is a special case of foldUnfold.

lem1 : ∀ {n} → foldUnfold _+_ 0 Singleton downFromF (wrap n) ≡ sumFrom n

lem1 {zero} = re�

lem1 {suc n} = cong (λ m→ n + m) (lem1 {n})

Our theorem follows by composition of the two lemmata.

thm : ∀ {n} → sum (downFrom n) ≡ sumFrom n

thm {n} = begin

sum (downFrom n)

≡〈 re� 〉
foldr _+_ 0 (unfold Singleton downFromF (wrap n))

≡〈 foldr-unfold _+_ 0 Singleton downFromF (wrap n) 〉
foldUnfold _+_ 0 Singleton downFromF (wrap n)

≡〈 lem1 {n} 〉

3

sumFrom n

�
where open ≡-Reasoning

That's it!

4

