
Natural Deduction and the

Curry-Howard-Isomorphism

Andreas Abel

August 2016

Abstract

We review constructive propositional logic and natural deduction
and connect it to the simply-typed lambda-calculus with the Curry-
Howard Isomorphism.

Constructive Logic

A fundamental property of constructive logic is the disjunction property :

If the disjunction A∨B is provable, then either A is provable or
B is provable.

This property is not compatible with the principle of the excluded middle
(tertium non datur), which states that A∨¬A holds for any proposition A.
While each fool can state the classical tautology “aliens exist or don’t”, this
certainly does not give us a means to decide whether aliens exist or not. A
constructive proof of the fool’s statement would require either showcasing
an alien or a stringent argument for the impossibility of their existence.1

1 Natural deduction for propositional logic

The proof calculus of natural deduction goes back to Gentzen [1935].

1 For a more mathematical example of undecidability, refer to the continuum hypothesis
CH which states that no cardinal exists between the set of the natural numbers and the set
of reals. It is independent of ZFC, Zermelo-Fränkel set theory with the axiom of choice,
meaning that in ZFC, neither CH nor ¬CH is provable.

1

1.1 Propositions

Formulæ of propositional logic are given by the following grammar:

P,Q atomic proposition

A,B,C ::= P
| A⇒ B implication
| A ∧B | > conjunction, truth
| A ∨B | ⊥ disjunction, absurdity

Even though we write formulas in linearized (string) form, we think of them
as (abstract syntax) trees. Formulas of propositional logic are binary trees
where the inner nodes are labelled with one of the connectives ⇒ or ∧ or ∨,
and leafs with a generic atomic proposition P or with > or ⊥. The label of
the root of such a tree is also called the principal connective of the formula.
Any subtree of a formula A is called a subformula of A. The children of the
root node are called the immediate subformulæ.

Example 1 (Propositions). Given

SH := “Sokrates is a human”
FL := “Sokrates has four legs”

we can form the implication SH⇒ FL verbalized as “if Sokrates is a human,
he has four legs”.

This example presents a well-formed proposition, but its truth is not
without conditions. It is important to clearly separate between well-formedness
and truth. However, speaking about truth usually presupposes well-formedness;
discussions about the truth of ill-formed propositions maybe be entertaining
after sufficient consumption of good wine, though. While well-formedness
of propositional formulas is simply adherence to a simple grammar, truth
requires more sophisticated tools, such as proof.

1.2 Judgements and derivations

Definition 1. A proof of a proposition A is a derivation of the judgement

A true

by the proof rules of propositional logic (to follow).

In general, we refer to judgements such as A true with letter J . A rule
r has the following form

J1 . . . Jn

J
r

2

where J1..n (with n ≥ 0) are the premises and J is the conclusion. Informally,
it means that if we can make all the judgements Ji, then we can also make
judgements J , by virtue of applying rule r. Rules without premises n = 0
are called axioms.

Subsequent rule applications are organized into a tree, for instance:

r1
J1

r3
J3 J4 J5

r2
J2
r0

J0

In this case, the final judgement J0 is justified by a binary rule r0 whose
first premise J1 is justified by axiom r1. Its second premise J2 is justified
by a ternary rule r2. The first of these new three premises J3 is justified by
axiom r3, the other two premises J4 and J5 are missing justification.

The tree leading to judgement J0 is called the derivation of J0. We use
letters D and E , to refer to derivations and write D :: J for “tree D is a
derivation of judgement J”. If all leaves of the derivation trees are axioms,
we speak of a closed derivation, otherwise of an open derivation, like the
example above. Suppose we find justifications D4 :: J4 and D5 :: J5 of the
remaining open premises, then we can close the derivation of J0 like this:

r1
J1

r3
J3

D4

J4

D5

J5
r2

J2
r0

J0

The whole derivation D0 :: J0 can now be written in prefix notation as

D0 = rJ00 (rJ11 , r
J2
2 (rJ33 ,D4,D5))

where the superscripts annotate each rule with the judgement it derives, or,
dropping annotations, briefly as D0 = r0(r1, r2(r3,D4,D5)).

1.3 Introduction and elimination rules

The judgement A true for a propositional formula A is established by rules
that fall into two classes:

1. Introduction rules. These establish the truth of a compound proposi-
tion, for instance conjuction A ∧ B from the truth of its subformulas
A and B.

