
Syntactical Strong Normalization for

Intersection Types with Term Rewriting Rules

Andreas Abel∗

Institut für Informatik
Ludwig-Maximilians-Universität München

4 June 2007

Abstract

We investigate the intersection type system of Coquand and Spiwack
with rewrite rules and natural numbers and give an elementary proof of
strong normalization which can be formalized in a weak metatheory.

1 Introduction

For typed λ-calculi which are used as languages for theorem provers, such as
Agda, Coq, LEGO or Isabelle, normalization is a crucial property; the con-
sistency of these provers depend on it. Usually, normalization is proven by a
model construction, but recently, syntactical normalization proofs have received
some interest [Val01, Dav01, JM03]. One advantage of syntactical proofs is that
they explain better why a calculus is normalizing; in such proofs one can see
what actually decreases in each reduction step. Another advantage is that they
can be formalized in weak logical theories. For instance, a syntactic normal-
ization proof [Abe04] of the simply-typed λ-calculus (STL) can be carried out
in Twelf, a logical framework supporting higher-order abstract syntax, whose
proof-theoretic strength is probably ωωω

, well below primitive recursive arith-
metic. The insight that normalization of very weak languages, like the STL,
can be proven using just lexicographic structural induction over Σ1-sentences,
has recently lead to a full formalization of an intermediate language for SML in
Twelf [LCH07].

In this work, we consider a λ-calculus with simple and intersection types
and term rewriting and show strong normalization by structural means, that is,
no model construction, instead finitary inductive definitions and lexicographic
induction. For intersection types without term rewriting, similar normalization
proofs exist [Val01, Mat00]. The present system originates from work of Co-
quand and Spiwack [CS06]; there it serves as the basis of a filter λ model which
ultimately shows normalization of a dependently-typed logical framework with
bar recursion. The filter λ model “translates” a term of the logical framework
into sets of finite types the term can receive in the intersection type system. If
all intersection-typable terms are strongly normalizing, then so are all terms of

∗Research partially supported by the EU coordination action TYPES (510996).

1

the logical framework whose denotation is not the empty set of types in the filter
λ-model. Coquand and Spiwack prove normalization for the intersection type
system using reducibility candidates; however, there should be a proof with
weaker means. As Berger [Ber05] explained to me, the filter λ model which
links the (strong) logical framework with the (presumably weak) intersection
type systems uses proof-theoretically heavy tools, hence, the link between the
intersection type system and strong normalization should be a lightweight one.
This works tries to substantiate Berger’s intuition.

2 Intersection Type System for Term Rewriting

As language, we consider the λ-calculus with constructors and functions defined
by rewriting. For simplicity, we consider only the nullary constructor 0 and
the unary constructor $ (successor) for natural numbers and functions f with
rewrite rules of the shape

f(0) −→ z z closed
f($x) −→ s FV(s) ⊆ {x}.

The right hand sides z and s may mention f and other defined functions, thus,
recursion is a priori unrestricted. Although we only consider natural numbers
in the following, the techniques extend to all first-order data types, such as
lists or finitely branching trees. Higher-order data types, such as infinitely
branching trees and tree ordinals pose yet some technical problem. Thus, we
do not cover the full language of Coquand and Spiwack. Note however that
first-order datatypes (natural numbers and lists) are sufficient to treat the main
application of the Coquand and Spiwack’s filter λ model, strong normalization
of bar recursion.

The intersection type system does not know a type Nat of all natural num-
bers, however, it has one singleton type for each a natural number. We use the
same constructors 0 and $ for these singleton types. The type E is the least
type in the subtyping relation, it is inhabited by terms blocking reduction, such
as f(λxt).

Types. Let I, J,K denote non-empty finite index sets and let i, j, k range over
indices.

a, b, c ::= E | 0 | $a ground types
A, B,C ::= a | ⋂i∈I(Ai → Bi) types

The type A → B is a special case of the last alternative. A function type is a
partial description of the graph of the function, for instance, the identity λxx
could receive the type (0 → 0) ∩ ($0 → $0) ∩ ($$0 → $$0), or more generally
the type

⋂
i∈I($

i0 → $i0) for any finite set I of natural numbers.
A binary intersection A ∩ B is an associative commutative idempotent op-

eration definable by induction on A and B.

