
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Elaborating dependent (co)pattern matching

JESPER COCKX and ANDREAS ABEL, Department of Computer Science and Engineering, Chalmers
and Gothenburg University, Sweden

In a dependently typed language, we can guarantee correctness of our programs by providing formal proofs.
To check them, the typechecker elaborates these programs and proofs into a low level core language. However,
this core language is by nature hard to understand by mere humans, so how can we knowwe proved the right
thing? This question occurs in particular for dependent copattern matching, a powerful language construct
for writing programs and proofs by dependent case analysis and mixed induction/coinduction. A definition
by copattern matching consists of a list of clauses that are elaborated to a case tree, which can be further
translated to primitive eliminators. In previous work this second step has received a lot of attention, but the
first step has been mostly ignored so far.

We present an algorithm elaborating definitions by dependent copattern matching to a core language with
inductive datatypes, coinductive record types, an identity type, and constants defined bywell-typed case trees.
To ensure correctness, we prove that elaboration preserves the first-match semantics of the user clauses. Based
on this theoretical work, we reimplement the algorithm used by Agda to check left-hand sides of definitions
by pattern matching. The new implementation is at the same time more general and less complex, and fixes
a number of bugs and usability issues with the old version. Thus we take another step towards the formally
verified implementation of a practical dependently typed language.

1 INTRODUCTION
Dependently typed functional languages such as Agda [2017], Coq [INRIA 2017], Idris [2013], and
Lean [de Moura et al. 2015] combine programming and proving into one language, so they should
be at the same time expressive enough to be useful and simple enough to be sound. These ap-
parently contradictory requirements are addressed by having two languages: a high-level surface
language that focuses on expressivity and a small core language that focuses on simplicity. The
main role of the typechecker is then to elaborate the high-level surface language into the low-level
core.
Since the difference between the surface and core languages can be quite large, the elaboration

process can be, well, elaborate. If there is an error in the elaboration process, our program or
proof may still be accepted by the system but its meaning is not what was intended [Pollack 1998].
In particular, the statement of a theorem may depend on the correct behaviour of some defined
function, so if somethingwentwrong in the elaboration of these definitions, the theorem statement
may not be what it seems. As an extreme example, we may think we have proven an interesting
theorem when in fact, we have only proven something trivial. This may be detected in a later
phase when trying to use this proof, or it may not be detected at all. Unfortunately, there is no
bulletproof way to avoid such problems: each part of the elaboration process has to be verified
independently to make sure it produces something sensible.
One important part of the elaboration process is the elaboration of definitions by dependent

pattern matching [Coquand 1992]. Dependent pattern matching provides a convenient high-level
interface to the low-level constructions of case splitting, structural induction, and specialization
by unification. The elaboration of dependent pattern matching goes in two steps: first the list of
1This paper is best viewed in color.
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1:2 Jesper Cockx and Andreas Abel

clauses given by the user is translated to a case tree, and then the case tree is further translated
to a term that only uses the primitive datatype eliminators.2 The second step has been studied in
detail and is known to preserve the semantics of the case tree precisely [Cockx 2017; Goguen et al.
2006]. In contrast, the first step has received much less attention.
The goal of this paper is to formally describe an elaboration process of definitions by dependent

pattern matching to a well-typed case tree for a realistic dependently typed language. Compared
to the elaboration processes described by Norell [2007] and Sozeau [2010], we make the following
improvements:
• We include both pattern and copattern matching.
• We are more flexible in the placement of forced patterns.
• We prove that the translation preserves the first-match semantics of the user clauses.

We discuss each of these improvements in more detail below.

Copatterns. Copatterns provide a convenient way to define and reason about infinite structures
such as streams [Abel et al. 2013]. They can be nested andmixed with regular patterns. Elaboration
of definitions by copattern matching has been studied for simply typed languages by Setzer et al.
[2014], but so far the combination of copatterns with general dependent types has not been studied
in detail, even though it has already been implemented in Agda.
One complication when dealing with copatterns in a dependently typed language is that the

type of a projection can depend on the values of the previous projections. For example, define the
coinductive type CoNat of possibly infinite natural numbers by the two projections iszero : Bool
and pred : iszero ≡Bool false→ CoNat. We use copatterns to define the co-natural number cozero:

cozero : CoNat
cozero .iszero = true
cozero .pred ∅

(1)

Here the new constant cozero is being defined with the field iszero equal to true (and no value for
pred).
To refute the proof of cozero .iszero ≡Bool falsewith an absurd pattern ∅, the typechecker needs

to know already that cozero .iszero = true, so it needs to check the clauses in the right order.
This example also shows that with mixed pattern/copattern matching, some clauses can have

more arguments than others, so the typechecker has to deal with variable arity. This means that
we need to consider introducing a new argument as an explicit node in the constructed case tree.

Flexible placement of forced patterns. When giving a definition by dependent pattern matching
that involves forced patterns (also called presupposed terms [Brady et al. 2003] or inaccessible
patterns [Norell 2007] or, in Agda, dot patterns), there are often multiple positions where to place
them. For example, in the proof of symmetry of equality

sym : (x y : A) → x ≡A y → y ≡A x
sym x ⌊x⌋ refl = refl

(2)

it should not matter if we instead write sym ⌊x⌋ x refl = refl. In fact, we even allow the apparently
non-linear definition sym x x refl = refl.
Our elaboration algorithm addresses this by treating forced patterns as laziness annotations: they

guarantee that the function will not match against a certain argument. This allows the user to be
free in the placement of the forced patterns. For example, it is always allowed to write zero instead
of ⌊zero⌋, or x instead of ⌊x⌋.
2In Agda, case trees are part of the core language so the second step is skipped in practice, but it is still important to know
that it could be done in theory.
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Elaborating dependent (co)pattern matching 1:3

With our elaboration algorithm, it is easy to extend the pattern syntax with forced constructor
patterns such as ⌊suc⌋ n (Brady et al. [2003]’s presupposed-constructor patterns). These allow the
user to annotate that the function should not match on the argument but still bind some of the
arguments of the constructor.

Preservation of first-match semantics. Like Augustsson [1985] and Norell [2007], we allow the
clauses of a definition by pattern matching to overlap and use the first-match semantics in the
construction of the case tree. For example, when constructing a case tree from the definition

max : N→ N→ N
max zero y = y
max x zero = x
max (suc x ) (suc y) = suc (max x y)

(3)

we do not get max x zero = x but only max (suc x ′) zero = suc x ′. This makes a difference for
dependent type checking where we evaluate open terms with free variables like x . In this paper we
provide a proof that the translation from a list of clauses to a case tree preserves the first-match
semantics of the clauses. More precisely, we prove that if the arguments given to a function match
a clause and all previous clauses produce a mismatch,3 then the case tree produced by elaborating
the clauses also computes for the given arguments and the result is the same as the one given by
the clause.

Contributions.

• We present a dependently typed core language with inductive datatypes, coinductive record
types and an identity type. The language is focused [Andreoli 1992; Krishnaswami 2009;
Zeilberger 2008]: terms of our language correspond to the non-invertible rules to introduce
and eliminate these types, while the invertible rules constitute case trees.
• We are the first to present a coverage checking algorithm for fully dependent copatterns. Our
algorithm desugars deep copattern matching to well-typed case trees in our core language.
• We prove correctness: if the desugaring succeeds, then the behaviour of the case tree corre-
sponds precisely to the first-match semantics of the given clauses.
• We have implemented a new version of the algorithm used by Agda for checking the left-
hand sides of a definition by dependent (co)pattern matching, which has been released as
part of Agda 2.5.4.4 At the time of writing the effort to remodel the elaboration to a case
tree according to the theory presented in this paper is still ongoing, but our work so far
has already uncovered and fixed multiple issues in the old implementation [Agda issue
2017a,b,c,d, 2018a,b]. Our algorithm could also be used by other implementations of depen-
dent pattern matching such as the Equations package for Coq [Sozeau 2010], Idris [2013],
and Lean [de Moura et al. 2015].

This paper was born out of a practical need that arose while reimplementing the elaboration
algorithm for Agda: it was not clear to uswhat exactlywewanted to implement, andwe did not find
sufficiently precise answers in the existing literature. Our main goal in this paper is therefore to
give a precise description of the language, the elaboration algorithm, and the high-level properties
we expect them to have. This also means we do not focus on fully developing the metatheory of
the language or giving detailed proofs for all the basic properties one would expect.

3 Note that, in the example, the open term max x zero does not produce a mismatch with the first clause since it could
match if variable x was replaced by zero. In the first-match semantics, evaluation of max x zero is stuck.
4Agda 2.5.4 released on 2018/06/02, changelog: https://hackage.haskell.org/package/Agda-2.5.4/changelog.
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1:4 Jesper Cockx and Andreas Abel

We start by introducing definitions by dependent (co)pattern matching and our elaboration al-
gorithm to a case tree by a number of examples in Sect. 2. We then describe our core language in
Sect. 3: the syntax, the rules for typing and equality, and the evaluation rules. In Sect. 4 we give
the syntax and rules for case trees, and prove that a function defined by a well-typed case tree
satisfies type preservation and coverage. Finally, in Sect. 5 we describe the rules for elaborating a
definition by dependent (co)pattern matching to a well-typed case tree, and prove that this trans-
lation preserves the computational meaning of the given clauses. Sect. 6 discusses related work,
and Sect. 7 concludes.

2 ELABORATING DEPENDENT (CO)PATTERN MATCHING BY EXAMPLE
Before we move on to the general description of our core language and the elaboration process,
we give some examples of definitions by (co)pattern matching and how our algorithm elaborates
them to a case tree. The elaboration works on a configuration Γ ⊢ P | u : C consisting of:
• A context Γ, i.e. a list of variables annotated with types. Initially Γ is the empty context ϵ .
• The current target type C . This type may depend on variables bound in Γ. Initially C is the
type of the function being defined.
• A representation of the left-hand sideu. In the endu should have typeC in context Γ. Initially
u is the function being defined itself.
• A list of partially deconstructed user clauses P . Initially these are the clauses as written by
the user.

These four pieces of data together describe the current state of elaborating the definition.
The elaboration algorithm transforms this state step by step until the user clauses are decon-

structed completely. In the examples below, we annotate each step with a label such as SplitCon
or Intro, linking it to the general rules given in Sect. 5.

Example 1. Let us define a functionmax : N→ N→ N by patternmatching as in the introduction
(3). The initial configuration is ⊢ P0 | max : N→ N→ N where

P0 =

zero j ↪→ j
i zero ↪→ i
(suc k ) (suc l ) ↪→ suc (max k l )

(4)

The first operation we need is to introduce a new variable m (rule Intro). It transforms the
initial problem into (m : N) ⊢ P1 | maxm : N→ N where

P1 =

[m /? zero] j ↪→ j
[m /? i] zero ↪→ i
[m /? suc k] (suc l ) ↪→ suc (max k l )

(5)

This operation strips the first user pattern from each clause and replaces it by a constraintm /? p
that it should be equal to the newly introduced variable m. We write these constraints between
brackets in front of each individual clause.
The next operation we need is to perform a case analysis on the variablem (rule SplitCon).5

This transforms the problem into two subproblems ⊢ P2 | max zero : N → N and (p : N) ⊢
P3 | max (suc p) : N→ N where

P2 =

[zero /? zero] j ↪→ j
[zero /? i] zero ↪→ i
[zero /? suc k] (suc l ) ↪→ suc (max k l )

(6)

5At this point we could also introduce the variable for the second argument of max, the elaboration algorithm is free to
choose either option.
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Elaborating dependent (co)pattern matching 1:5

P3 =

[suc p /? zero] j ↪→ j
[suc p /? i] zero ↪→ i
[suc p /? suc k] (suc l ) ↪→ suc (max k l )

(7)

We simplify the constraints, removing those clauses with absurd constraints:

P2 =

{
j ↪→ j

[zero /? i] zero ↪→ i
P3 =

{
[suc p /? i] zero ↪→ i
[p /? k] (suc l ) ↪→ suc (max k l )

(8)

We continue applying these operations Intro and SplitCon (introducing a new variable and case
analysis on a variable) until the first clause has no more user patterns and no more constraints
where the left-hand side is a constructor. For example, for P2 we get after one more introduction
step (n : N) ⊢ P4 | max zero n : N where

P4 =

{
[n /? j] ↪→ j
[zero /? i,n /? zero] ↪→ i

(9)

We solve the remaining constraint in the first clause by instantiating j := n. Thismeanswe are done
andwe havemax zero n = j[n / j] = n (ruleDone). Similarly, elaborating (p : N) ⊢ P3 | max (suc p) :
N → N (with rules Intro, SplitCon, and Done) gives us max (suc p) zero = suc p and
max (suc p) (suc q) = suc (max p q).
We record the operations used when elaborating the clauses in a case tree. Our syntax for case

trees is close to the normal term syntax in other languages: λx . for introducing a new variable and
casex {} for a case split. For max, we get the following case tree:

λm. casem

zero 7→ λn. n

suc p 7→ λn. casen

{
zero 7→ suc p
suc q 7→ suc (max p q)

}  (10)

Example 2. Next we take a look at how to elaborate definitions using copatterns. For the cozero
example (1), we have the initial configuration ⊢ P0 | cozero : CoNat where:

P0 =

{
.iszero ↪→ true
.pred ∅ ↪→ impossible

(11)

Here we need a new operation to split on the result type CoNat (rule Cosplit). This produces two
subproblems ⊢ P1 | cozero .iszero and ⊢ P2 | cozero .pred : cozero .iszero ≡Bool false → CoNat
where

P1 =
{
↪→ true P2 =

{
∅ ↪→ impossible (12)

The first problem is solved immediately with cozero .iszero = true (rule Done). In the second
problem we introduce the variable x : cozero .iszero ≡Bool false (rule Intro) and note that
cozero .iszero = true from the previous branch, hence x : true ≡Bool false. Since true ≡Bool false is
an empty type (technically, since unification of truewith false results in a conflict), we can perform
a case split on x with zero cases (rule SplitEmpty), solving the problem.
In the resulting case tree, the syntax for a split on the result type is record{}, with one subtree

for each field of the record type:

record
{
iszero 7→ true
pred 7→ λx . casex {}

}
(13)

For the next examples, we omit the details of the elaboration process and only show the defini-
tion by pattern matching and the resulting case tree.
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1:6 Jesper Cockx and Andreas Abel

Example 3. Consider the typeCStream of C streams: potentially infinite streams of numbers that
end on a zero. We define this as a record where the tail field has two extra arguments enforcing
that we can only take the tail if the head is sucm for somem.

record self : CStream : Set where
head : N
tail : (m : N) → self .head ≡N sucm → CStream

(14)

Here, the name self is bound to the current record instance, allowing later projections to depend
on prior projections.
Now consider the function countdown that creates a C stream counting down from a given

number n:
countdown : N→ CStream
countdown n .head = n
countdown zero .tail m ∅
countdown (sucm) .tail m refl = countdownm

(15)

Our elaboration algorithm applies rules Intro, Cosplit, SplitCon, SplitEmpty, SplitEq, and
Done in sequence to translate this definition to the following case tree:

λn. record

head 7→ n

tail 7→ λm,p. casen

{
zero 7→ casep {}
suc n′ 7→ casep

{
refl 7→1m (countdownm)

} }  (16)

Note the extra annotation 1m after the case split on p : suc m ≡N suc n′. This is a substitution
(in this case the identity substitution on (m : N)) necessary for the evaluation rules of the case
tree when matching on refl. It reflects the fact that n′ went out of scope after the case split on
refl : suc n′ ≡N sucm (since unification instantiated it withm) so only the variablem can still be
used after this point.

