
Normalization by Evaluation for

Intuitionistic Propositional Logic

Andreas Abel

July 2018

1 Intuitionistic Propositional Logic (IPL)

Formulas and hypotheses lists (contexts).

Atom 3 P,Q atomic propositions
Form 3 A,B,C, . . . ::= > | A ∧B | A⇒ B negative formulas

| ⊥ | A ∨B | P positive formulas

Cxt 3 Γ,∆ ::= ∅ empty context
| Γ.A context extension

We write just A for the singleton context ∅.A.
Indices x into the context Γ of hypothesis, locating hypothesis A, are written

x : Hyp(A)Γ and defined inductively by the following constructors:

top : Hyp(A)Γ.A

x : Hyp(A)Γ

popB x : Hyp(A)Γ.B

Derivations t of the truth of a formula A under assumptions Γ (judgement
Γ ` A) are written t : Tm(A)Γ and defined inductively as follows:

Implication and hypotheses.

x : Hyp(A)Γ

hyp x : Tm(A)Γ

t : Tm(B)Γ.A

impI t : Tm(A⇒ B)Γ

t : Tm(A⇒ B)Γ u : Tm(A)Γ

impE t u : Tm(B)Γ

Truth and conjunction.

trueI : Tm(>)Γ

t : Tm(A)Γ u : Tm(B)Γ

andI t u : Tm(A ∧B)Γ

t : Tm(A ∧B)Γ

andE1 t : Tm(A)Γ

t : Tm(A ∧B)Γ

andE2 t : Tm(B)Γ

1

Absurdity and disjunction.

t : Tm(A)Γ

orI1 t : Tm(A ∨B)Γ

t : Tm(B)Γ

orI2 t : Tm(A ∨B)Γ

t : Tm(⊥)Γ

falseE t : Tm(C)Γ

t : Tm(A ∨B)Γ u : Tm(C)Γ.A v : Tm(C)Γ.B

orE t u v : Tm(C)Γ

2 Subformula property and normal derivations

For every derivable judgement Γ ` A there are infinitely many derivations
t : Tm(A)Γ, since arbitrary detours are allowed. For instance to prove > we can
also proceed very indirectly by introducing a hypothesis > and then eliminating
it by proof trueI:

impE (impI (hyp top)) trueI : Tm(>)∅.

A sensible restriction is that the proof rules guarantee that only subformulas of
A and the hypotheses in Γ are mentioned when deriving Γ ` A.

The following indexed grammar for normal derivations Nf(A)Γ of judge-
ment Γ ` A ensures the subformula property. It is defined mutually with a
grammar Ne(A)Γ of neutral derivations. Neutral derivations are “straight-line”
consequences of hypotheses (without case distinction or absurdity elimination).

Implication and hypotheses.

x : Hyp(A)Γ

hyp x : Ne(A)Γ

t : Nf(B)Γ.A

impI t : Nf(A⇒ B)Γ

t : Ne(A⇒ B)Γ u : Nf(A)Γ

impE t u : Ne(B)Γ

Truth and conjunction.

trueI : Nf(>)Γ

t : Nf(A)Γ u : Nf(B)Γ

andI t u : Nf(A ∧B)Γ

t : Ne(A ∧B)Γ

andE1 t : Ne(A)Γ

t : Ne(A ∧B)Γ

andE2 t : Ne(B)Γ

Absurdity and disjunction.

t : Nf(A)Γ

orI1 t : Nf(A ∨B)Γ

t : Nf(B)Γ

orI2 t : Nf(A ∨B)Γ

t : Ne(⊥)Γ

falseE t : Nf(C)Γ

t : Ne(A ∨B)Γ u : Nf(C)Γ.A v : Nf(C)Γ.B

orE t u v : Nf(C)Γ

Embedding.
t : Ne(P)Γ

ne t : Nf(P)Γ

The introduction rules generate normal forms (Nfs) from Nfs. The elimina-
tion rules for negative formulas generate neutrals (Nes) from Nes, where impE
requires a side argument in normal form.

2

Some care is needed with the elimination rules for positive formulas which
are falseE and orE. These prove an arbitrary formula C, which, for the sake
of the subformula property, should not be subject to further elimination but
directly prove the goal. Thus, in addition to restriction the elimination to
neutrals (perform case distinction only on neutrals), we require them to produce
a normal form in case of orE from normal branches.

Any neutral derivation at atomic proposition P is considered normal. The
restriction on atoms is not needed for the subformula property, but forces deriva-
tions to be η-long. We could drop the restriction, but even with this restriction,
the calculus is complete, meaning that for every derivation (Tm) there exists
a normal derivation (Nf). This statement is called normalization and we will
prove it constructively in the following.