E ∩ A = E
0 ∩ $a = E

0 ∩ ⋂
i∈I(Ai → Bi) = E

$a ∩ ⋂
i∈I(Ai → Bi) = E

0 ∩ 0 = 0
$a ∩ $a′ = $(a ∩ a′)

(A → B) ∩ (A → B′) = A → (B ∩ B′)(⋂
i∈I(Ai → Bi)

)
∩ (⋂

i∈J(Ai → Bi)
)

=
⋂

i∈I∪J(Ai → Bi)

2

In the last clause, we assume all Ai for i ∈ I] J different. This invariant can
be ensured using the but-last clause.

A measure on types |A| is defined by |a| = 0 and |⋂i∈I(Ai → Bi)| =
max{|Ai|+ 1, |Bi| | i ∈ I}.

Subtyping A ⊆ B is inductively given by the following rules [CS06].

E ⊆ A 0 ⊆ 0
a ⊆ b

$a ⊆ $b

A ⊆ Bi → Ci for all i ∈ I

A ⊆ ⋂
i∈I(Bi → Ci)

(⋂
i∈J Bi

) ⊆ B⋂
i∈I(Ai → Bi) ⊆ A → B

J = {i | A ⊆ Ai} 6= ∅

This definition of subtyping is syntax-directed, however, it coincides with the
usual axiomatic presentation: reflexivity, transitivity, and the usual rules for
binary intersection, A1 ∩ A2 ⊆ Ai and A ⊆ A1 & A ⊆ A2 =⇒ A ⊆ A1 ∩ A2,
are admissible; and the contravariant subtyping rule for function spaces is an
instance of the last rule with I = J = {1}.

Typing The rules for the typing judgement Γ ` t : A are taken from Coquand
and Spiwack [CS06] and restricted to our set of constructors and function sym-
bols. The first five rules are just intersection typing, the other five rules deal
with constructors and functions.

Γ ` x : Γ(x)
Γ, x :A ` t : B

Γ ` λxt : A → B

Γ ` r : A → B Γ ` s : A

Γ ` r s : B

Γ ` r : A Γ ` r : B

Γ ` r : A ∩ B

Γ ` r : A A ⊆ B

Γ ` r : B

Γ ` 0 : 0
Γ ` r : a

Γ ` $r : $a

Γ ` r : A

Γ ` f(r) : E
A 6= 0, $a

Γ ` r : 0 Γ ` z : C

Γ ` f(r) : C
f(0) −→ z

Γ ` r : $a Γ, x :a ` s : C

Γ ` f(r) : C
f($x) −→ s

Observe that a recursive function f is typed “through its evaluation”. For in-
stance, if f(0) −→ 0 and f($x) −→ $(f(x)), then f is the recursive identity, and
to derive y : $n0 ` f(y) : $n0 we must derive y : $m0 ` f(y) : $m0 for all m < n
first. Hence, the whole computation tree of a recursive function application is
already present in its typing. Therefore, a proof of strong normalization should
be easy, in principle not harder as for the STL. In the following we substantiate
this claim; although technically a bit involved, the proof has low proof-theoretic
complexity.

3 Strong Normalization

In this section, we extend the normalization proof of Joachimski and Matthes
[JM03] to the intersection type system of the last section. To this end, we
introduce a judgement Γ ` t ⇑ C stating that Γ ` t : C and t is strongly

3

normalizing. That this judgement is closed under substitution and application
will be the main technical lemma; remember that closure under application is
the difficult part in strong normalization proofs and usually requires a Tait-
style logical relation argument. The basic idea behind the judgement is that
typed weakly normalizing terms are closed under substitution: substituting the
normal form v of a term of type A = A1 → · · · → Am → B for x into the
normal form w of another term can generate redexes if v contains subterms of
the form x vA1

1 . . . vAn
n . Considering such a new β-redex (λx′w′) vAi

i , we observe
that its degree Ai is smaller than A. Thus, the new substitution of vi into w′,
which is necessary to reduce the redex, occurs with a smaller type; it might
again create new redexes, however, with an even smaller type, so the whole
process will eventually terminate. Watkins et. al. [WCPW03] coined the name
hereditary substitutions for this process. Yet this normalization argument for
the STL is quite old, Lévy [Lév76] attributes it to D. van Dalen.

SN: Atomic terms.