Example 4. This example is based on issue #2896 on the Agda bug tracker [Agda issue 2018b].
The problem was that Agda’s old elaboration algorithm threw away a part of the pattern written
by the user. This meant the definition could be elaborated to a different case tree from the one
intended by the user.
The (simplified) example consists of the following datatype D and function foo:

data D (m : N) : Set where
c : (n : N) (p : n ≡N m) → Dm

foo : (m : N) → D (sucm) → N
foom (c (suc n) refl) = m + n

(17)

The old algorithm would ignore the pattern suc n in the definition of foo because it corresponds
to a forced pattern after the case split on refl. Our elaboration instead produces the following case
tree (using rules Intro, SplitCon, SplitEq, and Done):

λm,x . casex
{
c n p 7→ casep

{
refl 7→1m (m +m)

} }
(18)

Even though this case tree does not match on the suc constructor, it implements the same compu-
tational behaviour as the clause in the definition of foo because the first argument of c is forced to
be sucm by the typing rules.
This example also shows another feature supported by our elaboration algorithm, namely that

two different variablesm and n in the user syntax may correspond to the same variablem in the
core syntax. In effect, n is treated as a let-bound variable with valuem.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.
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Example 5. This example is based on issue #2964 on the Agda bug tracker [Agda issue 2018a].
The problem was that Agda was using a too liberal version of the first-match semantics that was
not preserved by the translation to a case tree. The problem occurred for the following definition:

f : (A : Set) → A→ Bool→ (A ≡Set Bool) → Bool
f ⌊Bool⌋ true true refl = true
f _ _ _ _ = false

(19)

This function is elaborated (both by Agda’s old algorithm and by ours) to the following case tree
(using rules Intro, SplitCon, SplitEq, and Done):

λA,x ,y,p. casey

true 7→ casep

{
refl 7→1x,y casex

{
true 7→ true
false 7→ false

}}
false 7→ false

 (20)

According to the (liberal) first-match semantics, we should have f Bool false y p = false for any
y : Bool and p : Bool ≡Set Bool, but this is not true for the case tree since evaluation gets stuck on
the variable y. Another possibility is to start the case tree by a split on p (after introducing all the
variables), but this case tree still gets stuck on the variable p. In fact, there is no well-typed case
tree that implements the first-match semantics of these clauses since we cannot perform a case
split on x : A before splitting on p.
One radical solution for this problem would be to only allow case trees where the case splits

are performed in order from left to right. However, this would mean the typechecker must reject
many definitions such as f in this example, because the type of x is not known to be a datatype
until the case split on A ≡Set Bool. Instead we choose to keep the elaboration as it is and restrict
the first-match semantics of clauses. In the example of f, this change means that we can only go
to the second clause once all three arguments x , y and p are constructors, and at least one of them
produces a mismatch.

3 CORE LANGUAGE
In this section we introduce a basic type theory for studying definitions by dependent (co)pattern
matching. It has support for dependent function types, an infinite hierarchy of predicative uni-
verses, equality types, inductive datatypes and coinductive records.

To keep the work in this paper as simple as possible, we leave out many features commonly
included in dependently typed languages, such as lambda expressions and inductive families of
datatypes (other than the equality type). These features can nevertheless be encoded in our lan-
guage, see Sect. 3.5 for details.
Note also that we do not include any rules for η-equality, neither for lambda expressions (which

do not exist) nor for records (which can be coinductive hence do not satisfy η). Sect. 3.5 discusses
how our language could be extended with η-rules.

3.1 Syntax of the core type theory
Expressions of our type theory are almost identical to Agda’s internal term language. All function
applications are in spine-normal form, so the head symbol of an application is exposed, be it vari-
able x , data D or record type R, or defined function f. We generalize applications to eliminations e
by including projections .π in spines ē . Any expression is in weak head normal form but f ē , which
is computed via pattern matching (see Sect. 3.4).
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1:8 Jesper Cockx and Andreas Abel

A,B,u,v ::= w weak head normal form
| f ē defined function applied to eliminations

W ,w ::= (x : A) → B dependent function type
| Setℓ universe ℓ
| D ū datatype fully applied to parameters
| R ū record type fully applied to parameters
| u ≡A v equality type
| x ē variable applied to eliminations
| c ū constructor fully applied to arguments
| refl proof of reflexivity

(21)

Any expression but c ū or refl can be a type; the first five weak head normal forms are definitely
types. Any type has in turn a type, specifically some universe Setℓ . Syntax is colored according
to the Agda conventions: primitives and defined symbols are blue, constructors are green, and
projections are pink.

e ::= u application
| .π projection (22)

Binary application u e is defined as a partial function on the syntax: for variables and functions
it is defined by (x ē ) e = x (ē, e ) and (f ē ) e = f (ē, e ) respectively, otherwise it is undefined.
Patterns are generated from variables and constructors. In addition, we have forced and absurd

patterns. Since we are matching spines, we also consider projections as patterns, or more precisely,
as copatterns.

p ::= x variable pattern
| refl pattern for reflexivity proof
| c p̄ constructor pattern
| ⌊c⌋ p̄ forced constructor pattern
| ⌊u⌋ forced argument
| ∅ absurd pattern

q ::= p application copattern
| .π projection copattern

(23)

Forced patterns [Brady et al. 2003] appear with dependent types; they are either entirely forced
arguments ⌊u⌋, which are Agda’s dot patterns, or only the constructor is forced ⌊c⌋ p̄. An argument
can be forced by a match against refl somewhere in the surrounding (co)pattern. However, some-
times we want to bind variables in a forced argument; in this case, we revert to forced constructors.
Absurd patterns6 are used to indicate that the type at this place is empty, i.e. no constructor can
possibly match. They are also used to indicate an empty copattern split, i.e. a copattern split on a
record type with no projections. This allows us in particular to define the unique element tt of the
unit record, which has no projections at all, by the clause tt ∅ = impossible.
The pattern variables PV(q̄) is the list of variables in q̄ that appear outside forcing brackets ⌊·⌋. By

removing the forcing brackets, patterns p embed into terms ⌈p⌉, and copatterns q into eliminations
⌈q⌉, except for the absurd pattern ∅.

⌈x⌉ = x
⌈refl⌉ = refl

⌈c p̄⌉ = c ⌈p̄⌉
⌈⌊c⌋ p̄⌉ = c ⌈p̄⌉

⌈⌊u⌋⌉ = u
⌈.π ⌉ = .π (24)

6Absurd patterns are written () in Agda syntax.
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Elaborating dependent (co)pattern matching 1:9

Constructors take a list of arguments whose types can depend on all previous arguments. The
constructor parameters are given as a list x1:A1, . . . ,xn :An with pairwise distinct xi where Ai can
depend on x1, . . . ,xi−1. This list can be conceived as a cons-list, then it is called a telescope, or as a
snoc-list, then we call it a context.

Γ ::= ϵ empty context
| Γ(x : A) context extension

∆ ::= ϵ empty telescope
| (x : A)∆ non-empty telescope (25)

Context and telescopes can be regarded as finite maps from variables to types, and we require
x < dom(Γ) and x < dom(∆) in the above grammars. We implicitly convert between contexts
and telescopes, but there are still some conceptual differences. Contexts are always closed, i.e. its
types only refer to variables bound prior in the same context. In contrast, we allow open telescopes
whose types can also refer to some surrounding context. Telescopes can be naturally thought of as
context extensions, and if Γ is a context and ∆ a telescope in context Γ where dom(Γ) and dom(∆)

are disjoint, then Γ∆ defined by Γϵ = Γ and Γ((x :A)∆) = (Γ(x :A))∆ is a new valid context. We
embed telescopes in the syntax of declarations, but contexts are used in typing rules exclusively.
Given a telescope ∆, let ∆̂ be ∆ without the types, i.e. the variables of ∆ in order. Further, we

define ∆→ C as the iterated dependent function type via ϵ → C = C and (x :A)∆→ C = (x :A) →
(∆→ C ).
A development in our core type theory is a list of declarations, of which there are three kinds:

data type, record type, and function declarations. The input to the type checker is a list of unchecked
declarations decl⊖ , and the output a list of checked declarations decl⊕ , called a signature Σ.

s ::= ⊖ status: unchecked
| ⊕ status: checked

decls ::= data D ∆ : Setℓ where con datatype declaration
| record self : R ∆ : Setℓ where field record declaration
| definition f : A where clss function declaration

con ::= c ∆ constructor declaration

field ::= π : A field declaration

cls⊖ ::= q̄ ↪→ rhs unchecked clause
cls⊕ ::= ∆ ⊢ q̄ ↪→ u : B checked clause

rhs ::= u clause body: expression
| impossible empty body for absurd pattern

Σ ::= decl⊕ signature

(26)

A data typeD can be parameterized by telescope∆ and inhabits one of the universes Setℓ . Each of
its constructors ci (although there might be none) takes a telescope ∆i of arguments that can refer
to the parameters in ∆. The full type of ci could be ∆∆i → D ∆̂, but we never apply constructors
to the data parameters explicitly.
A record type R can be thought of as a single constructor data type; its fields π1:A1, . . . ,πn:An

would be the constructor arguments. The field list behaves similar to a telescope, the type of each
field can depend on the value of the previous fields. However, these values are referred to via self .πi
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1:10 Jesper Cockx and Andreas Abel

where variable self is a placeholder for the value of the whole record.7 The full type of projection
πi could be ∆(self : R ∆̂) → Ai , but like for constructors, we do not apply a projection explicitly
to the record parameters.
Even though we do not spell out the conditions for ensuring totality in this paper, like positiv-

ity, termination, and productivity checking, data types, when recursive, should be thought of as
inductive types, and record types, when recursive, as coinductive types [Abel et al. 2013]. Thus,
there is no dedicated constructor for records; instead, concrete records are defined by what their
projections compute.
Such definitions are subsumed under the last alternative dubbed function declaration. More pre-

cisely, these are definitions by copattern matching which include record definitions. Each clause
defining the constant f : A consists of a list of copatterns q̄ and right hand side rhs. The copatterns
eliminate typeA into the type of the rhswhich is either a termu or the special keyword impossible,
in case one of the copatterns qi contains an absurd pattern ∅. The intended semantics is that if an
application f ē matches a left hand side f q̄ with substitution σ , then f ē reduces to rhs under σ . For
efficient computation of matching, we require linearity of pattern variables for checked clauses:
each variable in q̄ occurs only once in a non-forced position.
While checking declarations, the typechecker builds up a signature Σ of already checked (parts

of) declarations. Checked clauses are the elaboration (sections 2 and 5) of the corresponding
unchecked clauses: they are non-overlapping and supplemented by a telescope ∆ holding the types
of the pattern variables and the type B of left and right hand side. Further, checked clauses do not
contain absurd patterns.
In the signature, the last entrymight be incomplete, e.g. a data typemissing some constructors, a

record typemissing some fields, or a functionmissing some clauses. During checking a declaration,
we might add already checked parts of the declaration, dubbed snippets, to the signature.

Z ::= data D ∆ : Setℓ data type signature
| constructor c ∆c : D ∆ constructor signature
| record R ∆ : Setℓ record type signature
| projection self : R ∆ ⊢ .π : A projection signature
| definition f : A function signature
| clause ∆ ⊢ f q̄ ↪→ v : B function clause

(27)

Adding a snippet Z to a signature Σ, written Σ,Z is a always defined if Z is a data or record
type or function signature; in this case, the corresponding declaration is appended to Σ. Adding
a constructor signature constructor c ∆c : D ∆ is only defined if the last declaration in Σ is
(data D ∆ : Setℓ where con) and c is not part of con yet. Analogous conditions apply when
adding projection snippets. Function clauses can be added if the last declaration of Σ is a function
declaration with the same name. We trust the formal definition of Σ,Z to the imagination of the
reader. The conditions ensure that we do not add new constructors to a data type that is already
complete or new fields to a completed record declaration. Such additions could destroy coverage
for functions that have already been checked. Late addition of function clauses would not pose a
problem, but that feature would be obsolete for our type theory anyway.
Membership of a snippet is written Z ∈ Σ and a decidable property with the obvious definition.

These operations on the signature will be used in the inference rules of our type theory. Since we
only refer to a constructor c in conjunction with its data type D, constructors can be overloaded,
and likewise projections.

7self is the analogous of Java’s this, but like in Scala’s trait, the name can be chosen.
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Elaborating dependent (co)pattern matching 1:11

3.2 Typing and equality
Our type theory employs the following basic typing and equality judgments, which are relative to
a signature Σ.

Σ ⊢ Γ context Γ is well-formed
Σ; Γ ⊢ℓ ∆ in context Γ, telescope ∆ is well-formed and ℓ-bounded
Σ; Γ ⊢ u : A in context Γ, term u has type A
Σ; Γ ⊢ ū : ∆ in context Γ, term list ū instantiates telescope ∆
Σ; Γ | u : A ⊢ ē : B in context Γ, head u of type A is eliminated via ē to type B
Σ; Γ ⊢ u = v : A in context Γ, terms u and v are equal of type A
Σ; Γ ⊢ ū = v̄ : ∆ in context Γ, term lists ū and v̄ are equal instantiations of ∆
Σ; Γ | u : A ⊢ ē = ē ′ : B ē and ē ′ are equal eliminations of head u : A to type B in Γ

In all these judgements, the signature Σ is fixed, thus we usually omit it, e.g. in the inferences rules.
We further define some shorthands for type-level judgements when we do not care about the

universe level ℓ:
Σ; Γ ⊢ ∆ ⇐⇒ ∃ℓ. Σ; Γ ⊢ℓ ∆ well-formed telescope
Σ; Γ ⊢ A ⇐⇒ ∃ℓ. Σ; Γ ⊢ A : Setℓ well-formed type
Σ; Γ ⊢ A = B ⇐⇒ ∃ℓ. Σ; Γ ⊢ A = B : Setℓ equal types

Γ ⊢ u : A Entails ⊢ Γ and Γ ⊢ A.

Types.
⊢ Γ

Γ ⊢ Setℓ : Setℓ+1
Γ ⊢ A : Setℓ Γ(x : A) ⊢ B : Setℓ′

Γ ⊢ (x : A) → B : Setmax(ℓ,ℓ′)

data D ∆ : Setℓ ∈ Σ Γ ⊢ ū : ∆
Γ ⊢ D ū : Setℓ

record R ∆ : Setℓ ∈ Σ Γ ⊢ ū : ∆
Γ ⊢ R ū : Setℓ

Γ ⊢ A : Setℓ Γ ⊢ u : A Γ ⊢ v : A
Γ ⊢ u ≡A v : Setℓ

Heads (h ::= x ϵ | f ϵ) and applications h ē .
⊢ Γ x : A ∈ Γ

Γ ⊢ x ϵ : A
⊢ Γ definition f : A ∈ Σ

Γ ⊢ f ϵ : A
Γ ⊢ h : A Γ | h : A ⊢ ē : C

Γ ⊢ h ē : C
Values.

constructor c ∆c : D ∆ ∈ Σ Γ ⊢ ū : ∆ Γ ⊢ v̄ : ∆c[ū /∆]
Γ ⊢ c v̄ : D ū

Γ ⊢ u : A
Γ ⊢ refl : u ≡A u

Conversion.
Γ ⊢ u : A Γ ⊢ A = B

Γ ⊢ u : B

Fig. 1. Typing rules for expressions.
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1:12 Jesper Cockx and Andreas Abel

Γ | u : A ⊢ ē : C If Γ ⊢ u : A then Γ ⊢ C .