3 Categories and Presheaves

We define order-preserving embeddings (OPEs) τ : (∆ ≤ Γ) of a context Γ into
a larger context ∆ inductively by the following constructors.

idΓ : Γ ≤ Γ

τ : ∆ ≤ Γ

weakA τ : ∆.A ≤ Γ

τ : ∆ ≤ Γ

liftA τ : ∆.A ≤ Γ.A

For example weakD (liftC (weakB idA)) : A.B.C.D ≤ A.C. OPEs let us intro-
duce extra, unused hypotheses into the context. Derivations of Γ ` A can be
weakened to derivations ∆ ` A for ∆ ≤ Γ.

OPEs are closed under composition: If τ : ∆ ≤ Γ and τ ′ : Φ ≤ ∆ then
τ ◦ τ ′ : Φ ≤ ∆. Let OPE be the category of contexts (as objects) and OPEs (as
morphisms).

Exercise 1 Define composition of OPEs by induction and show that OPE is
indeed a category.

The context-indexed sets Hyp(A), Tm(A), Nf(A), and Ne(A) are closed un-
der weakening. E. g. Hyp: for each τ : ∆ ≤ Γ we have a function

Hyp(A)τ : Hyp(A)Γ → Hyp(A)∆,

i. e., a morphism in the category SET of sets and functions. The collection
Hyp(A) : (τ : ∆ ≤ Γ) → (Hyp(A)Γ → Hyp(A)∆) of these function constitutes
a contravariant functor Hyp(A) : OPE → SET mapping OPEs to functions. In
other words, Hyp(A) is a presheaf over OPE for each A, and so are Tm(A),
Nf(A), and Ne(A).

Exercise 2 Prove that Hyp(A), Tm(A), Nf(A), and Ne(A) are presheaves over
OPE by defining the map functions and proving the functor laws!

A function f between presheaves A and B is defined pointwise; we write
f : A ·→ B for the Cxt-indexed collection

fΓ : AΓ → BΓ

of functions (morphisms in SET). Presheaves and functions between them make
a category by virtue of pointwise identity and composition. However, typically

3

the functions we consider are natural in the context index, i. e., they are natu-
ral transformations between presheaves, which means that they commute with
OPEs. Given τ : ∆ ≤ Γ and f : A ·→ B, naturality means

f∆ ◦ Aτ = Bτ ◦ fΓ.

In words, first weakening with τ and then applying f has the same effect as
applying f first and perform the weakening later. This guarantees some form of
parametricity of f in the context, in particular, f cannot make decisions based
on the length of the context or its precise contents.

Presheaves over OPE and natural transformations form a category PSh, tra-

ditionally called ÔPE.

Exercise 3 Prove that PSh is indeed a category.

Exercise 4 Prove that the following functions are morphisms in PSh:

hyp : Hyp(A)
·→ Ne(A)

andE1 : Ne(A ∧B)
·→ Ne(A)

orI1 : Nf(A)
·→ Nf(A ∨B)

falseE : Ne(⊥)
·→ Nf(C)

Find other examples of presheaf morphisms.

4 NbE for the negative fragment

We wish to define a normalization function for derivations of any formula A

normA : Tm(A)
·→ Nf(A).

Normalization by evaluation (NbE) achieves normalization by first evaluating
terms, obtaining values and functions that compute by means of the compu-
tation in the meta language, i.e., in SET. As a second step, these values are
reified back into syntax, yielding a normal form. Technically, we define a suitable
presheaf [[A]] for each formula A and two functions

evalA : Tm(A)
·→ [[A]]

reifyA : [[A]]
·→ Nf(A)

which compose to norm.

4.1 Semantics, reflection and reification

For now, let us focus on the negative formulas >, A ∧B, A⇒ B and atoms P .

[[P]] = Nf(P) reifyPΓ t = t

[[>]] = 1̂ reify>Γ = trueI

[[A ∧B]] = [[A]] ×̂ [[B]] reifyA∧BΓ (a, b) = andI (reifyAΓ a) (reifyBΓ b)

4

Herein, we use the unit presheaf 1̂Γ = 1 where 1 is the unit set, and the pointwise
product of presheaves (A ×̂ B)Γ = AΓ ×BΓ. We note that by these definitions,
the category PSh has products, with the pointwise terminal morphisms:

! : A ·→ 1̂ [,] : (f : C ·→ A)(g : C ·→ B)→ (C ·→ A ×̂ B)
!Γ(a) = () [f, g]Γ(c) = (f(c), g(c))

The interpretation [[A⇒ B]] of implication will follow the Brouwer-Heyting-
Kolmogorov (BHK) interpretation of intuitionistic logic:

A proof of A⇒ B is a method turning any proof of A into a proof of B.