Γ ` x ↓ Γ(x)
Γ ` r ↓ ⋂

i∈I(Ai → Bi) Γ ` s ⇑ Aj for all j ∈ J

Γ ` r s ↓ ⋂
j∈J Bj

J ⊆ I

SN: Neutral terms.

Γ ` r ↓ A A ⊆ B

Γ ` r ⇓ B

Γ ` r ⇓ 0 Γ ` z ~s ⇑ C

Γ ` f(r)~s ⇓ C
f(0) −→ z

Γ ` r ⇓ $a Γ, x :a ` s~s ⇑ C

Γ ` f(r)~s ⇓ C

f($x) −→ s
x 6∈ FV(~s)

SN: Values, blocked terms, and weak head expansions.

Γ ` r ⇓ A A ⊆ B

Γ ` r ⇑ B

Γ, x :Ai ` t ⇑ Bi for all i ∈ I

Γ ` λxt ⇑ ⋂
i∈I(Ai → Bi) Γ ` 0 ⇑ 0

Γ ` r ⇑ a

Γ ` $r ⇑ $a

Γ ` r ⇑ A

Γ ` f(r) ⇑ E
A 6= 0, $a

Γ ` r ⇑ E Γ ` s ⇑ A

Γ ` r s ⇑ E

Γ ` s ⇑ A Γ ` E[[s/x]t] ⇑ C

Γ ` E[(λxt) s] ⇑ C

Γ ` E[z] ⇑ C

Γ ` E[f(0)] ⇑ C
f(0) −→ z

Γ ` r ⇑ A Γ ` E[[r/x]s] ⇑ C

Γ ` E[f($r)] ⇑ C
f($x) −→ s

Figure 1: Inductive characterization of SN.

The crucial property of STL which makes hereditary substitutions work is
that in an atomic term x s1 . . . sn, the types of all si are smaller than the type
of x. In the presence of term rewriting, we can have terms like f(x) s with a
variable in the head, but now the type of s is no longer guaranteed to be smaller
than the type of x. Let us call such terms neutral ; they are of shape E[x] where

4

E[] is an evaluation context given by the grammar

E[] ::= [] | E[] s | f(E[]).

The termination argument of hereditary substitutions does no longer apply.
However, we can salvage our substitution lemma by the following observation:
For neutral terms of the shape t = E[f(y ~s)], substitution for y might simplify
the atomic part y ~s to 0 or $r. In the first case t is s.n. if E[z] is, and in the
second case, if E[[r/x]s] is.

Taking these thoughts into account we simultaneously define the three judge-
ments (see Fig. 1):

Γ ` t ↓ A t is s.n. and atomic of type A
Γ ` t ⇓ A t is s.n. and neutral of type A
Γ ` t ⇑ A t is s.n. of type A

Lemma 1 (Weakening) Let Γ′ ⊆ Γ.

1. If D :: Γ ` t ↓ B then Γ′ ` t ↓ A for some A ⊆ B.

2. If D :: Γ ` t ⇓ B then Γ′ ` t ⇓ B.

3. If D :: Γ ` t ⇑ B and B ⊆ C then Γ′ ` t ⇑ C.

Proof. Simultaneously by induction on D. 2

The three judgements are closed under intersection: For R ∈ {↓,⇓,⇑}, Γ ` t R
A and Γ ` t R B imply Γ ` t R A ∩ B, which can be proven simultaneously for
all three R by induction.

Now we come to the crucial substitution lemma. Substitution for x in a
derivation of

Γ, x :A ` r ⇓ $b Γ, x :A, y :b ` s~t ⇑ C

Γ, x :A ` f(r)~t ⇓ C
f($y) −→ s

might trigger a substitution for y which in turn might trigger new substitutions.
To establish termination of this process we require y to be of base type b. This is
the reason why we disallow higher-order datatypes, which can have elements of
higher types as arguments to their constructors. We generalize the substitution
lemma of Joachimski and Matthes [JM03] to simultaneous substitution, but
only one substituted variable may be of higher type.

Lemma 2 (Substitution and application) Let Γ ` s ⇑ A and Γ ` si ⇑ ai

for i ∈ I. Let r′ = [s/x][~s/~x]r. Let R ∈ {⇓,⇑}.
1. If D :: Γ, x : A, ~x : ~a ` r ↓ C then either Γ ` r′ ↓ C, or Γ ` r′ ⇑ C and
|C| ≤ |A|.