Γ | u : A ⊢ ϵ : A
Γ ⊢ v : A Γ | u v : B[v /x] ⊢ ē : C

Γ | u : (x : A) → B ⊢ v ē : C

projection self : R ∆ ⊢ .π : A ∈ Σ Γ | u .π : A[v̄ /∆,u / self ] ⊢ ē : C
Γ | u : R v̄ ⊢ .π ē : C

Γ ⊢ A = A′ Γ | u : A′ ⊢ ē : C
Γ | u : A ⊢ ē : C

Fig. 2. The typing rules for eliminations.

Γ ⊢ℓ ∆ Entails ⊢ Γ.

⊢ Γ
Γ ⊢ℓ ϵ

Γ ⊢ A : Setℓ′ Γ(x : A) ⊢ℓ ∆

Γ ⊢ℓ (x : A)∆
ℓ′ ≤ ℓ

Γ ⊢ ū : ∆ Precondition: Γ ⊢ ∆.

Γ ⊢ ϵ : ϵ
Γ ⊢ u : A Γ ⊢ ū : ∆[u /x]

Γ ⊢ u ū : (x : A)∆

Fig. 3. The typing rules for telescopes and lists of terms.

In the inference rules, we make use of substitutions. Substitutions σ ,τ ,ν are partial maps from
variable names to terms with a finite domain. If dom(σ ) and dom(τ ) are disjoint, then σ ⊎ τ
denotes the union of these maps. We write the substitution that maps the variables x1, . . . ,xn to
the terms v1, . . . ,vn (and is undefined for all other variables) by [v1 /x1; . . . ;vn /xn]. In partic-
ular, the empty substitution [] is undefined for all variables. If ∆ = (x1 : A1) . . . (xn : An ) is a
telescope and v̄ = v1, . . . ,vn is a list of terms, we may write [v̄ /∆] for the substitution [v̄ / ∆̂],
i.e. [v1 /x1; . . . ;vn /xn]. In particular, the identity substitution 1Γ = [Γ̂ / Γ] maps all variables in
Γ to themselves. We also use the identity substitution as a weakening substitution, allowing us to
forget about all variables that are not in Γ. If x ∈ dom(σ ), then σ\x is defined by removing x

from the domain of σ .
Application of a substitution σ to a termu is written as uσ and is defined as usual by replacing

all (free) variables in u by their values given by σ , avoiding variable capture via suitable renaming
of bound variables. Like function application, this is a partial operation on the syntax; for instance,
(x .π )[c /x] is undefined as constructors cannot be the head of an elimination. Thus, when a sub-
stitution appears in an inference rule, its definedness is an implicit premise of the rule. Also, such
pathological cases are ruled out by typing. Well-typed substitutions can always be applied to well-
typed terms(established in Lemma 8). Substitution composition σ ;τ shall map the variable x to
the term (xσ )τ . Note the difference between σ ;τ and σ ⊎ τ : the former applies first σ and then τ
in sequence, while the latter applies σ and τ in parallel to disjoint parts of the context. Application
of a substitution to a pattern pσ is defined as ⌈p⌉σ .
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Elaborating dependent (co)pattern matching 1:13

In addition to substitutions on terms, we alsomake use of substitutions on patterns called pattern
substitutions. A pattern substitution ρ assigns to each variable a pattern. We reuse the same syntax
for pattern substitutions as for normal substitutions. Any pattern substitution ρ can be used as a
normal substitution ⌈ρ⌉ defined by x ⌈ρ⌉ = ⌈xρ⌉.
The rules for the typing judgement Γ ⊢ t : A are listed in Fig. 1. The type formation rules

introduce an infinite hierarchy of predicative universes Setℓ without cumulativity. The formation
rules for data and record types make use of the judgment Γ ⊢ ū : ∆ to type argument lists, same
for the constructor rule, which introduces a data type. Further, refl introduces the equality type.
All expressions involved in these rules are fully applied, but this changes when we come to the
elimination rules. The types of heads, i.e. variables x or defined constants f are found in the context
or signature.
The rules for applying heads u to spines ē , judgement Γ | u : A ⊢ ē : C , are presented in Fig. 2.

For checking arguments, the type of the head is sufficient, and it needs to be a function type.
To check projections, we need also the value u of the head that replaces self in the type of the
projection. We may need to convert the type of the head to a function or record type to apply
these rules, hence, we supply a suitable conversion rule. The result typeC of this judgement need
not be converted here, it can be converted in the typing judgement for expressions.

Remark 6 (Focused syntax). The reader may have observed that our expressions cover only the
non-invertible rules in the sense of focusing [Andreoli 1992], given that we consider data types
as multiplicative disjunctions and record types as additive conjunctions: Terms introduce data
and eliminate records and functions. The invertible rules, i.e. elimination for data and equality
and introduction for function space and records are covered by pattern matching (Sect. 3.4) and,
equivalently, case trees (Sect. 4). This matches our intuition that all the information/choice resides
with the non-invertible rules, the terms, while the choice-free pattern matching corresponding to
the invertible rules only sets the stage for the decisions taken in the terms.

Fig. 3 defines judgement Γ ⊢ℓ ∆ for telescope formation. The level ℓ is an upper bound for the
universe levels of the types that comprise the telescope. In particular, if we consider a telescope as
a nested Σ-type, then ℓ is an upper bound for the universe that hosts this type. This is important
when checking that the level of a data type is sufficiently high for the level of data it contains
(Fig. 4).

Using the notation (x1, . . . ,xn )σ = (x1σ , . . . ,xnσ ), substitution typing can be reduced to typing
of lists of terms: Suppose ⊢ Γ and ⊢ ∆. We write Γ ⊢ σ : ∆ for dom(σ ) = ∆ and Γ ⊢ ∆̂σ : ∆.
Likewise, we write Γ ⊢ σ = σ ′ : ∆ for Γ ⊢ ∆̂σ = ∆̂σ ′ : ∆.
Definitional equality Γ ⊢ u = u ′ : A is induced by rewriting function applications according to

the function clauses. It is the least typed congruence over the axiom:
clause ∆ ⊢ f q̄ ↪→ v : B ∈ Σ Γ ⊢ σ : ∆

Γ ⊢ f q̄σ = vσ : Bσ
If f q̄ ↪→ v is a defining clause of function f, then each instance arising from a well-typed substi-
tution σ is a valid equation. The full list of congruence and equivalence rules is given in Fig. 18 in
Appendix A, together with congruence rules for applications (Fig. 19) and lists of terms (Fig. 20).
As usual in dependent type theory, definitional equality on types Γ ⊢ A = B : Setℓ is used for type
conversion.

Lemma 7. If Γ ⊢ σ : ∆1 (x : A)∆2 then also Γ ⊢ σ : ∆1 (∆2[xσ /x]).

Lemma 8 (Substitution). Suppose Γ′ ⊢ σ : Γ. Then the following hold:
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Σ ⊢ Z Snipped Z is well-formed in signature Σ.

Σ ⊢ ∆
Σ ⊢ data D ∆ : Setℓ

data D ∆ : Setℓ ∈ Σ Σ;∆ ⊢ℓ ∆c

Σ ⊢ constructor c ∆c : D ∆

Σ ⊢ ∆
Σ ⊢ record R ∆ : Setℓ

record R ∆ : Setℓ ∈ Σ Σ;∆(x : R ∆̂) ⊢ A : Setℓ′

Σ ⊢ projection x : R ∆ ⊢ .π : A
ℓ′ ≤ ℓ

Σ ⊢ A
Σ ⊢ definition f : A

definition f : A ∈ Σ Σ ⊢ ∆ ∆ | f : A ⊢ ⌈q̄⌉ : B ∆ ⊢ v : B
Σ ⊢ clause ∆ ⊢ f q̄ ↪→ v : B

Σ0 ⊆ Σ Signature Σ is a valid extension of Σ0.

Σ0 ⊆ Σ0

Σ0 ⊆ Σ Σ ⊢ Z Σ,Z defined
Σ0 ⊆ Σ,Z

Fig. 4. Rules for well-formed signature snippets and extension.

• If Γ ⊢ u : A then Γ′ ⊢ uσ : Aσ .
• If Γ | u : A ⊢ ē : B then Γ′ | uσ : Aσ ⊢ ēσ : Bσ .
• If Γ ⊢ℓ ∆ then Γ′ ⊢ℓ ∆σ .
• If Γ ⊢ ū : ∆ then Γ′ ⊢ ūσ : ∆σ .
• If Γ ⊢ u = v : A then Γ′ ⊢ uσ = vσ : Aσ .
• If Γ | u : A ⊢ ē1 = ē2 : C then Γ′ | uσ : Aσ ⊢ ē1σ = ē2σ : Cσ .
• If Γ ⊢ ū1 = ū2 : ∆ then Γ′ ⊢ ū1σ = ū2σ : ∆.

Proof. By mutual induction on the derivation of the given judgement. The interesting case
is when u is a variable application x ē . Suppose that x : A ∈ Γ and Γ | x : A ⊢ ē : B, then
Γ′ ⊢ xσ : Aσ . We also know from the induction hypothesis that Γ′ | xσ : Aσ ⊢ ēσ : Bσ , so we
have Γ′ ⊢ xσ ēσ : Bσ , as we had to prove. □

Property 9. If Γ ⊢ u : A and Γ | u : A ⊢ ē : B then u ē is well-defined and Γ ⊢ u ē : B.

3.3 Signature well-formedness
A signature Σ extends Σ0 if we can go from Σ0 to Σ by adding valid snippets Z , i.e. new datatypes,
record types, and defined constants, but new constructors/projections/clauses only for not yet
completed definitions in Σ. A signature Σ is well-formed if it is a valid extension of the empty sig-
nature ϵ . Formally, we define signature extension Σ0 ⊆ Σ via snippet typing Σ ⊢ Z by the rules
in Fig. 4, and signature well-formedness ⊢ Σ as ϵ ⊆ Σ. Recall that the rules for extending the
signature with a constructor (resp. projection or clause) can only be used when the corresponding
data type (resp. record type or definition) is the last thing in the signature, by definition of extend-
ing the signature with a snippet Σ,Z . When adding a constructor or projection, it is ensured that
the stored data is not too big in terms of universe level ℓ; this preserves predicativity. However, the
parameters ∆ of a data or record type of level ℓ can be big, they may exceed ℓ.
All typing and equality judgements are monotone in the signature, thus, remain valid under

signature extensions.
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Σ ⊢ u ↘ w (Σ fixed, dropped from rules.)

w ↘ w

clause ∆ ⊢ f q̄ ↪→ v : A ∈ Σ [ē / q̄]↘ σ vσ ↘ w

f ē ↘ w

Fig. 5. Rules for weak-head normalization.

Σ ⊢ [v /p]↘ σ⊥ (Σ fixed, dropped from rules.)

[v /x]↘ [v /x] [v / ⌊u⌋]↘ []
v ↘ refl

[v / refl]↘ []

v ↘ c ū [ū / p̄]↘ σ⊥

[v / c p̄]↘ σ⊥

v ↘ c2 ū [ū / p̄]↘ σ⊥

[v / ⌊c1⌋ p̄]↘ σ⊥

v ↘ c2 ū c1 , c2
[v / c1 p̄]↘ ⊥

Σ ⊢ [e /q]↘ σ⊥

[.π / .π ]↘ []
π1 , π2

[.π2 / .π1]↘ ⊥

Σ ⊢ [ē / q̄]↘ σ⊥

[ϵ /ϵ]↘ []
[e /q]↘ σ⊥ [ē / q̄]↘ τ⊥

[e ē /q q̄]↘ σ⊥ ⊎ τ⊥

Fig. 6. Rules for the pattern matching and mismatching algorithm.

Lemma 10 (Signature extension preserves inferences). If Σ; Γ ⊢ u : A and Σ ⊆ Σ′ then also
Σ′; Γ ⊢ u : A (and likewise for other judgements).

Remark 11 (Coverage). The rules for extending a signature with a function definition given by
a list of clauses are not strong enough to guarantee the usual properties of a language such as
type preservation and progress. For example, we could define a function with no clauses at all
(violating progress), or we could add a clause where all patterns are forced patterns (violating type
preservation). We prove type preservation and progress only for functions that correspond to a
well-typed case tree as defined in Sect. 4.

3.4 Pattern matching and evaluation rules

Evaluation to weak-head normal form Σ ⊢ u ↘ w is defined inductively in Fig. 5. Since our lan-
guage does not contain syntax for lambda abstraction, there is no rule for β-reduction. Almost all
terms are their own weak-head normal form; the only exception are applications f ē .
Evaluation is mutually defined with matching against (co)patterns Σ ⊢ [ē / q̄]↘ σ⊥ (Fig. 6).

Herein, σ⊥ is either a substitution σ with dom(σ ) = PV(q̄) or the error value ⊥ for mismatch. Join
of lifted substitutions σ⊥ ⊎ τ⊥ is ⊥ if one of the operands is ⊥, otherwise the join σ ⊎ τ .
A pattern variable x matches any termv , producing singleton substitution [v /x]. Likewise for a

forced pattern ⌊u⌋, but it does not bind any pattern variables. Projections .π onlymatch themselves,
and so do constructors c p̄, but they require evaluation v ↘ c ū of the scrutinee v and subsequent
successful matching [ū / p̄]↘ σ of the arguments. For forced constructors ⌊c1⌋ p̄, the constructor
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equality test is skipped, as it is ensured by typing. Constructor (c1 , c2) and projection (.π1 , .π2)
mismatches produce ⊥. We do not need to match against the absurd pattern; user clauses with
absurd matches are never added to the signature. Recall that absurd patterns are not contained in
clauses of the signature, thus, we need not consider them in the matching algorithm. Evaluating a
function that eliminates absurdity will be stuck for lack of matching clauses.
A priori, matching can get stuck, if none of the rules apply. In particular, this happens when we

try to evaluate an underapplied function or an open term, i.e. a term with free variables. For the
purpose of the evaluation judgement, we would not need to track definite mismatch (⊥) separately
from getting stuck. However, for the first-match semantics [Augustsson 1985] we do: There, a
function should reduce with the first clause that matches while all previous clauses produce a
mismatch. If matching a clause is stuck, we must not try the next one.
The first-match semantics is also the reason why either Σ ⊢ [e /q]↘ ⊥ or Σ ⊢ [ē / q̄]↘ ⊥ alone

is not sufficient to derive Σ ⊢ [e ē /q q̄] ↘ ⊥, i.e. mismatch does not dominate stuckness, nor
does it short-cut matching. Suppose a function and defined by the clauses true true ↪→ true and
x y ↪→ false. If mismatch dominated stuckness, then both open terms and false y and and x false
would reduce to false. However, there is no case tree that accomplishes this. We have to split on
the first or the second variable; either way, one of the two open terms will be stuck. We cannot
even decree left-to-right splitting: see Example 5 for a definition that is impossible to elaborate to
a case tree using a left-to-right splitting order. Thus, we require our pattern match semantics to
be faithful with any possible elaboration of clauses into case trees.8

3.5 Other language features
In comparison to dependently typed programming languages like Agda and Idris, our core lan-
guage seems rather reduced. In the following, we discuss how some popular features could be
translated to our core language.