However, the direct lifting of the function space [[A⇒ B]]Γ = [[A]]Γ → [[B]]Γ does
not work. It does not give a presheaf because of the contravariant occurrence
of presheaf [[A]]. Instead, we force monotonicity by quantifying over all OPEs
of Γ:

[[A⇒ B]]Γ =
∏

∆:Cxt

∏
τ :∆≤Γ

([[A]]∆ → [[B]]∆)

Reification is also challenging. Let f : [[A⇒ B]]Γ and attempt

reifyA⇒BΓ f = impI (reifyBΓ.A (fΓ.A (weakA idΓ) ?))

where hole “?” should be filled with an element of [[B]]Γ.A which intuitively
should represent the new hypothesis > : Hyp(A)Γ.A introduced by impI. Thus

we need a natural transformation Hyp(A)
·→ [[A]] which reflects variables into

the semantics. In order to define it by induction on A, we need to generalize it
to

reflectA : Ne(A)
·→ [[A]].

Let us make sure we can define it at atoms and conjunctions:

reflectP = ne : Ne(P)
·→ Nf(P)

reflect> = ! : Ne(>)
·→ 1̂

reflectA∧B = 〈 reflectA ◦ andE1 , reflectB ◦ andE2 〉 : Ne(A ∧B)
·→ [[A]] ×̂ [[B]]

Observe the eliminations andEi introduced to reflect conjunctive hypotheses!
Now, we can complete the story for implication. Let τ : ∆ ≤ Γ and a : [[A]]∆

and set:

reflectA⇒B : Ne(A⇒ B)
·→ [[A⇒ B]]

reflectA⇒BΓ t ∆ τ a = reflectB∆ (impE (Ne(B)τ t) (reifyA∆ a))

reifyA⇒B : [[A⇒ B]]
·→ Nf(A⇒ B)

reifyA⇒BΓ f = impI (reifyBΓ.A (fΓ.A (weakA idΓ) (reflectAΓ.A (hyp top)))

Exercise 5 Let A = ((P ⇒ Q)∧(Q⇒ >))⇒ Q for some atoms P,Q. Compute
reflectAA (hyp top).

Exercise 6 Let A = (P ⇒ Q) ⇒ (P ⇒ Q) for some atoms P,Q. Compute
reifyA ◦ reflectA.

Exercise 7 Using the constructions in this section, show that the category of
presheaves and natural transformations is Cartesian closed.

5

4.2 Evaluation

Evaluation is turning an expression t : Tm(A)Γ into a value in [[A]]. However,

a direct definition evalA : Tm(A)
·→ [[A]] by induction on the expression fails in

case impI:

evalA⇒BΓ : Tm(A)Γ → [[A⇒ B]]Γ
evalA⇒B (impI t) ∆ a = ?

To be able to pass the argument a to the function eval (impI t), we have to
generalize evaluation to take an valuation of the context into account.

evalA⇒BΓ (t) : [[Γ]]
·→ [[A⇒ B]]

Here, [[Γ]] is the presheaf obtained as the product of the hypotheses contained
in Γ:

[[∅]] = 1̂
[[Γ.A]] = [[Γ]] ×̂ [[A]]

Looking up values in the environment is the following family of natural trans-
formations:

lookupAΓ : Hyp(A)Γ → ([[Γ]]
·→ [[A]])

lookupAΓ.A(top) ∆ (γ, a) = a

lookupAΓ.B(pop x) ∆ (γ, a) = lookupAΓ (x) ∆ γ

Exercise 8 Express lookup via the projections πi : A1 ×̂ A2
·→ Ai out of the

presheaf product.

We are ready to define evaluation:

evalAΓ (hyp x) = lookupAΓ (x)

evalA⇒BΓ (impI t) ∆ γ ∆′ (τ : ∆′ ≤ ∆) a = evalBΓ.A(t) ∆′ ([[Γ]]τγ, a)

evalBΓ (impE t u) ∆ γ = evalA⇒BΓ (t) ∆ γ ∆ id∆ (evalAΓ (u) ∆ γ)

Exercise 9 Complete the definition of eval for conjunctions.

Exercise 10 Express eval in terms of the operations of the CCC of presheaves!