2. If D :: Γ, x :A, ~x :~a ` r R C then Γ ` r′ ⇑ C.

3. If D :: Γ ` r R ⋂
i∈I(Ai → Ci) and A = Aj then Γ ` r s R Cj.

Proof. By lexicographic induction on (|A|,D). For Prop. 1 consider the cases:

Case Γ, x :A, ~x :~a ` x ↓ A. Then r′ = s and Γ ` r′ ⇑ A with |A| ≤ |A|.

5

Case Γ, x :A, ~x :~a ` xi ↓ ai. Then r′ = si and Γ ` r′ ⇑ ai, and |ai| = 0 ≤ |A|.
Case Γ, x :A, ~x :~a ` y ↓ B for y 6∈ {x, ~x}. Then r′ = y and Γ ` r′ ↓ B.

Case J ⊆ I and

Γ, x :A,~x :~a ` t ↓ ⋂
i∈I(Ai → Bi) Γ, x :A, ~x :~a ` u ⇑ Ai for all i ∈ J

Γ, x :A,~x :~a ` t u ↓ ⋂
i∈J Bi

Let t′ = [s/x][~s/~x]t and u′ = [s/x][~s/~x]u. By second induction hypothesis,
Γ ` u′ ⇑ Ai for all i ∈ J . We distinguish cases on the first induction
hypothesis:

Subcase Γ ` t′ ↓ ⋂
i∈I(Ai → Bi). Then Γ ` t′ u′ ↓ ⋂

i∈J Bi.

Subcase Γ ` t′ ⇑ ⋂
i∈I(Ai → Bi) and |⋂i∈I(Ai → Bi)| ≤ |A|. Then for each

i ∈ J , we have |Aj | < |A| and, thus, can apply induction hypothesis 3
to obtain Γ ` t′ u′ ⇑ Bi and |Bi| ≤ |A|. Thus, |⋂i∈J Bi| ≤ |A|, and
by closure unter intersection, Γ ` t′ u′ ⇑ ⋂

i∈J Bi.

The principal case of Proposition 2 is:

Case f($y) −→ s, y 6∈ FV(~t) and

Γ, x :A, ~x :~a ` r ⇓ $b Γ, x :A, ~x :~a, y :b ` s~t ⇑ C

Γ, x :A, ~x :~a ` f(r)~t ⇓ C

By induction hypothesis, D′ :: Γ ` r′ ⇑ $b. Let t′j = [s/x][~s/~x]tj for all j.
We show Γ ` f(r′)~t′ ⇑ C by a local induction on D′.

Subcase r′ = $r′′ and Γ ` r′′ ⇑ b. Then by main induction hypothesis Γ `
([r′′/y]s)~t′ ⇑ C which implies Γ ` f($r′′)~t′ ⇑ C.

Subcase r′ = E[(λzt)u] and

Γ ` u ⇑ A′ Γ ` E[[u/z]t] ⇑ $b

Γ ` E[(λzt)u] ⇑ $b

Let E′[] = f(E[])~t′. By local induction hypothesis, Γ ` E′[[u/z]t] ⇑
C, hence, Γ ` E′[(λzt)u] ⇑ C. The other cases of weak head expan-
sions are treated analogously.

Subcase
Γ ` r′ ⇓ $b′ b′ ⊆ b

Γ ` r′ ⇑ $b

By main induction hypothesis, Γ, y : b ` s~t′ ⇑ C. By the weakening
lemma, Γ, y :b′ ` s~t′ ⇑ C, which entails Γ ` f(r′)~t′ ⇓ C.

Subcase
Γ ` r′ ⇓ E E ⊆ $b

Γ ` r′ ⇑ $b

Then Γ ` f(r′) ⇑ E, which implies Γ ` f(r′)~t′ ⇑ E by iterated
application. We conclude Γ ` f(r′)~t′ ⇑ C by weakening.