Lambda abstractions and η-equality: A lambda abstraction λx . t in context Γ can be lifted
to the top-level and encoded as auxiliary function f Γ̂ x ↪→ t . We obtain extensionality (η)
by adding the following rule to definitional equality:

Γ ⊢ t1 : (x : A) → B Γ ⊢ t2 : (x : A) → B Γ(x : A) ⊢ t1 x = t2 x : B
Γ ⊢ t1 = t2 : (x : A) → B

x < dom(Γ)

Record expressions: Likewise, a record value record{π̄ = v̄} in Γ can be turned into an aux-
iliary definition by copattern matching with clauses (f Γ̂ .πi ↪→ vi )i . We could add an η-law
that considers two values of record type R definitionally equal if they are so under each
projection of R. However, to maintain decidability of definitional equality, this should only
applied to non-recursive records, as recursive records model coinductive types which do not
admit η.

Indexed datatypes can be defined as regular (parameterized) datatypes with extra arguments
to each constructor containing equality proofs for the indices. For example, Vec A n can be
defined as follows:

data Vec (A : Setℓ ) (n : N) : Setℓ where
nil : n ≡N zero→ Vec A n
cons : (m : N)(x : A) (xs : Vec Am) → n ≡N sucm → Vec A n

8In a sense, this is opposite to lazy pattern matching [Maranget 1992], which aims to find the right clause with the least
amount of matching.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Elaborating dependent (co)pattern matching 1:17

Indexed record types can be defined analogously to indexed datatypes. For example,Vec A n
can also be defined as a record type:

record Vec (A : Setℓ )(n : N) : Setℓ where
head : (m : N) → n ≡N sucm → A
tail : (m : N) → n ≡N sucm → Vec Am

The ‘constructors’ nil and cons are then defined by
nil : Vec A zero
nil .headm ∅ = impossible
nil .tailm ∅ = impossible

cons : (n : N)(x : A) (xs : Vec A n) → Vec A (suc n)
cons n x xs .head ⌊n⌋ refl = x
cons n x xs .tail ⌊n⌋ refl = xs

Mutual recursion can be simulated by nested recursion as long as we do not define checks
for positivity and termination.

Wildcard patterns can bewritten as variable patterns with a fresh name. Note that an unused
variable may stand for either a wildcard or a forced pattern. In the latter case our algorithm
treats it as a let-bound variable in the right-hand side of the clause.

Record patterns would make sense for inductive records with η. Without changes to the core
language, we can represent them by first turning deep matching into shallow matching,
along the lines of Setzer et al. [2014], and then turn record matches on the left-hand side
into projection applications on the right-hand side.

This concludes the presentation of our core language.

4 CASE TREES
From a user perspective it is nice to be able to define a function by a list of clauses, but for a core
language this representation of functions leaves much to be desired: it is hard to see whether a set
of clauses is covering all cases [Coquand 1992], and evaluating the clauses directly can be slow for
deeply nested patterns [Cardelli 1984]. Recall that for type-checking dependent types, we need to
decide equality of open terms which requires computing weak head normal forms efficiently.
Thus, instead of using clauses, we represent functions by a case tree in our core language. In this

section, we give a concrete syntax for case trees and give typing and evaluation rules for them. We
also prove that a function defined by a case tree enjoys good properties such as type preservation
and coverage.

Q ::= u branch body (splitting done)
| λx . Q bringing next argument into scope as x
| record{π1 7→ Q1; . . . ;πn 7→ Qn } splitting result by possible projections (n ≥ 0)
| casex {c1 ∆̂1 7→ Q1; . . . ; cn ∆̂n 7→ Qn } splitting on data x (n ≥ 0)
| casex {refl 7→τ Q } matching on equality proof x

(28)
Note that empty case and empty record are allowed, to cover the empty data type and the unit

type, i.e. the record without fields.
Remark 12 (Focusing). Case trees allow us to introduce functions and records, and eliminate
data. In the sense of focusing, this corresponds to the invertible rules for implication, additive
conjunction, and multiplicative disjunction. (See typing rules in Fig. 7.)

4.1 Case tree typing
A case tree Q for a defined constant f : A is well-typed in environment Σ if Σ ⊢ f := Q : A { Σ′.
In this judgement, Σ is the signature in which case treeQ for function f : A is well-typed, and Σ′ is
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Σ; Γ ⊢ f q̄ := Q : C { Σ′ Presupposes: Σ; Γ ⊢ f ⌈q̄⌉ : C and dom(Γ) = PV(q̄).
Checks case tree Q and outputs an extension Σ′ of Σ by the clauses represented by “f q̄ ↪→ Q”.

Σ; Γ ⊢ v : C
Σ; Γ ⊢ f q̄ := v : C { Σ, (clause Γ ⊢ f q̄ ↪→ v : C )

CtDone

Σ; Γ ⊢ C = (x : A) → B : Setℓ Σ; Γ(x : A) ⊢ f q̄ x := Q : B { Σ′

Σ; Γ ⊢ f q̄ := λx . Q : C { Σ′
CtIntro

Σ0; Γ ⊢ C = R v̄ : Setℓ record self : R ∆ : Setℓ where πi : Ai ∈ Σ0
σ = [v̄ /∆, f ⌈q̄⌉ / self ] (Σi−1; Γ ⊢ f q̄ .πi := Qi : Aiσ { Σi )i=1...n

Σ0; Γ ⊢ f q̄ := record{π1 7→ Q1; . . . ;πn 7→ Qn } : C { Σn
CtCosplit

Σ0; Γ1 ⊢ A = D v̄ : Setℓ data D ∆ : Setℓ where ci ∆i ∈ Σ0
(∆′i = ∆i [v̄ /∆])i=1...n (ρi = 1Γ1 ⊎ [ci ∆̂′i /x])i=1...n

(ρ ′i = ρi ⊎ 1Γ2 )i=1...n (Σi−1; Γ1∆′i (Γ2ρi ) ⊢ f q̄ρ ′i := Qi : Cρ ′i { Σi )i=1...n

Σ0; Γ1 (x : A)Γ2 ⊢ f q̄ := casex {c1 ∆̂′1 7→ Q1; . . . ; cn ∆̂′n 7→ Qn } : C { Σn
CtSplitCon

Σ; Γ1 ⊢ A = (u ≡B v ) : Setℓ Σ; Γ1 ⊢x u =? v : B ⇒ yes(Γ′1 , ρ,τ )
ρ ′ = ρ ⊎ 1Γ2 τ ′ = τ ⊎ 1Γ2 Σ; Γ′1 (Γ2ρ) ⊢ f q̄ρ ′ := Q : Cρ ′ { Σ′

Σ; Γ1 (x : A)Γ2 ⊢ f q̄ := casex {refl 7→τ ′ Q } : C { Σ′
CtSplitEq

Σ; Γ1 ⊢ A = (u ≡B v ) : Setℓ Σ; Γ1 ⊢x u =? v : B ⇒ no
Σ; Γ1 (x : A)Γ2 ⊢ f q̄ := casex {} : C { Σ

CtSplitAbsurdEq

Fig. 7. The typing rules for case trees.

the output signature which is Σ extended with the function clauses corresponding to case tree Q .
Note that the absence of a local context Γ in this proposition implies that we only use case trees
for top-level definitions.9

Case tree typing is established by the generalized judgement Σ; Γ ⊢ f q̄ := Q : A{ Σ′ (Fig. 7)
that considers a case treeQ for the instance f q̄ of the function in a context Γ of the pattern variables
of q̄. We have the following rules for Σ; Γ ⊢ f q̄ := Q : A{ Σ′:

CtDone A leaf of a case tree consists of a right-hand side v which needs to be of the same
type C of the corresponding left-hand side f q̄ and may only refer to the pattern variables Γ
of q̄. If this is the case, the clause f q̄ ↪→ v is added to the signature.

CtIntro If the left-hand side f q̄ is of function type (x : A) → B we can extend it by variable
pattern x . The corresponding case tree is function introduction λx . Q .

CtCosplit If the left-hand side is of record type R v̄ with projections πi, we can do result
splitting and extend it by copattern .πi for all i . We have record{π1 7→ Q1; . . . ;πn 7→ Qn }
(where n ≥ 0) as the corresponding case tree, and we check each sub tree Qi for left-hand
side f q̄ .πi in the signature Σi−1 which includes the clauses for the branches j < i . Note that

9It would also be possible to embed case trees into our language as terms instead, as is the case in many other languages.
We refrain from doing so in this paper for the sake of simplicity.
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these previous clauses may be needed to check the current case, since we have dependent
records (Example 2).

CtSplitCon If left-hand side f q̄ contains a variable x of data type D v̄ , we can split on x and
consider all alternatives ci; the corresponding case tree is casex {c1 ∆̂′1 7→ Q1; . . . ; cn ∆̂′n 7→ Qn }.
The branchQi is checked for a refined left-hand side where x has been substituted by ci∆̂′i in
a context where x has been replaced by the new pattern variables ∆′i . Note also the threading
of signatures as in rule CtCosplit.

The rules CtSplitEq and CtSplitAbsurdEq are explained in the next section.

4.2 Unification: splitting on the identity type
To split on an equality proof x : u ≡B v we try to unify u and v . We may either find a most
general unifier (m.g.u.); then we can build a case tree casex {refl 7→ ·} (rule CtSplitEq). We may find
a disunifier and build the case tree casex {} (rule CtSplitAbsurdEq). Finally, there might be neither a
m.g.u. nor a disunifier, e.g. for equality y + z ≡N y ′ + z ′; then type-checking fails.
In fact, in our setting we need a refinement of m.g.u.s we call strong unifiers. We recall the

definitions of a strong unifier and a disunifier from Cockx et al. [2016], here translated to the
language of this paper and specialized to the case of a single equation:

Definition 13 (Strong unifier). Let Γ be a well-formed context and u and v be terms such that
Γ ⊢ u,v : A. A strong unifier (Γ′,σ ,τ ) of u and v consists of a context Γ′ and substitutions Γ′ ⊢ σ :
Γ(x : u ≡A v ) and Γ(x : u ≡A v ) ⊢ τ : Γ′ such that:

(1) Γ′ ⊢ xσ = refl : uσ ≡Aσ vσ (this implies the definitional equality Γ′ ⊢ uσ = vσ : Aσ )
(2) Γ′ ⊢ τ ;σ = 1Γ′ : Γ′
(3) For any context Γ0 and substitution σ0 such that Γ0 ⊢ σ0 : Γ(x : u ≡A v ) and Γ0 ⊢ xσ0 = refl :

uσ0 ≡Aσ0 vσ0, we have Γ0 ⊢ σ ;τ ;σ0 = σ0 : Γ(x : u ≡A v ).

Definition 14 (Disunifier). Let Γ be a well-formed context and Γ ⊢ u,v : A. A disunifier of u and
v is a function Γ ⊢ f : (u ≡A v ) → ⊥ where ⊥ is the empty type.

Since we use the substitution σ for the construction of the left-hand side of clauses, we require
unification to output not just a substitution but a pattern substitution ρ. The only properlymatching
pattern in ρ is xρ = refl; all the other patterns yρ are either a forced pattern ⌊t⌋ (if unification
instantiates y with t ) or the variable y itself (if unification leaves y untouched).
We thus assume we have access to a proof relevant unification algorithm specified by the fol-

lowing judgements:

• Σ; Γ ⊢x u =? v : A⇒ yes(Γ′, ρ,τ ) ensures that xρ = refl and the triple (Γ′, ⌈ρ⌉,τ ) is a
strong unifier. Additionally, Γ′ ⊆ Γ, yτ = y and yρ = y for all y ∈ Γ′, and yρ is a forced
pattern for all variables y ∈ Γ\Γ′.
• Σ; Γ ⊢x u =? v : A⇒ no ensures that there exists a disunifier of u and v .

Remark 15. During the unification of u with v , each step either instantiates one variable from Γ
(e.g. the solution step) or leaves it untouched (e.g. the injectivity step). We thus have the invariant
that the variables in Γ′ form a subset of the variables in Γ. In effect, the substitution τ makes the
variables instantiated by unification go ‘out of scope’ after a match on refl. This property ceases to
hold in a language with η-equality for record types and unification rules for η-expanding a variable
such as the ones given by Cockx et al. [2016]. In particular, τ may contain not only variables but
also projections applied to those variables.
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Σ ⊢ Qσ ē −→ v

Σ ⊢ vσ ē −→ vσ ē

Σ ⊢ Q (σ ⊎ [u /x]) ē −→ v

Σ ⊢ (λx . Q )σ u ē −→ v

Σ ⊢ Qiσ ē −→ v

Σ ⊢ (record{π1 7→ Q1; . . . ;πn 7→ Qn })σ .πi ē −→ v

Σ ⊢ xσ ↘ ci ū Σ ⊢ Qi (σ\x ⊎ [ū / ∆̂i ]) ē −→ v

Σ ⊢ (casex {c1 ∆̂1 7→ Q1; . . . ; cn ∆̂n 7→ Qn })σ ē −→ v

Σ ⊢ xσ ↘ refl Σ ⊢ Q (τ ;σ ) ē −→ v

Σ ⊢ (casex {refl 7→τ Q })σ ē −→ v

Fig. 8. Evaluation of case trees.

4.3 Operational semantics
If a function f is defined by a case tree Q , then we can compute the application of f to elimina-
tions ē via the judgement Σ ⊢ Qσ ē −→ v (Fig. 8) with σ = []. The substitution σ acts as an
accumulator, collecting the values for each of the variables introduced by a λ or by the constructor
arguments in a casex {...}. In particular, when evaluating a case tree of the form casex {refl 7→τ Q },
the substitution τ is used to remove any bindings in σ that correspond to forced patterns.

4.4 Properties
If a function f is defined by a well-typed case tree, then it enjoys certain good properties such
as type preservation and coverage. The goal of this section is to state and prove these properties.
First, we need some basic lemmata.

Lemma 16 (Well-typed case trees preserve signature well-formedness). Let ⊢ Σ be a well-formed
signature with definition f : A where cls

⊕
the last declaration in Σ and letQ be a case tree such that

Σ; Γ ⊢ f q̄ := Q : C { Σ′ where Σ ⊢ Γ and Σ; Γ | f : A ⊢ ⌈q̄⌉ : C . Then Σ′ is also well-formed.

Proof. By induction on Σ; Γ ⊢ f q̄ := Q : C { Σ′. □

The following lemma implies that once the typechecker has completed checking a definition, we
can replace the clauses of that definition by the case tree. This gives us more efficient evaluation
of the function and guarantees that evaluation is deterministic.