A true B true

A ∧B true
∧I

3

2. Elimination rules. These allow us to use (parts of) a true compound
proposition to derive the truth of other propositions. For instance, the
truth of A ∧B entails the truth of its subformulas A and B.

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

Connectives that can be defined with introduction and elimination rules
referring only to subformulas (or generic new formulas) are called orthogonal.

Introduction and elimination rules need to fit together. Introduction
rules allow us to assemble evidence, and elimination rules allow us to use it,
or to disassemble it. The elimination rules for a connective are adequate if
we can retrieve by the elimination rules every piece of information we put
in by introduction rules, and only the information we put in. Adequacy can
be formulated as local soundness and local completeness, i. e., the presence
of certain proof transformations detailed as follows.

Local soundness states that we can simplify any proof detour that con-
sists of the introduction of a connective immediately followed by the con-
nective. There are n · m different detour shapes for a connective with n
introduction rules and m elimination rules. The removal of such a detour
is also called β-reduction, sometimes qualified by the connective, e. g., β∧-
reduction.

In case of conjunction, there are two possible detours that qualify for
β-reduction:

D1

A true
D2

B true
∧I

A ∧B true
∧E1

A true

D1

A true
D2

B true
∧I

A ∧B true
∧E2

B true

Both pieces of evidence (A true and B true) fed into the introduction rule
∧I can be recovered by the elimination rules ∧E1 and ∧E2. The β-reductions
simplify these proof trees as follows:

D1

A true
D2

B true
∧I

A ∧B true
∧E1

A true

−→β

D1

A true

D1

A true
D2

B true
∧I

A ∧B true
∧E2

B true

−→β

D2

B true

4

These reductions show that the eliminations ∧E1/2 are not too strong: they
do not produce more than we put in with the introduction rule ∧I. This is
why we can cut the detours out.

Exercise 1. Invent a (locally) unsound elimination rule for conjunction,
which does not allow the reduction of detours.

Local completeness in contrast expresses that the elimination rules are
not too weak. The elimination rules for a connective should give us all the
evindence such that we can reconstruct a proof for the formula we elimi-
nated. This means that any proof for a proposition should be presentable
by introducing the principal connective of the proposition. The premises
for the introduction rule(s) are constructed via the elimination rule. Lo-
cal completeness is witnesses by η-expansion, a proof transformation that
introduces a detour of the form elimination rule followed by introduction
rules.

For conjunction, η-expansion creates the following detour:

D
A ∧B true −→η−

D
A ∧B true

∧E1
A true

D
A ∧B true

∧E2
B true

∧I
A ∧B true

Exercise 2. Reflect on the fate of local completeness for conjunction when
we drop one of the elimination rules.

1.4 Trivial proposition

With binary conjunction, we can express any finite conjunction except for
the empty conjunction >. A proof of the empty conjunctions asks us to
provide proofs for all of the 0 conjuncts. Thus, we get an introduction rule
without premises.

> true
>I

There is no elimination rule for >: A proof of > is constructed from nothing,
so there is no information contained in it we could retrieve by elimination.

As a consequence, there is no β-reduction. Local completeness is wit-
nessed by the η-expansion:

D
> true −→η− > true

>I

This proof transformation replaces any derivation of the trivial proposition
by the trivial derivation.

5

1.5 Hypothetical judgements

The elimination rule for implication is the well-known modes ponens: If A
implies B and A holds, then B must hold as well.

A⇒ B true A true

B true
⇒E

While, classically, implication A ⇒ B can be reduced to disjunction and
negation ¬A ∨ B, the disjunction property would be immediately violated
by such an interpretation. A universal truth such as “if aliens exist, there
must a be habitable planet” does not allow us to decide whether there is a
habitable planet or no aliens exist.

Instead the implication A⇒ B allows us to conclude B from the hypoth-
esis A. This means that we can assume the truth of A to derive the truth
of B. Let us consider the tautology (A ∧ B) ⇒ (B ∧ A). Our proof would
first derive the conclusion B ∧ A from an assumed truth of A ∧ B, by the
following open derivation:

A ∧B true

B true

A ∧B true

A true

B ∧A true

Then, the introduction of the implication (A ∧B)⇒ (B ∧A) enables us to
discharge the hypothesis A ∧B and close the derivation.

x
A ∧B true

B true

x
A ∧B true

A true

B ∧A true
⇒Ix

(A ∧B)⇒ (B ∧A) true

We label the discharged hypothesis with x in the leaves of the derivation and
in the instance of the implication introduction rule ⇒Ix, in order to keep
track which hypothesis is discharged by which application of implication
introduction.