The principal case for Proposition 3 is:

6

Case
Γ, x :Ai ` t ⇑ Ci for all i ∈ I

Γ ` λxt ⇑ ⋂
i∈I(Ai → Ci)

By Prop. 2, Γ ` [s/x]t ⇑ Cj . By weak head expansion, Γ ` (λxt) s ⇑ Cj .
2

Lemma 3 (Recursion)

1. If D :: Γ ` r ⇑ 0 and Γ ` z ⇑ C then Γ ` f(r) ⇑ C.

2. If D :: Γ ` r ⇑ $a and Γ, x :a ` s ⇑ C then Γ ` f(r) ⇑ C.

Proof. Each by induction on D. This essentially repeats proofs carried out for
Proposition 2 in the previous lemma. 2

Now we have shown that the judgement ⇑ is closed under all eliminations (in-
tersection elim., application, recursion), hence, each well-typed term is in ⇑:

Theorem 4 If Γ ` t : C then Γ ` t ⇑ C.

Proof. By induction on Γ ` t : C. 2

It remains to show that if Γ ` t ⇑ C then t is indeed strongly normalizing.
Consider the following rule:

Γ ` r ⇑ A

Γ ` f(r) ⇑ E
A 6= 0, $a.

To show strong normalization of f(r) from s.n. of r we additionally need to
know that r will never reduce to 0 or $r′ for some r′.

Theorem 5 Let R ∈ {↓,⇓,⇑} and Γ ` t R C. Then t is strongly normalizing.
If R 6= ⇑, then t is neutral. Otherwise,

1. if C 6= 0, then t 6−→∗ 0,

2. if C 6= $c, then t 6−→∗ $t′ for any t′, and

3. if C 6= ⋂
i∈I(Ai → Bi), then t 6−→∗ λxt′ for any t′.

Proof. By induction on Γ ` t R C. For each rule we do a local Noetherian
induction on the strong normalization of the terms in the premises. 2

4 Conclusion

We have proven strong normalization for a λ-calculus with intersection types and
term rewriting without the use of reducibility candidates or Tait-style saturated
sets. The proof is technically involved, but can be formalized in a weak meta-
theory. Formalization in Twelf is not directly possible, not because Twelf’s
induction principles are not strong enough, but because we use constructs like⋂

i∈I(Ai → Bi) or simultaneous substitutions, which are not representable in
Twelf, at least not directly.

7

We have partially answered our conjecture in the affirmative, that the inter-
section type system of Coquand and Spiwack [CS06] can be proven normalizing
with simple means. What remains is an extension to higher-order datatypes.
Also, our proof relies substantially on a deterministic weak head reduction rela-
tion, it is therefore not clear how we could handle overlapping patterns, an ex-
tension Coquand and Spiwack discuss in the conclusion of their article. Neither
they nor we handle non-computational rewrite rules like (x+y)+z −→ x+(y+z).

Riba [Rib07] considers a similar system, without datatypes yet with rewrite
rules, and with union types. He shows that the elimination rule for union types
can lead to diverging terms in some cases, and isolates conditions when these
cases cannot occur. It would be interesting to see whether our proof could be
extended to union types, and where Riba’s conditions materialize in the proof.

Thanks to Thierry Coquand for interesting discussions.

References

[Abe04] Andreas Abel. Weak normalization for the simply-typed lambda-
calculus in Twelf. In LFM’04, 2004.

[Ber05] Ulrich Berger. Continuous semantics for strong normalization. In
CiE’05, volume 3526 of LNCS, pages 23–34. Springer, 2005.

[CS06] Thierry Coquand and Arnaud Spiwack. A proof of strong normal-
isation using domain theory. In LICS’06, pages 307–316. IEEE CS
Press, 2006.

[Dav01] René David. Normalization without reducibility. APAL, 107(1–
3):121–130, 2001.

[JM03] Felix Joachimski and Ralph Matthes. Short proofs of normalization.
AML, 42(1):59–87, 2003.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mech-
anized metatheory of Standard ML. In POPL’07, pages 173–184.
ACM, 2007.

[Lév76] Jean-Jacques Lévy. An algebraic interpretation of the λβK-
calculus; and an application of a labelled λ-calculus. TCS, 2(1):97–
114, 1976.

[Mat00] Ralph Matthes. Characterizing strongly normalizing terms of a
calculus with generalized applications via intersection types. In
ITRS’00, pages 339–354. Carleton Scientific, 2000.

[Rib07] Colin Riba. Strong normalization as safe interaction. In Logics in
Computer Science, LICS’07, 2007. To appear.

[Val01] Silvio Valentini. An elementary proof of strong normalization for
intersection types. AML, 40(7):475–488, October 2001.

[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgements and prop-
erties. Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 2003.

8