Lemma17 (Simulation lemma). Consider a case treeQ such that Σ0; Γ ⊢ f q̄ := Q : C { Σ, letσ be a
substitution with domain the pattern variables of q̄, and let ē be some eliminations. If Σ ⊢ Qσ ē −→ t
then there is some pattern substitution ρ and copatterns q̄′ such that clause ∆ ⊢ f q̄ρ q̄′ ↪→ v : A is
in Σ\Σ0 and t = vθ ē2 where Σ ⊢ [q̄σ ē1 / q̄ρ q̄′]↘ θ and ē = ē1 ē2.
Conversely, any clause in Σ\Σ0 is of the form clause ∆ ⊢ f q̄ρ q̄′ ↪→ v : A, and for any σ and ē1

and ē2 such that Σ ⊢ [q̄σ ē1 / q̄ρ q̄′]↘ θ we have Σ ⊢ Qσ ē1 ē2 −→ vθ ē2.

Proof. We start by proving the first statement by induction on Q :
• In caseQ = v we have Σ ⊢ Qσ ē −→ vσ ē , and Σ′ = Σ, clause Γ ⊢ f q̄ ↪→ v : A. Thus we take
ρ = 1Γ , q̄′ = ϵ , v = v , ē1 = ϵ and ē2 = ē . We clearly have Σ ⊢ [q̄σ / q̄]↘ σ , hence t = vσ ē .
• In case Q = λx . Q ′ we have ē = u ē ′ and Σ ⊢ Q (σ ⊎ [u /x]) ē ′ −→ t . From the induction hy-
pothesis we know that clause ∆ ⊢ f (q̄ x )ρ q̄′ ↪→ v : A ∈ Σ and Σ ⊢ [q̄σ u ē1 / (q̄ x )ρ q̄′]↘ θ
and t = vθ ē2. Let ρ = ρ ′ ⊎ [p /x], then we have clause ∆ ⊢ f q̄ρ ′ p q̄′ ↪→ v : A ∈ Σ and
Σ ⊢ [q̄σ u ē1 / q̄ρ

′ p q̄′]↘ θ , so it suffices to take ρ ′ as the new ρ and p q̄′ as the new q̄′.
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• In case Q = casex {c1 ∆̂′i 7→ Q1; . . . ; cn ∆̂′n 7→ Qn } we have Σ ⊢ xσ ↘ ci ū and Σ ⊢ Qi (σ\x ⊎
[ū /∆iσ ]) ē −→ t . From the induction hypothesis we know that clause ∆ ⊢ f q̄ρiρ q̄′ ↪→ v :
A ∈ Σ and Σ ⊢ [q̄ρi (σ\x ⊎ [ū /∆iσ ]) ē1 / q̄ρiρ q̄′] ↘ θ and t = vθ ē2. Moreover, ρi = 1Γ1 ⊎
[ci ∆̂′i /x]⊎1Γ2 . From the definition ofmatching, it follows that also Σ ⊢ [q̄σ ē1 / q̄ρiρ q̄′]↘ θ .
Thus we finish this case by taking ρi ; ρ as the new ρ (and keep q̄′ the same).
• In case Q = record{π1 7→ Q1; . . . ;πn 7→ Qn } we have ē = .πi ē ′ and Σ ⊢ Qiσ ē ′ −→ t .
From the induction hypothesis we know that clause ∆ ⊢ f q̄ρ .πi q̄

′ ↪→ v : A ∈ Σ and
Σ ⊢ [q̄σ .πi ē1 / q̄ρ .πi q̄′] ↘ θ and t = vθ ē2. Hence it suffices to take .πi q̄′ as the new q̄′

(and keep ρ the same).
• In case Q = casex {refl 7→τ ′ Q ′} we have Σ ⊢ xσ ↘ refl and Σ ⊢ Q ′(τ ′;σ ) ē −→ t . From the
induction hypothesiswe know that clause ∆ ⊢ f q̄ρ ′ρ ↪→ v : A ∈ Σ and Σ ⊢ [q̄ρ ′τ ′σ ē1 / q̄ρ

′ρ q̄′]↘
θ and t = vθ ē2. Since ρ ′ and τ ′ are produced by unification, we have that xρ ′ = refl and for
each pattern variable y of q̄ other than x , either yρ ′ = ⌊s⌋ or yρ ′ = y and yτ ′ = y. It then
follows from the definition of matching that Σ ⊢ [q̄σ ē1 / q̄ρ

′ρ q̄′] ↘ θ . Hence we take ρ ′; ρ
as the new ρ (and keep q̄′ the same).
• There are no evaluation rules for Q = casex {} so this case is impossible.

In the other direction, we start again by induction on Q :
• In case Q = v we have the single clause clause Γ ⊢ f q̄ ↪→ v : A which is of the right
form with ρ = 1Γ and q̄′ = ϵ . If Σ ⊢ [q̄σ ē1 / q̄] ↘ θ , then we have σ = θ and ē1 = ϵ , so
Σ ⊢ Qσ ē1 ē2 −→ vθ ē2.
• In case Q = λx . Q ′, we get from the induction hypothesis that any clause in Σ\Σ0 is of
the form clause ∆ ⊢ f (q̄ x )ρ q̄′ ↪→ v : A, which is of the right form if we take ρ ′ = ρ\x
as the new ρ and q̄′′ = xρ q̄′ as the new q̄′. Moreover, if Σ ⊢ [q̄σ ē1 / q̄ρ

′ q̄′′] ↘ θ then
ē1 = u ē ′1 and Σ ⊢ [(q̄ x )(σ ⊎ [u /x]) ē ′1 / (q̄ x )ρ q̄′] ↘ θ . The induction hypothesis gives us
that Σ ⊢ Q ′(σ ⊎ [u /x]) ē ′1 ē −→ vθ ē2, hence also Σ ⊢ Qσ ē1 ē2 −→ vθ ē2.
• In caseQ = casex {c1 ∆̂′i 7→ Q1; . . . ; cn ∆̂′n 7→ Qn }, we get from the induction hypothesis that
any clause in Σ\Σ0 is of the form clause ∆ ⊢ f q̄ρiρ q̄′ ↪→ v : A for some ρi = 1Γ1 ⊎
[ci ∆̂′i /x] ⊎ 1Γ2 . This is of the right form if we take ρ ′ = ρiρ as the new ρ (and keep q̄′

the same). Moreover, if Σ ⊢ [q̄σ ē1 / q̄ρiρ q̄′] ↘ θ then we have Σ ⊢ xσ ↘ ci ū from the
definition of matching. Letσ ′ = σ\x⊎[ū /∆iσ ], thenwe also have Σ ⊢ [q̄ρiσ ′ ē1 / q̄ρiρ q̄′]↘
θ . From the induction hypothesis it now follows that Σ ⊢ Qiσ

′ ē1 ē2 −→ vθ ē2, hence also
Σ ⊢ Qσ ē1 ē2 −→ vθ ē2.
• In case Q = record{π1 7→ Q1; . . . ;πn 7→ Qn }, we get from the induction hypothesis that any
clause in Σ\Σ0 is of the form clause ∆ ⊢ f q̄ρ .πi q̄′ ↪→ v : A. This is of the right form if we
take q̄′′ = .πi q̄′ as the new q̄′ (and keep ρ the same). Moreover, if Σ ⊢ [q̄σ ē1 / q̄ρ .πi q̄

′]↘ θ
then ē1 = .πi ē

′
1. The induction hypothesis gives us that Σ ⊢ Qiσ ē ′1 ē2 −→ vθ ē2, hence also

Σ ⊢ Qσ ē1 ē2 −→ vθ ē2.
• In case Q = casex {refl 7→τ ′ Q }′ we get from the induction hypothesis that any clause in
Σ\Σ0 is of the form clause ∆ ⊢ f q̄ρ ′ρ ↪→ v : A where ρ ′ and τ ′ are produced by unifica-
tion. This is of the right form if we take ρ ′′ = ρ ′; ρ as the new ρ (and keep q̄′ the same).
Moreover, if Σ ⊢ [q̄σ ē1 / q̄ρ

′ρ q̄′] ↘ θ then we have Σ ⊢ xσ ↘ refl from the definition of
matching. Let σ ′ = τ ′;σ , then we have xρ ′σ ′ = refl and for all other pattern variables
y of q̄, either yρ ′ is a forced pattern or yρ ′ = y and yσ ′ = yσ . By matching, it follows
that also Σ ⊢ [q̄ρ ′σ ′ ē1 / q̄ρ ′ρ q̄′] ↘ θ . From the induction hypothesis it now follows that
Σ ⊢ Q ′σ ′ ē1 ē2 −→ vθ ē2, hence also Σ ⊢ Qσ ē1 ē2 −→ vθ ē2.
• In case Q = casex {} we have Σ = Σ0 so there are no new clauses to worry about.

□
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Before adding a clause f q̄ ↪→ v to the signature, we have to make sure that the copatterns q̄
only use forced patterns in places where it is justified: otherwise we might have Σ ⊢ [ē / q̄] ↘ σ
but ⌈q̄⌉σ , ē . This is captured in the notion of a respectful pattern [Goguen et al. 2006]. Here we
generalize their definition to the case where we do not yet know that all reductions in the signature
are necessarily type-preserving.

Definition 18. A signature Σ is respectful for Σ ⊢ u ↘ w if Σ; Γ ⊢ u : A implies Σ; Γ ⊢ u = w : A.
A signature Σ is respectful if it is respectful for all derivations of Σ ⊢ u ↘ w .

In particular, this means Σ; Γ ⊢ w : A, so evaluation with signature Σ is type preserving. It is
immediately clear that the empty signature is respectful, since it does not contain any clauses.

Definition 19 (Respectful copatterns). Let q̄ be a list of copatterns such that Σ;∆ | u : A ⊢ ⌈q̄⌉ : C
whereu andA are closed (i.e. do not depend on∆).We call q̄ respectful in signature Σ if the following
holds: for any signature extension Σ ⊆ Σ′ and any eliminations Σ′; Γ | u : A ⊢ ē : C such that
Σ′ ⊢ [ē / q̄] ↘ σ and Σ′ is respectful for any Σ′ ⊢ s ↘ t used in the derivation of Σ′ ⊢ [ē / q̄] ↘ σ ,
we have Σ′; Γ | u : A ⊢ q̄σ = ē : C .

Being respectful is stable under signature extension by definition: if q̄ is respectful in Σ and
Σ ⊆ Σ′, then q̄ is also respectful in Σ′.

Lemma 20 (Signatures with respectful clauses are respectful). If Σ is a well-formed signature such
that all clauses in Σ have respectful copatterns in Σ, then Σ is respectful.

Proof. By induction on the derivation of Σ ⊢ u ↘ v . Assume clause ∆ ⊢ f q̄ ↪→ v : C ∈ Σ
and Σ ⊢ [ē / q̄] ↘ σ for well-typed eliminations Σ; Γ | f : C ⊢ ē : A, then we have to prove that
Σ; Γ ⊢ f ē = vσ : A. By induction, Σ is respectful for any Σ ⊢ s ↘ t used in the derivation of
Σ ⊢ [ē / q̄] ↘ σ . Since q̄ is respectful, this implies that Σ; Γ | f : C ⊢ q̄σ = ē : A. It follows that
Σ; Γ ⊢ f q̄σ = f ē : A, hence also Σ; Γ ⊢ f ē = vσ : A by the β-rule for definitional equality. □

Lemma 21 (Well-typed case trees have respectful clauses). Consider a respectful signature Σ0 and
a case tree Q such that Σ0; Γ ⊢ f q̄ := Q : C { Σ and q̄ is respectful in Σ0. Then all clauses in Σ\Σ0
have respectful patterns in Σ.

Proof. By induction on the derivation of Σ0; Γ ⊢ f q̄ := Q : C { Σ.
• In case Q = v , we have a single new clause clause Γ ⊢ f q̄ ↪→ v : C . Since q̄ is respectful in
Σ0 by assumption, it is also respectful in Σ = Σ0, clause Γ ⊢ f q̄ ↪→ v : C .
• In caseQ = λx . Q ′, we know from the typing rule of λx . that Σ0; Γ ⊢ C = (x : A′) → B′ : Setℓ .
and Σ0; Γ(x : A) ⊢ f q̄ x := Q ′ : B { Σ. Since q̄ is respectful, it follows that q̄ x is also
respectful, so the result follows from the induction hypothesis.
• In case Q = casex {c1 ∆̂′i 7→ Q1; . . . ; cn ∆̂′n 7→ Qn }, the typing rule for casex {} tells us that
Γ = Γ1 (x : A)Γ2 and Σ0; Γ1 ⊢ A = D v̄ : Setℓ . We also get that Σi−1; Γ1∆′iΓ2ρi ⊢ f q̄ρi := Qi :
Cρi { Σi where constructor ci ∆i : D ∆ ∈ Σ0 and ∆′i = ∆i [v̄ /∆] and ρi = [ci ∆̂′i /x]. Since
q̄ is respectful, so is q̄ρi , so the result follows from the induction hypothesis.
• In caseQ = record{π1 7→ Q1; . . . ;πn 7→ Qn }, the typing rule for record{} tells us that Σ0; Γ ⊢ C =
R v̄ : Setℓ . We also get that Σi−1; Γ ⊢ f q̄ .πi := Qi : Ai [v̄ /∆, f ⌈q̄⌉ /x] { Σi where
projection x : R ∆ ⊢ .πi : Ai ∈ Σ0. Since q̄ is respectful, so is q̄ .πi, so the result follows from
the induction hypothesis.
• In case Q = casex {refl 7→τ Q }′, the the typing rule tells us that Γ = Γ1 (x : A)Γ2 and
Σ0; Γ1 ⊢ A = s ≡E t : Setℓ . We also have that Σ0; Γ1 ⊢x s =? t : E ⇒ yes(Γ′1 , ρ,τ ) and
Σ0; Γ′1Γ2ρ ⊢ f q̄ρ ′ := Q ′ : Cρ ′ { Σ where ρ ′ = ρ ⊎ 1Γ2 . Since q̄ is respectful and ρ is a
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strong unifier (Definition 13), q̄ρ ′ is also respectful, so the result follows from the induction
hypothesis.
• The typing rule for Q = casee {} does not add any new clauses.

□

Theorem 22 (Type preservation). If all functions in a signature Σ are given by well-typed case trees,
then Σ is respectful.

Proof. This is a direct consequence of the previous two lemmata. □

Definition 23. A term u is normalising in a signature Σ if Σ ⊢ u ↘ w , and additionally, ifw = c v̄
then all v̄ are also normalising.
An elimination e is normalising if it is either a projection .π or a normalising term u. A substi-

tution σ is normalising if xσ is normalising for all variables x in dom(σ ).

The definition of a normalising term (and the proof of the following lemma) would be somewhat
more complicated for a language with eta-equality for record types, such as the one used by Cockx
et al. [2016]. In particular, all projections of a normalising expression of record type should also
be normalising.