4.3 Normalization

Normalization is reification after evaluation in the identity environment:

normA : Tm(A)
·→ Nf(A)

normA
Γ t = reifyAΓ (evalAΓ (t) Γ envΓ)

The identity environment envΓ is defined by induction on Γ as follows:

envΓ : [[Γ]]Γ
env∅ = ()

envΓ.A = ([[Γ]]weakA idΓ
(envΓ), reflectAΓ.A (hyp top))

6

4.4 Digression: The CCC of reifiable presheaves

Instead of defining the semantics [[A]] of formula A by induction on A, we can
consider a category whose objects are interpretations of formulas, and show that
this category is Cartesian closed.

An object in this category would be a quadruple consisting of:

A : PSh a presheaf
A : Form a formula

reflectA : Ne(A)
·→ A a method to reflect neutrals into A

reifyA : A ·→ Nf(A) a method to reify values of A

Exercise 11 Complete this definition by a suitable notion of morphism.

Exercise 12 Show that this category is Cartesian closed.

5 Disjunction and absurdity

For sets S1, S2 : SET let S1 + S2 denote the disjoint union with injections
inji : Si → S1 + S2 and case distinction distinction [f1, f2] : S1 + S2 → T for
fi : Si → T such that [f1, f2] ◦ inji = fi.

Presheaf coproduct is given pointwise by (A +̂ B)Γ = AΓ + BΓ.

Exercise 13 Show that +̂ is indeed a coproduct in PSh.

5.1 Semantics, reflection and reification

The first idea how to model disjunction, [[A∨B]]Γ = [[A]]Γ + [[B]]Γ, fails because
we cannot reflect disjunctive hypotheses. E. g., an element of [[A∨B]]A∨B should
be of the form inj1 a or inj2 b, but the decision on first or second injection cannot
be made here; it depends on the hypothesis A∨B. The solution is to extend the
semantics to allow case distinction on variables (and neutrals) before making
the decisions needed for disjunctions.

Given a presheaf A, we define a new presheaf Cover (A) inductively by the
following constructors:

a : AΓ

returnC a : Cover (A)Γ

t : Ne(⊥)Γ

falseC t : Cover (A)Γ

t : Ne(C ∨D)Γ c : Cover (A)Γ.C d : Cover (A)Γ.D

orC t c d : Cover (A)Γ

Exercise 14 Show that Cover (A) is indeed a presheaf.

We can think of c : Cover (A)Γ as a decision tree with leaves in A and nodes
labeled by terms we case on. Nodes of type falseC have no subtrees since ex
falsum quod libet, and orC nodes casing on t : Ne(C ∨ D)Γ have two subtrees,
one having a new hypothesis C, and one having a new hypothesis D.

We can replace all the leaves according to a function f : A ·→ B, this makes
Cover a functor in the category of presheaves. We can also replace all the leaves
by new case trees via a natural transformation

joinC : Cover (Cover (A))
·→ Cover (A)

7

which makes Cover a monad in PSh.

Exercise 15 Define the functorial action Cover (f) and joinC and prove the
monad laws.

Further, if the leaves of a case tree are normal forms, we can turn it into one
big normal form via:

pasteNf : Cover (Nf(A))
·→ Nf(A)

Exercise 16 Define pasteNf.

We have everything now to model disjunction:

[[A ∨B]] = Cover ([[A]] +̂ [[B]])

reflectA∨B : Ne(A ∨B)
·→ [[A ∨B]]

reflectA∨BΓ t = orC t (returnC (inj1(reflectAΓ.A (hyp top))))

(returnC (inj2(reflectBΓ.B (hyp top))))

reifyOrA∨B : [[A]] +̂ [[B]]
·→ Nf(A ∨B)

reifyOrA∨BΓ (inj1 a) = orI1 (reifyAΓ a)

reifyOrA∨BΓ (inj2 b) = orI2 (reifyBΓ b)

reifyA∨B : [[A ∨B]]
·→ Nf(A ∨B)

reifyA∨B = pasteNf ◦ Cover (reifyOrA∨B)

Reification works by first reifying the leaves of the case tree using reifyOr, and
then turning the whole tree into a normal form using pasteNf.

Exercise 17 Compute reifyP∨QP∨Q (reflectP∨QP∨Q (hyp top)).

For absurdity, we use the presheaf 0̂Γ = {} with initial morphism ⊥−elim : 0̂
·→

C.
[[⊥]] = Cover 0̂

reflect⊥ : Ne(⊥)
·→ [[⊥]]

reflect⊥Γ t = falseC t

reify⊥ : [[⊥]]
·→ Nf(⊥)

reify⊥ = pasteNf ◦ Cover (⊥−elim)

To reify a value c : [[⊥]], observe that because 0̂ is empty, c can only be a case
tree without leaves, i. e., all branches end in falseC nodes. Thus, the mapping
Cover (⊥−elim) : Cover (0̂)

·→ Cover (Nf(⊥)) is merely a type cast. The subse-
quent pasteNf will turn the leafless tree c into a normal form consisting entirely
of splits orE and falseE.