Lemma 24. Suppose Σ; Γ ⊢x u =? v : A ⇒ yes(Γ′, ρ,τ ) and Σ ⊢ σ0 : Γ such that Σ ⊢ uσ0 = vσ0 :
Aσ0. If σ0 is normalising, then so is τ ;σ0.

Proof. By construction, yτ = y for each variable y in Γ′ (see Remark 15), so it follows trivially
that τ ;σ0 is normalising. □

Theorem 25 (Coverage). Let Q be a case tree such that Σ0; Γ ⊢ f q̄ := Q : C { Σ. Let further
Σ ⊢ σ0 : Γ be a (closed) substitution and Σ | f q̄σ0 : Cσ0 ⊢ ē : B be (closed) eliminations such that σ0
and ē are normalizing in Σ and B is not definitionally equal to a function type or a record type. Then
Σ ⊢ Qσ0 ē −→ v for some v .

In particular, this theorem tells us that if Σ0 ⊢ f := Q : C { Σ and the eliminations Σ | f : C ⊢ ē :
A are normalising, then Σ ⊢ Q[] ē −→ v . Thus evaluation of a function defined by a well-typed
case tree applied to closed arguments can never get stuck.

Proof. By induction of the case tree Q :
• If Q = v , we have Σ ⊢ Qσ0 ē −→ vσ0 ē .
• If Q = λx . Q ′, we have Σ0; Γ ⊢ C = (x : A′) → B′ : Setℓ and Σ0; Γ(x : A′) ⊢ f q̄ x := Q ′ :
B′ { Σ from the typing rule of λx .. Hence we have Σ ⊢ Cσ0 = (x : A′σ0) → B′σ0 : Setℓ , so
ē = w ē ′ for some term Σ ⊢ w : A′σ0 and eliminations Σ | f q̄σ0 w : B′(σ0 ⊎ [w /x]) ⊢ ē ′ : B.
By induction we now have that there exists some v such that Σ ⊢ Q ′(σ0 ⊎ [w /x]) ē ′ −→ v ,
hence also Σ ⊢ Qσ0 ē −→ v .
• If Q = casex {c1 ∆̂′i 7→ Q1; . . . ; cn ∆̂′n 7→ Qn }, we have x : D v̄ ∈ Γ, hence Σ ⊢ xσ0 ↘ ci ū for
some constructor ci of D. By induction we have a v such that Σ ⊢ Qi (σ ⊎ [ū /∆iσ ]) ē −→ v ,
hence also Σ ⊢ Qσ ē −→ v .
• If Q = record{π1 7→ Q1; . . . ;πn 7→ Qn }, we have Σ0; Γ ⊢ C = R v̄ : Setℓ . Hence we have
Σ0 ⊢ Cσ0 = R v̄σ0 : Setℓ , so ē = .πi ē ′ for some field πi of R. By induction we get a v such
that Σ ⊢ Qiσ0 ē

′ −→ v , hence also Σ ⊢ Qσ0 ē −→ v .
• IfQ = casex {refl 7→τ Q ′}, we have x : u ≡E v ∈ Γ, so Σ ⊢ xσ0 ↘ refl. Since σ0 is normalising,
τ ;σ0 is also normalising (see Lemma 24). Now it follows from the inductive hypothesis that
Σ ⊢ Q ′(τ ;σ0) ē −→ v , hence also Σ ⊢ Qσ0 ē −→ v .
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Σ ⊢ decl { Σ′ Presupposes: ⊢ Σ. Entails: ⊢ Σ′.
Σ ⊢ ∆ (Σ, data D ∆ : Setℓ ) | D ∆ : Setℓ ⊢ con { Σ′

Σ ⊢ (data D ∆ : Setℓ where con) { Σ′

Σ ⊢ ∆ (Σ, record R ∆ : Setℓ ) | self : R ∆ : Setℓ ⊢ field { Σ′

Σ ⊢ (record self : R ∆ : Setℓ where field) { Σ′

Σ ⊢ A (Σ, definition f : A) ⊢ P | f := Q : A{ Σ′

Σ ⊢ (definition f : A where P ) { Σ′

Σ | D ∆ : Setℓ ⊢ con { Σ′ Presupposes: ⊢ Σ and Σ ⊢ D : ∆→ Setℓ . Entails: ⊢ Σ′.

Σ | D ∆ : Setℓ ⊢ ϵ { Σ

Σ;∆ ⊢ℓ ∆c (Σ, constructor c ∆c : D ∆) | D ∆ : Setℓ ⊢ con { Σ′

Σ | D ∆ : Setℓ ⊢ c ∆c, con { Σ′

Σ | self : R ∆ : Setℓ ⊢ field { Σ′ Presupposes: ⊢ Σ and Σ ⊢ R : ∆→ Setℓ . Entails: ⊢ Σ′.

Σ | self : R ∆ : Setℓ ⊢ ϵ { Σ

Σ;∆(self : R ∆̂) ⊢ A : Setℓ′ ℓ′ ≤ ℓ
(Σ, projection self : R ∆ ⊢ .π : A) | self : R ∆ : Setℓ ⊢ field { Σ′

Σ | self : R ∆ : Setℓ ⊢ π : A,field { Σ′

Fig. 9. Rules for checking declarations of data types, record types, and defined symbols.

• If Q = casex {}, we have x : u ≡E v ∈ Γ, so Σ ⊢ xσ0 ↘ refl. But u ≡E v is equivalent to the
empty type by unification, so this case is impossible.

□

5 ELABORATION
In the previous two sections, we have described a core language with inductive datatypes, coinduc-
tive records, identity types, and functions defined by well-typed case trees. On the other hand, we
also have a surface language consisting of declarations of datatypes, record types, and functions
by dependent (co)pattern matching. In this section we show how to elaborate a program in this
surface language to a well-formed signature in the core language.
The main goal of this section is to describe the elaboration of a definition given by a set of

(unchecked) clauses to a well-typed case tree, and prove that this translation (if it succeeds) pre-
serves the first-match semantics of the given clauses. Before we dive into this, we first describe
the elaboration for data and record types.

5.1 Elaborating data and record types
Figure 9 gives the rules for checking declarations, constructors and projections. These rules are
designed to correspond closely to those for signature extension in Fig. 4. Consequentially, if ⊢ Σ
and Σ ⊢ decl { Σ′, then also ⊢ Σ′.
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5.2 From clauses to a case tree
In Section 2 we showed how our elaboration algorithm works in a number of examples, here we
describe it in general. The inputs to the algorithm are the following:

• A signature Σ containing previous declarations, as well as clauses for the branches of the
case tree that have already been checked.
• A context Γ containing the types of the pattern variables: dom(Γ) = PV(q̄).
• The function f currently being checked.
• The copatterns q̄ for the current branch of the case tree.
• The refined target type C of the current branch.
• The user input P , which is described below.

The outputs of the algorithm are a signature Σ′ extending Σ with new clauses and a well-typed
case tree Q such that Σ; Γ ⊢ f q̄ := Q : C { Σ′.
We represent the user input P to the algorithm as an (ordered) list of partially decomposed

clauses, called a left-hand side problem or lhs problem for short. Each partially decomposed clause
is of the form [E]q̄ ↪→ rhs where E is an (unordered) set of constraints {wk /

? pk : Ak | k = 1 . . . l }
between a pattern pk and a term wk , q̄ is a list of copatterns, and rhs is a right-hand side. In the
special case E is empty, we have a complete clause written as q̄ ↪→ rhs.
Elaboration of an lhs problem to a well-typed case tree Σ; Γ ⊢ P | f q̄ := Q : C { Σ′ is defined

in Fig. 10. This judgement is designed as an algorithmic version of the typing judgement for case
trees Σ; Γ ⊢ f q̄ := Q : C { Σ′, where the extra user input P guides the construction of the case
tree. Each of the rules in Fig. 10 is a refined version of one of the rules in Fig. 7, so any case tree
produced by this elaboration is well-typed by construction.
To check a definition of f : A with clauses q̄i ↪→ rhsi for i = 1 . . .n, the algorithm starts with

Γ = ϵ , u = f, and P = {q̄i ↪→ rhsi | i = 1 . . .n}. If we obtain Σ; Γ ⊢ P | f := Q : A { Σ′, then the
function f can be implemented using the case tree Q .
During elaboration, the algorithm maintains the invariants that ⊢ Σ is a well-formed signature,

Σ ⊢ Γ is a well-formed context, and Σ; Γ ⊢ f ⌈q̄⌉ : C . It also maintains the invariant that for each
constraintwk /

? pk : Ak in the lhs problem, we have Σ; Γ ⊢ wk : Ak .
The rules for Σ; Γ ⊢ P | f q̄ := Q : C { Σ′ make use of some auxiliary operations for manipu-

lating lhs problems:

• After each step, the algorithm uses Σ; Γ ⊢ E ⇒ solved(σ ) (Fig. 11) to check if the first user
clause has no more (co)patterns, and all its constraints are solved. If this is the case, it returns
a substitution σ assigning a well-typed value to each of the user-written pattern variables.
• After introducing a new variable, the algorithm uses P (x : A) (Fig. 12) to remove the first
application pattern from each of the user clauses and to introduce a new constraint between
the variable and the pattern.
• After a copattern split on a record type, the algorithm uses P .π (Fig. 13) to partition the
clauses in the lhs problem according to the projection they belong to.
• After a case split on a datatype or an equality proof, the algorithm uses Σ ⊢ Pσ ⇒ P ′

(Fig. 14) to refine the constraints in the lhs problem. It uses judgements Σ ⊢ v /? p : A⇒ E⊥

and Σ ⊢ v̄ /? p̄ : ∆⇒ E⊥ (Fig. 15) to simplify the constraints if possible, and to filter out
the clauses that definitely do not match the current branch.
• To check an absurd pattern ∅, the algorithm uses Σ; Γ ⊢ ∅ : A (Fig. 16) to ensure that the
type of the pattern is a caseless type [Goguen et al. 2006], i.e. a type that is empty and cannot
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Σ; Γ ⊢ P | f q̄ := Q : C { Σ′ In all rules P = {[Ei ]q̄i ↪→ rhsi | i = 1 . . .m}.

Presupposes: Σ; Γ ⊢ f ⌈q̄⌉ : C and dom(Γ) = PV(q̄). Entails: Σ; Γ ⊢ f q̄ := Q : C { Σ′.

q̄1 = ϵ Σ; Γ ⊢ E1 ⇒ solved(σ ) rhs1 = v Σ; Γ ⊢ vσ : C
Σ; Γ ⊢ P | f q̄ := vσ : C { Σ, clause Γ ⊢ f q̄ ↪→ vσ : C

Done

q̄1 = p q̄′1 Σ ⊢ C ↘ (x : A) → B Σ; Γ(x : A) ⊢ P (x : A) | f q̄ x := Q : B { Σ′

Σ; Γ ⊢ P | f q̄ := λx . Q : C { Σ′
Intro

q̄1 = .πi q̄
′
1 Σ ⊢ C ↘ R v̄ record self : R ∆ : Setℓ where πi : Ai ∈ Σ0

(Σi−1; Γ ⊢ P .πi | f q̄ .πi := Qi : Ai [v̄ /∆, f ⌈q̄⌉ / self ] { Σi )i=1...n

Σ; Γ ⊢ P | f q̄ := record{π1 7→ Q1; . . . ;πn 7→ Qn } : C { Σn
Cosplit

q̄1 = ∅ m = 1 Σ ⊢ C ↘ R v̄ record _ : R ∆ : Setℓ where ϵ ∈ Σ rhs1 = impossible

Σ; Γ ⊢ P | f q̄ := record{} : C { Σ
CosplitEmpty

(x /? cj p̄ : A) ∈ E1 Σ ⊢ A↘ D v̄ Γ = Γ1 (x : A)Γ2
data D ∆ : Setℓ where ci ∆i ∈ Σ0(

∆′i = ∆i [v̄ /∆] ρi = 1Γ1 ⊎ [ci ∆̂′i /x] ρ ′i = ρi ⊎ 1Γ2

Σn ⊢ Pρ ′i ⇒ Pi (Σi−1; Γ1∆′i (Γ2ρi ) ⊢ Pi | f q̄ρ ′i := Qi : Cρ ′i { Σi

)
i=1...n

Σ0; Γ ⊢ P | f q̄ := casex {c1 ∆̂′1 7→ Q1; . . . ; cn ∆̂′n 7→ Qn } : C { Σn
SplitCon

(x /? refl : A) ∈ E1 Σ ⊢ A↘ u ≡B v Γ = Γ1 (x : A)Γ2
Σ; Γ1 ⊢x u =? v : B ⇒ yes(Γ′1 , ρ,τ ) ρ ′ = ρ ⊎ 1Γ2 τ ′ = τ ⊎ 1Γ2

Σ ⊢ Pρ ′ ⇒ P ′ Σ; Γ′1 (Γ2ρ) ⊢ P ′ | f q̄ρ ′ := Q : Cρ ′ { Σ′

Σ; Γ ⊢ P | f q̄ := casex {refl 7→τ ′ Q } : C { Σ′
SplitEq

(x /? ∅ : A) ∈ E1 Σ; Γ ⊢ ∅ : A rhs1 = impossible

Σ; Γ ⊢ P | f q̄ := casex {} : C { Σ
SplitEmpty

Fig. 10. Rules for checking a list of clauses and elaborating them to a well-typed case tree.

Σ; Γ ⊢ E ⇒ solved(σ )

(Σ ⊢ [wk /pk ]↘ σk )k=1...n σ =
⊎

k σk (Σ; Γ ⊢ ⌈pk ⌉σ = wk : Ak )k=1...n

Σ; Γ ⊢ {wk /
? pk : Ak | k = 1 . . .n} ⇒ solved(σ )

Fig. 11. Rule for constructing the final substitution and checking all constraints when splitting is done.

even contain constructor-headed terms in an open context. Our language has two kinds
of caseless types: datatypes D v̄ with no constructors, and identity types u ≡A v where
Σ; Γ ⊢x u =? v : A⇒ no.
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P (x : A) Replace the first application pattern p in each clause by the constraint x /? p : A.

ϵ (x : A) = ϵ
([E]p q̄ ↪→ rhs, P ) (x : A) = ([E ∪ {x /? p : A}]q̄ ↪→ rhs), P (x : A)

Fig. 12. Partially decomposed clauses after introducing a new variable (partial function).

P .π Keep only clauses with copattern .π , with this copattern removed.

ϵ .π = ϵ
([E].π q̄ ↪→ rhs, P ) .π = ([E]q̄ ↪→ rhs), P .π
([E].π ′ q̄ ↪→ rhs, P ) .π = P .π if π , π ′

Fig. 13. Partially decomposed clauses after a copattern split (partial function).

Σ ⊢ Pσ ⇒ P ′ (Σ fixed, dropped from rules.)

ϵσ ⇒ ϵ

(v /? p : A) ∈ E vσ /? p : Aσ ⇒ ⊥ Pσ ⇒ P ′

([E]q̄ ↪→ rhs, P )σ ⇒ P ′

E = {wk /
? pk : Ak | k = 1 . . .n} (wkσ /

? pk : Akσ ⇒ Ei )k=1...n Pσ ⇒ P ′

([E]q̄ ↪→ rhs, P )σ ⇒ ([
∪

i Ei ]q̄ ↪→ rhs), P ′

Fig. 14. Rules for transforming partially decomposed clauses after refining the pattern with a case split.

Σ ⊢ v /? p : A⇒ E⊥ and Σ ⊢ v̄ /? p̄ : ∆⇒ E⊥ (Σ fixed, dropped from rules)

v ↘ c v̄ A↘ D ū constructor c ∆c : D ∆ ∈ Σ v̄ /? p̄ : ∆c[ū /∆]⇒ E⊥

v /? c p̄ : A⇒ E⊥

v ↘ refl A↘ u ≡B u ′

v /? refl : A⇒ {}
v ↘ c′ v̄ c , c′

v /? c p̄ : A⇒ ⊥ v /? p : A⇒ {v /? p : A}

ϵ /? ϵ : ϵ ⇒ {}
v /? p : A⇒ E⊥ v̄ /? p̄ : ∆[v /x]⇒ E ′⊥

v v̄ /? p p̄ : (x : A)∆⇒ E⊥ ∪ E ′⊥

Fig. 15. Rules for simplifying the constraints of a partially decomposed clause.

Σ; Γ ⊢ ∅ : A (Σ fixed, dropped from rules)

A↘ D v̄ data D ∆ : Setℓ where ϵ ∈ Σ
Γ ⊢ ∅ : A

A↘ u ≡B v Γ ⊢x u =? v : B ⇒ no
Γ ⊢ ∅ : A

Fig. 16. Rules for caseless types.
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The following rules constitute the elaboration algorithm Σ; Γ ⊢ P | f q̄ := Q : C { Σ′:
Done applies when the first user clause in P has no more copatterns and all its constraints are

solved according to Σ; Γ ⊢ E ⇒ solved(σ ). If this is the case, then construction of the case
tree is finished, adding the clause clause Γ ⊢ f q̄ ↪→ vσ : C to the signature.

Intro applies whenC is a function type and all the user clauses have at least one application
copattern. It constructs the case tree λx . Q , using P (x : A) to construct the subtree Q .

Cosplit applies when C is a record type and all the user clauses have at least one projection
copattern. It constructs the case tree record{π1 7→ Q1; . . . ;πn 7→ Qn }, using P .πi to construct
the branch Qi corresponding to projection .πi.

CosplitEmpty applies whenC is a record type with no projections and the first clause starts
with an absurd pattern. It then constructs the case tree record{}.

SplitCon applies when the first clause has a constraint of the form x /? cj p̄ and the type of
x in Γ is a datatype. For each constructor ci of this datatype, it constructs a pattern sub-
stitution ρi replacing x by ci applied to fresh variables. It then constructs the case tree
casex {c1 ∆̂′1 7→ Q1; . . . ; cn ∆̂′n 7→ Qn }, using Σ ⊢ Pρi ⇒ Pi to construct the branches Qi .

SplitEq applies when the first clause has a constraint of the form x /? refl and the type of
x in Γ is an identity type u ≡A v . It tries to unify u with v , expecting a positive success.
If unification succeeds with output (Γ′1 , ρ,τ ), it constructs the case tree casex {refl 7→τ ′ Q },
using Σ ⊢ Pρ ′ ⇒ P ′ to construct the subtree Q . Here ρ ′ and τ ′ are lifted versions of ρ and τ
over the part of the context that is untouched by unification.

SplitEmpty applies when the first clause has a constraint of the form x /? ∅, and the type of
x is a caseless type according to Σ; Γ ⊢ ∅ : A. It then produces the case tree casex {}.

Remark 26 (Limitations). The algorithm does not detect unreachable clauses, we left that aspect
out of the formal description. Further, SplitEmpty may leave some user patterns uninspected,
which may then be ill-typed. However, an easy check whether the whole lhs f ⌈q̄⌉ is well-typed as
a term can rule out ill-typed patterns.

5.3 Preservation of first-match semantics
Now that we have described the elaboration algorithm from a list of clauses to a well-typed case
tree, we can state and prove our main correctness theorem. We already know that elaboration
always produces a well-typed case tree by construction (if it succeeds), and that well-typed case
trees are type preserving (Theorem 22) and cover all cases (Theorem 25). Now we prove that the
case tree we get is the right one, i.e. that it corresponds to the definition written by the user.
To prove this theorem, we assume that the clauses we get from the user have already been scope

checked, i.e. each variable in the right-hand side of a clause is bound somewhere in the patterns
on the left.
Definition 27. A partially decomposed clause [E]q̄ ↪→ v is well-scoped if every free variable in v
occurs at least once as a pattern variable in either q̄ or in p for some constraint (w /? p : A) ∈ E.
Theorem28. Let P = {q̄i ↪→ rhsi | i = 1 . . .n} be a list of well-scoped clauses such that Σ0 ⊢ P | f :=
Q : C { Σ and let Σ; Γ | f : C ⊢ ē : B be eliminations. Suppose there is an index i such that:
• Σ ⊢ [ē / q̄j ]↘ ⊥ for j = 1 . . . i − 1.
• Σ ⊢ [ē / q̄i ]↘ σ .

Then rhsi = ui is not impossible and Σ ⊢ Q[] f ē −→ uiσ .

For the proof, we first need two basic properties of the auxiliary judgement Σ ⊢ v /? p : A⇒ E.
Lemma 29. If Σ ⊢ v /? p : A⇒ E where E = {wk /

? pk : Bk | k = 1 . . . l }, then for any substitution
σ we also have Σ ⊢ vσ /? p : Aσ ⇒ E ′ where E ′ = {wkσ /

? pk : Bkσ | k = 1 . . . l }.
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Proof. This follows directly from the rules of matching (Fig. 6) and simplification (Fig. 15). □

Lemma 30. Let σ be a substitution and suppose Σ ⊢ v /? p : A⇒ E. Then the following hold:
• Σ ⊢ [vσ /p] ↘ σ ′ if and only if for each (wk /

? pk : Ak ) ∈ E, we have Σ ⊢ [wkσ /pk ] ↘ σk ,
and σ ′ =

⊎
k σk .

• Σ ⊢ [vσ /p]↘ ⊥ if and only if for some (wk /
? pk : Ak ) ∈ E, we have Σ ⊢ [wkσ /pk ]↘ ⊥.

Proof. This follows directly from the rule of matching (Fig. 6) and simplification (Fig. 15). □

The following lemma is the main component of the proof. It generalizes the statement of The-
orem 28 to the case where the left-hand side has already been refined to f q̄ and the user clauses
have been partially decomposed. From this lemma, the main theorem follows directly by taking
q̄ = ϵ and Ei = {} for i = 1 . . .n.

Lemma 31. Let P = {[Ei ]q̄i ↪→ rhsi | i = 1 . . .n} be a list of well-scoped partially decomposed
clauses such that Σ0; Γ0 ⊢ P | f q̄ := Q : C { Σ, and suppose Γ ⊢ σ0 : Γ0 and Σ; Γ | f q̄σ0 : Cσ0 ⊢ ē :
B. If there is an index i such that:
• For each j = 1 . . . i − 1 and each constraint (wk /

? pk : Ak ) ∈ Ej , either Σ ⊢ [wkσ0 /pk ]↘ θ jk
or Σ ⊢ [wkσ0 /pk ]↘ ⊥.
• For each j = 1 . . . i − 1, either Σ ⊢ [ē / q̄j ]↘ θ j0 or Σ ⊢ [ē / q̄j ]↘ ⊥.
• For each j = 1 . . . i − 1, either Σ ⊢ [wkσ0 /pk ] ↘ ⊥ for some constraint (wk /

? pk : Ak ) ∈ Ej ,
or Σ ⊢ [ē / q̄j ]↘ ⊥.
• For each (wk /

? pk : Ak ) ∈ Ei , we have Σ ⊢ [wkσ0 /pk ]↘ θk .
• Σ ⊢ [ē / q̄i ]↘ θ0.

Then rhsi = vi is not impossible and Σ ⊢ Qσ0 ē −→ viθ where θ = θ0 ⊎ (
⊎

k θk ).

Proof. By induction on the derivation of Σ0; Γ0 ⊢ P | f q̄ := Q : C { Σ:
• For the Done rule where Q = v1σ and Σ0 = Σ we have q̄1 = ϵ and rhs1 = v1 (i.e. rhs1
is not impossible). We also get that σ =

⊎
k σk is a substitution such that Σ; Γ0 ⊢ v1σ : C

and Σ ⊢ [wk /pk ] ↘ σk and Σ; Γ0 ⊢ ⌈pk ⌉σ = wk : Ak for each (wk /
? pk : Ak ) ∈ E1.

Because Q = v1σ , we have Σ ⊢ Qσ0 ϵ −→ v1σσ0, so what’s left to prove is that v1σσ0 = viθ
(syntactically). First we show that i = 1, i.e. the first clausematches. Since Σ ⊢ [wk /pk ]↘ σk
we cannot have Σ ⊢ [wkσ0 /pk ]↘ ⊥, and since q̄1 = ϵ , we also cannot have Σ ⊢ [ē / q̄1]↘ ⊥.
The only remaining possibility is that i is 1. This means we have Σ ⊢ [wkσ0 /pk ] ↘ θk for
each (wk /

? pk : Ak ) ∈ E1 and Σ ⊢ [ē / q̄1] ↘ θ0. Since q̄1 = ϵ we also have ē = ϵ and
θ0 = []. To finish this case, we show that σσ0 = (

⊎
k σk )σ0 and θ =

⊎
k θk coincide on all

free variables in v . Since the clause [E1] ↪→ v1 is well-scoped, for each free variable x in v1
there is at least one constraint (wk /

? pk : Ak ) ∈ E1 such that x is a pattern variable of pk .
Since we have both Σ ⊢ [wk /pk ] ↘ σk and Σ ⊢ [wkσ0 /pk ] ↘ θk , we have xσkσ0 = xθk .
This holds for any free variable x in v1, so we have v1σσ0 = v1θ , finishing the proof for the
base case.
• For the Intro rule we have Q = λx . Q ′ where Σ0 ⊢ C ↘ (x : A) → B and q̄i = pi q̄

′
i for

i = 1 . . .n. We also know that Σ0; Γ0 (x : A) ⊢ P ′ | f q̄ x := Q ′ : B { Σ where P ′ = P (x : A).
Since we have either Σ ⊢ [ē /p1 q̄′1] ↘ ⊥ or Σ ⊢ [ē /p1 q̄′1] ↘ θ0, we have ē = t ē ′ for some
term t . Now we apply the induction hypothesis to show that rhsi = vi is not impossible and
Σ ⊢ Q ′(σ0 ⊎ [t /x]) ē ′ −→ viθ , hence also Σ ⊢ Qσ0 ē −→ viθ .
• For the Cosplit rule whereQ = record{π1 7→ Q1; . . . ;πn 7→ Qn }, we have Σ0 ⊢ C ↘ R v̄ and
q̄1 = .πα q̄′1 where projection x : R ∆ ⊢ .πα : Aα ∈ Σ0. We have either Σ ⊢ [ē / .πα q̄′1]↘ θ10
or Σ ⊢ [ē / .πα q̄′1]↘ ⊥, so ē = .piβ ē ′ for some projection x : R ∆ ⊢ .πβ : Aβ ∈ Σ0. We then
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have Σβ−1; Γ ⊢ P .πβ | f q̄ .piβ := Qβ : Aβ [v̄ /∆;u /x] { Σβ . By induction we have that
rhsi is not impossible and Σβ ⊢ Qβσ0 ē

′ −→ vθ , hence also Σ ⊢ Qσ0 ē −→ vθ .
• For the CosplitEmpty rule, we have q̄1 = ∅ q̄′1. Since there are no rules for [π / ∅] ↘ θ⊥,
this case is impossible.
• For the SplitCon rule we know that Q = casex {c1 ∆̂′1 7→ Q1; . . . ; cn ∆̂′n 7→ Qn } where n ≥
1, Γ = Γ1 (x : A)Γ2 and Σ0 ⊢ A ↘ D v̄ . Since (x /? cα p̄ : A) ∈ E1, we either have
Σ ⊢ [xσ0 / cα p̄] ↘ θ1k or Σ ⊢ [xσ0 / cα p̄] ↘ ⊥ (this is the case both if i = 1 and if i > 1).
In either case, we have Σ ⊢ xσ0 ↘ cβ ū for some constructor cβ ∆β : D ∆ ∈ Σ0. Let ∆′β =
∆β [v̄ /∆] and ρβ = [cβ ∆̂′β /x], thenwe have Σ ⊢ Pρβ ⇒ Pβ and Σβ−1; Γ1∆′β Γ2ρβ ⊢ Pβ | f q̄ρβ :=
Qβ : Cρβ { Σβ . We now apply the induction hypothesis to get that rhsi = vi is not
impossible and Σβ ⊢ Qβ (σ0 ⊎ [ū /∆′βσ0]) ē −→ viθ , hence also Σ ⊢ Qσ0 ē −→ viθ .
• For the SplitEq rule where Q = casex {refl 7→τ Q }′, we know that Γ = Γ1 (x : A)Γ2 and
Σ0 ⊢ A ↘ u ≡A v . Since (x /? refl : A) ∈ E1, we either have Σ ⊢ [xσ0 / refl] ↘ θ1k or
Σ ⊢ [xσ0 / refl]↘ ⊥. However, the latter case is impossible since refl is the only constructor
of the identity type, so we have Σ ⊢ xσ0 ↘ refl and θ1k = []. We moreover have Σ0; Γ1 ⊢x
u =? v : B ⇒ yes(Γ′1 , ρ,τ ) and Σ0; Γ′1Γ2ρ ⊢ P ′ | f q̄ρ ′ := Q ′ : Cρ ′ { Σ where ρ ′ = ρ ⊎ 1Γ2

and Σ0 ⊢ Pρ ⇒ P ′. By induction (and using Definition 13 to show that ρ ′;τ ;σ0 = σ0), we get
that rhsi = vi is not impossible and Σ ⊢ Q ′(τ ;σ0) ē −→ θ , hence also Σ ⊢ Qσ0 ē −→ θ .
• For the SplitEmpty rule we know thatQ = casex {} and (x /? ∅ : A) ∈ E1 where Σ0; Γ ⊢ ∅ : A.
We either have Σ ⊢ [xσ0 / ∅] ↘ θx or Σ ⊢ [xσ0 / ∅] ↘ ⊥. However, there are no rules for
Σ ⊢ [v / ∅]↘ θ⊥ so this case is impossible.