Exercise 18 Prove that reifyA ◦ reflectA produces the long η-normal form if
applied to variables (i. e., hypotheses).

8

5.2 Evaluation

Evaluation poses one more challenge. Consider the term:

x : Hyp(C ∨D)Γ f : Tm(A⇒ B)Γ.C g : Tm(B)Γ.D.A a : Tm(A)Γ

impE (orE (hyp x) f (impI g)) a : Tm(B)Γ

There is a redex impE (impI g) a separated by an orE. The function term
orE (hyp x) f (impI g) would naturally evaluate to a case tree with functions in
the leaves. To apply it to the evaluation of a, we have to apply each leaf to that
argument. We facilitate this by implementing

pasteA⇒B : Cover ([[A⇒ B]])
·→ [[A⇒ B]]

that turns a case tree of functions into a function which expects an argument
that will then be passed to all the functions in the case tree. In fact, we need
pasting at all formulas A:

pasteA : Cover [[A]]
·→ [[A]]

pasteP = pasteNf
paste⊥ = joinC
pasteA∨B = joinC
pasteA∧B = 〈 pasteA ◦ Cover (π1) , pasteB ◦ Cover (π2) 〉
pasteA⇒BΓ c ∆ (τ : ∆≤Γ) (a : [[A]]∆) = (pasteB∆ ◦mapC∆(ϕ) ◦ Cover ([[A⇒ B]]τ)) c

In the case of implication A⇒ B, we need a stronger version of functoriality of
Cover which only requires a

ϕ :
∏
Φ

∏
δ:Φ≤∆

AΦ → BΦ

to produce a mapC∆(ϕ) : Cover (A)∆ → Cover (B)∆. In our case, A = [[A⇒ B]]
and B = [[B]] and

ϕΦ δ f = f idΦ ([[A]]δ a).

Pasting allows us to complete the definition of evaluation.

evalAΓ : Tm(A)Γ → [[Γ]]
·→ [[A]]

evalCΓ (orE t u v)∆ γ = pasteC∆ (mapC∆(λΦ (τ : Φ ≤ ∆)→ [f, g]) c)

where c = evalA∨BΓ (t) ∆ γ

f a = evalCΓ.A(u) Φ ([[Γ]]τ γ, a)

g b = evalCΓ.B(v) Φ ([[Γ]]τ γ, b)

Exercise 19 Really complete the definition of eval (all missing cases).

That’s it!

6 Literature

Further reading on normalization by evaluation in general:

9

1. U. Berger and H. Schwichtenberg. An inverse to the evaluation functional
for typed λ-calculus. In LICS’91, 1991

2. A. Jung and J. Tiuryn. A new characterization of lambda definability. In
TLCA’93, volume 664 of LNCS, 1993

3. T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction
of a reduction free normalization proof. In CTCS’95, volume 953 of LNCS,
1995

4. A. Abel. Normalization by Evaluation: Dependent Types and Impredica-
tivity. Habilitation thesis, Ludwig-Maximilians-University Munich, 2013

Literature dealing in particular with the case of disjunction / disjoint sums:

1. O. Danvy. Type-directed partial evaluation. In POPL’96, 1996

2. M. P. Fiore and A. K. Simpson. Lambda definability with sums via
Grothendieck logical relations. In TLCA’99, volume 1581 of LNCS, 1999

3. T. Altenkirch, P. Dybjer, M. Hofmann, and P. J. Scott. Normalization by
evaluation for typed lambda calculus with coproducts. In LICS’01, 2001

4. V. Balat, R. D. Cosmo, and M. P. Fiore. Extensional normalisation and
type-directed partial evaluation for typed lambda calculus with sums. In
POPL’04, 2004

5. T. Altenkirch and T. Uustalu. Normalization by evaluation for λ→2. In
FLOPS’04, volume 2998 of LNCS, 2004

6. F. Barral. Decidability for non-standard conversions in lambda-calculus.
PhD thesis, Ludwig-Maximilians-University Munich, 2008

7. G. Scherer. Deciding equivalence with sums and the empty type. In
POPL’17, 2017

7 Conclusion

Acknowledgments. The presentation of this NbE proof and its Agda formaliza-
tion benefited greatly from discussions with Christian Sattler. Thanks to Jesper
Cockx for listening to a prerun of the talk.

10