□

6 RELATEDWORK
Dependent pattern matching was introduced in the seminal work by Coquand [1992]. It is used
in the implementation of various dependently typed languages such as Agda [Norell 2007], Idris
[Brady 2013], the Equations package for Coq [Sozeau 2010], and Lean [de Moura et al. 2015].
Previous work by Norell [2007], Sozeau [2010], and Cockx [2017] also describe elaborations

from clauses to a case tree, but in much less detail than presented here, and they do not support
copatterns or provide a correctness proof. In cases where both our current algorithm and these
previous algorithms succeed, we expect there is no difference between the resulting case trees.
However, our current algorithm ismuchmore flexible in the placement of dot patterns, so it accepts
more definitions than was possible before (see Example 4).
The translation from a case tree to primitive datatype eliminators was pioneered by McBride

[2000] and further detailed by Goguen et al. [2006] for type theory with uniqueness of identity
proofs and Cockx [2017] in a theory without.
Forced patterns, as well as forced constructors, were introduced by Brady et al. [2003]. Brady

et al. focus mostly on the compilation process and the possibility to erase arguments and construc-
tor tags, while we focus more on the process of typechecking a definition by pattern matching and
the construction of a case tree.
Copatterns were introduced in the simply-typed setting by Abel et al. [2013] and subsequently

used for unifying corecursion and recursion in System Fω [Abel and Pientka 2013]. In the context of
Isabelle/HOL, Blanchette et al. [2017] use copatterns as syntax formixed recursive-corecursive defi-
nitions. Setzer et al. [2014] give an algorithm for elaborating a definition bymixed pattern/copattern
matching to a nested case expression, yet only for a simply typed language. Thibodeau et al. [2016]
present a language with deep (co)pattern matching and a restricted form of dependent types. In
their language, types can only depend on a user-defined domain with decidable equality and the
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types of record fields cannot depend on each other, thus, a self value is not needed for checking pro-
jections. They feature indexed data and record types in the surface language which are elaborated
into non-indexed types via equality types, just as in our core language.
The connection between focusing [Andreoli 1992] and patternmatching has been systematically

explored by Zeilberger [2009]. In Licata et al. [2008] copatterns (“destructor patterns”) also appear
in the context of simple typing with connectives from linear logic. Krishnaswami [2009] boils the
connection to focusing down to usual non-linear types; however, he has no copatterns as he only
considers the product type as multiplicative (tensor), not additive. Thibodeau et al. [2016] extend
the connection to copatterns for indexed record types.
Elaborating a definition by pattern matching to a case tree [Augustsson 1985] simultaneously

typechecks the clauses and checks their coverage, so our algorithm has a lot in common with
coverage checking algorithms. For example, Norell [2007] views the construction of a case tree as
a part of coverage checking. Oury [2007] presents a similar algorithm for coverage checking and
detecting useless cases in definitions by dependent pattern matching.

7 FUTUREWORK AND CONCLUSION
In this paper, we give a description of an elaboration algorithm for definitions by dependent co-
pattern matching that is at the same time elegant enough to be intuitively understandable, simple
enough to study formally, and detailed enough to serve as the basis for a practical implementation.
The implementation of our algorithm as part of the Agda typechecker is at the moment of

writing still work in progress. In fact, the main reason to write this paper was to get a clear idea
of what exactly should be implemented. For instance, while working on the proof of Theorem 28,
we were quite surprised to discover that it did not hold at first: matching was performed lazily
from left to right, but the case tree produced by elaboration may not agree on this order! This
problem was not just theoretical, but also manifested itself in the implementation of Agda as a
violation of subject reduction [Agda issue 2018a]. Removing the shortcut rule from the definition
of matching removed this behavioral divergence mismatch. The complete formalization of the
elaboration algorithm in this paper lets us continue the implementation with confidence.
Agda also has a number of features that are not described in this paper, such as nonrecursive

record types with η equality and general indexed datatypes (not just the identity type). The imple-
mentation also has to deal with the insertion of implicit arguments, the presence of metavariables
in the syntax, and reporting understandable errors when the algorithm fails. Based on our practi-
cal experience, we are confident that the algorithm presented here can be extended to deal with
all of these features.

REFERENCES
Andreas Abel and Brigitte Pientka. 2013. Wellfounded Recursion with Copatterns: A Unified Approach to Termination

and Productivity. In Proceedings of the Eighteenth ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA, September 25-27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM Press, 185–196. https:
//doi.org/10.1145/2500365.2500591

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming Infinite Structures by
Observations. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’13,
Rome, Italy, January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM Press, 27–38. http://dl.acm.org/
citation.cfm?id=2429069

Agda development team. 2017. Agda 2.5.3 documentation. http://agda.readthedocs.io/en/v2.5.3/
Agda issue. 2017a. Disambiguation of type based on pattern leads to non-unique meta solution. (2017). https://github.

com/agda/agda/issues/2834 (on the Agda bug tracker).
Agda issue. 2017b. Internal error in src/full/Agda/TypeChecking/Coverage/Match.hs:312. (2017). https://github.com/agda/

agda/issues/2874 (on the Agda bug tracker).
Agda issue. 2017c. Panic: unbound variable. (2017). https://github.com/agda/agda/issues/2856 (on the Agda bug tracker).

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1145/2500365.2500591
http://dl.acm.org/citation.cfm?id=2429069
http://dl.acm.org/citation.cfm?id=2429069
http://agda.readthedocs.io/en/v2.5.3/
https://github.com/agda/agda/issues/2834
https://github.com/agda/agda/issues/2834
https://github.com/agda/agda/issues/2874
https://github.com/agda/agda/issues/2874
https://github.com/agda/agda/issues/2856


1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Jesper Cockx and Andreas Abel

Agda issue. 2017d. Record constructor is accepted, record pattern is not. (2017). https://github.com/agda/agda/issues/2850
(on the Agda bug tracker).

Agda issue. 2018a. Mismatch between order of matching in clauses and case tree; subject reduction broken. (2018). https:
//github.com/agda/agda/issues/2964 (on the Agda bug tracker).

Agda issue. 2018b. Unifier throws away pattern. (2018). https://github.com/agda/agda/issues/2896 (on the Agda bug
tracker).

Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2,
3 (1992), 297–347. https://doi.org/10.1093/logcom/2.3.297

Lennart Augustsson. 1985. Compiling Pattern Matching. In Functional Programming Languages and Computer Architecture,
FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings (Lecture Notes in Computer Science), Jean-Pierre Jouannaud
(Ed.), Vol. 201. Springer, 368–381. https://doi.org/10.1007/3-540-15975-4_48

Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, and Dmitriy Traytel. 2017. Friends with
Benefits - Implementing Corecursion in Foundational Proof Assistants. In Programming Languages and Systems - 26th
European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science), Hongseok
Yang (Ed.), Vol. 10201. Springer, 111–140. https://doi.org/10.1007/978-3-662-54434-1_5

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Jour-
nal of Functional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/S095679681300018X

Edwin Brady, Conor McBride, and James McKinna. 2003. Inductive Families Need Not Store Their Indices. In Types for
Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers
(Lecture Notes in Computer Science), Stefano Berardi, Mario Coppo, and Ferruccio Damiani (Eds.), Vol. 3085. Springer,
115–129. https://doi.org/10.1007/978-3-540-24849-1_8

Luca Cardelli. 1984. Compiling a Functional Language. In Proceedings of the 1984 ACM Conference on LISP and Functional
Programming, August 5-8, 1984, Austin, Texas, USA. ACM Press, 208–217. http://lucacardelli.name/Papers/CompilingML.
A4.pdf

Jesper Cockx. 2017. Dependent pattern matching and proof-relevant unification. Ph.D. Dissertation. KU Leuven.
Jesper Cockx, Dominique Devriese, and Frank Piessens. 2016. Unifiers as equivalences: proof-relevant unification of de-

pendently typed data, See [Garrigue et al. 2016], 270–283. https://doi.org/10.1145/2951913.2951917
Thierry Coquand. 1992. Pattern Matching with Dependent Types. In Proceedings of the 1992 Workshop on Types for Proofs

and Programs, Båstad, Sweden, June 1992, Bengt Nordström, Kent Pettersson, and Gordon Plotkin (Eds.). 71–83. http:
//www.cse.chalmers.se/~coquand/pattern.ps

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean
Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science), Amy P. Felty and Aart
Middeldorp (Eds.), Vol. 9195. Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). 2016. Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. ACM Press. https://doi.org/10.1145/
2951913

Healfdene Goguen, Conor McBride, and James McKinna. 2006. Eliminating Dependent Pattern Matching. In Algebra,
Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday (Lecture Notes
in Computer Science), Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer (Eds.), Vol. 4060. Springer, 521–540.
https://doi.org/10.1007/11780274_27

INRIA. 2017. The Coq Proof Assistant Reference Manual (version 8.7 ed.). INRIA. http://coq.inria.fr/
Neelakantan R. Krishnaswami. 2009. Focusing on pattern matching. In Proceedings of the 36th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao
and Benjamin C. Pierce (Eds.). ACM Press, 366–378.

Daniel R. Licata, Noam Zeilberger, and Robert Harper. 2008. Focusing on Binding and Computation. In Proceedings of the
Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, Frank
Pfenning (Ed.). IEEE Computer Society Press, 241–252. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
4557886 Long version available as Technical Report CMU-CS-08-101.

Luc Maranget. 1992. Compiling Lazy Pattern Matching. In LISP and Functional Programming. 21–31. https://doi.org/10.
1145/141471.141499

Conor McBride. 2000. Dependently typed functional programs and their proofs. Ph.D. Dissertation. University of Edinburgh.
Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Chalmers

University of Technology.
Nicolas Oury. 2007. Pattern matching coverage checking with dependent types using set approximations. In Proceedings of

the ACM Workshop Programming Languages meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007,

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://github.com/agda/agda/issues/2850
https://github.com/agda/agda/issues/2964
https://github.com/agda/agda/issues/2964
https://github.com/agda/agda/issues/2896
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1007/3-540-15975-4_48
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-540-24849-1_8
http://lucacardelli.name/Papers/CompilingML.A4.pdf
http://lucacardelli.name/Papers/CompilingML.A4.pdf
https://doi.org/10.1145/2951913.2951917
http://www.cse.chalmers.se/~coquand/pattern.ps
http://www.cse.chalmers.se/~coquand/pattern.ps
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/2951913
https://doi.org/10.1145/2951913
https://doi.org/10.1007/11780274_27
http://coq.inria.fr/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4557886
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4557886
https://doi.org/10.1145/141471.141499
https://doi.org/10.1145/141471.141499


1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Elaborating dependent (co)pattern matching 1:33

Aaron Stump and Hongwei Xi (Eds.). ACM Press, 47–56. https://doi.org/10.1145/1292597.1292606
Robert Pollack. 1998. How to Believe a Machine-Checked Proof. In Twenty Five Years of Constructive Type Theory, Giovanni

Sambin and Jan Smith (Eds.). Oxford University Press. http://www.brics.dk/RS/97/18/BRICS-RS-97-18.pdf
Anton Setzer, Andreas Abel, Brigitte Pientka, and David Thibodeau. 2014. Unnesting of Copatterns. In Rewriting and Typed

Lambda Calculi - Joint International Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings (Lecture Notes in Computer Science), Gilles Dowek (Ed.), Vol. 8560. Springer,
31–45. https://doi.org/10.1007/978-3-319-08918-8_3

Matthieu Sozeau. 2010. Equations: A Dependent Pattern-Matching Compiler. In Interactive Theorem Proving, First Inter-
national Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings (Lecture Notes in Computer Science), Matt
Kaufmann and Lawrence C. Paulson (Eds.), Vol. 6172. Springer, 419–434. https://doi.org/10.1007/978-3-642-14052-5_29

David Thibodeau, Andrew Cave, and Brigitte Pientka. 2016. Indexed codata types, See [Garrigue et al. 2016], 351–363.
https://doi.org/10.1145/2951913.2951929

Noam Zeilberger. 2008. Focusing and higher-order abstract syntax. In Proceedings of the 35th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, George C.
Necula and Philip Wadler (Eds.). ACM Press, 359–369.

Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching. Ph.D. Dissertation. Carnegie Mellon
University. http://software.imdea.org/~noam.zeilberger/thesis.pdf

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://doi.org/10.1145/1292597.1292606
http://www.brics.dk/RS/97/18/BRICS-RS-97-18.pdf
https://doi.org/10.1007/978-3-319-08918-8_3
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1145/2951913.2951929
http://software.imdea.org/~noam.zeilberger/thesis.pdf


1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Jesper Cockx and Andreas Abel

A INFERENCE RULES

⊢ Γ

⊢ ϵ
Γ ⊢ A x < dom(Γ)

⊢ Γ(x : A)

Fig. 17. The typing rules for valid contexts.

Γ ⊢ u = v : A

Γ ⊢ u : A
Γ ⊢ u = u : A

Γ ⊢ u1 = u2 : A
Γ ⊢ u2 = u1 : A

Γ ⊢ u1 = u2 : A Γ ⊢ u2 = u3 : A
Γ ⊢ u1 = u3 : A

Γ ⊢ u1 = u2 : A1 Γ ⊢ A1 = A2

Γ ⊢ u1 = u2 : A2

Γ ⊢ A1 = A2 : Setℓ Γ(x : A1) ⊢ B1 = B2 : Setℓ′

Γ ⊢ (x : A1) → B1 = (x : A2) → B2 : Setmax(ℓ,ℓ′)

⊢ Γ x : A ∈ Γ Γ | x : A ⊢ ē1 = ē2 : B
Γ ⊢ x ē1 = x ē2 : B

Γ ⊢ A1 = A2 : Setℓ Γ ⊢ u1 = u2 : A1 Γ ⊢ v1 = v2 : A1

Γ ⊢ (u1 ≡A1 v1) = (u2 ≡A2 v2) : Setℓ

data D ∆ : Setℓ ∈ Σ Γ ⊢ ū1 = ū2 : ∆
Γ ⊢ D ū1 = D ū2 : Setℓ

record R ∆ : Setℓ ∈ Σ Γ ⊢ ū1 = ū2 : ∆
Γ ⊢ R ū1 = R ū2 : Setℓ

constructor c ∆c : D ∆ ∈ Σ Γ ⊢ ū : ∆ Γ ⊢ v̄1 = v̄2 : ∆c[ū /∆]
Γ ⊢ c v̄1 = c v̄2 : D ū

definition f : A ∈ Σ Γ | f : A ⊢ ē1 = ē2 : B
Γ ⊢ f ē1 = f ē2 : B

clause ∆ ⊢ f q̄ ↪→ v : B ∈ Σ Γ ⊢ σ : ∆
Γ ⊢ f ⌈q̄⌉σ = vσ : Bσ

Fig. 18. The conversion rules for terms.
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Γ | u : A ⊢ ē1 = ē2 : B

Γ | u : A ⊢ ϵ = ϵ : A
Γ ⊢ v1 = v2 : A Γ | u v1 : B[v1 /x] ⊢ ē1 = ē2 : C

Γ | u : (x : A) → B ⊢ v1 ē1 = v2 ē2 : C

projection x : R ∆ ⊢ .π : A ∈ Σ Γ | u .π : A[v̄ /∆,u /x] ⊢ ē1 = ē2 : C
Γ | u : R v̄ ⊢ .π ē1 = .π ē2 : C

Γ | u : A ⊢ ē1 = ē2 : B Γ ⊢ A = A′ Γ ⊢ B = B′

Γ | u : A′ ⊢ ē1 = ē2 : B′

Fig. 19. The conversion rules for eliminations.

Γ ⊢ ū = v̄ : ∆

⊢ Γ
Γ ⊢ ϵ = ϵ : ϵ

Γ ⊢ u1 = u2 : A Γ ⊢ ū1 = ū2 : ∆[u1 /x]
Γ ⊢ u1 ū1 = u2 ū2 : (x : A)∆

Fig. 20. The conversion rules for lists of terms.
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