The generic form of ⇒I is:

x
A true···
B true

⇒Ix
A⇒ B true

It turns the meta-implication from A true we can derive B true into a
proof of propositional implication. Such a meta-implication is also called a
hypothetical judgement, a judgement under hypotheses.

6

Exercise 3.

1. Derive A⇒ A true.

2. Construct different derivations of A⇒ (A⇒ A) true. How many are
there?

3. Is the following derivation valid?

f
(A⇒ A)⇒ (A⇒ A) true

x
A true

⇒Ix
A⇒ A true

⇒E
A⇒ A true

x
A true

⇒E
A true

⇒If
((A⇒ A)⇒ (A⇒ A))⇒ A true

Local completeness for implication is witnessed by the following η-expansion:

D
A⇒ B true −→η−

D
A⇒ B true

x
A true

⇒E
B true

⇒Ix
A⇒ B true

Local soundness requires us to replace a hypothetical derivation, i. e., a
discharged hypothesis, by an actual derivation:

x
A true·····
E

B true
⇒Ix

A⇒ B true
D

A true
⇒E

B true

−→β

D
A true
·····
E

B true

In derivation E , we need to replace every use of hypothesis x by derivation
D. A more precise (but less suggestive) notation for the reduct is:

·····
E [D/x]

B true

1.6 Disjunction

A disjunction A ∨B is introduced by deriving any of its disjuncts.

A true

A ∨B true
∨I1

B true

A ∨B true
∨I2

7

A disjunction is eliminated by case distinction. To use A ∨ B true in the
derivation of a proposition C we need to consider the two cases A true and
B true. The intuition is that if A implies C and B implies C then A ∨ B
implies C. We could put this into a rule directly:

A⇒ C true B ⇒ C true

(A ∨B)⇒ C true

But this violates orthogonality. The rule uses formulas which are not subfor-
mulas. And disjunction is not defined independent of implication. Instead
we use hypothetical judgements:

A ∨B true

x
A true···
C true

y
B true···
C true

∨Ex,y
C true

Exercise 4. Derive the following judgements:

1. (A ∨B)⇒ (B ∨A) true (commutativity of disjunction).

2. ((A ∨B) ∧ C)⇒ ((A ∧ C) ∨ (B ∧ C)) true (distributivity).

Local soundness again requires substitution of derivations:

D
A true

∨I1
A ∨B true

x
A true·······
E1

C true

y
B true·······
E2

C true
∨Ex,y

C true

−→β

·······
E1[D/x]

C true

D
B true

∨I2
A ∨B true

x
A true·······
E1

C true

y
B true·······
E2

C true
∨Ex,y

C true

−→β

·······
E2[D/y]

C true

Local completeness can only be formulated with elimination preformed be-
fore introduction, because we have two introduction rules, and we cannot a
priori decide which of these to use:

D
A ∨B true −→η−

D
A ∨B true

x
A true

∨I1
A ∨B true

y
B true

∨I2
A ∨B true

∨Ex,y
A ∨B true

8

There is a stronger version of this proof transformation which let us eliminate
an arbitrary occurrence of a disjunction at the root of derivation:

D
A ∨B true

·······
E

C true

=⇒η

D
A ∨B true

x
A true

∨I1
A ∨B true·······

E

C true

y
B true

∨I2
A ∨B true·······

E

C true
∨Ex,y

C true

However, this transformation is only sound if D does not use any hypotheses
that are introduced during course of derivation E (via ⇒I and ∨E). We can
make this precised by requiring that the derivation to transform arises from
substituting wellformed derivation D for an hypothesis x. Let

D
A ∨B true

then

·······
E [D/x]

C true

=⇒η

D
A ∨B true

x
A true

∨I1
A ∨B true·······

E

C true

x
B true

∨I2
A ∨B true·······

E

C true
∨Ex,x

C true

Exercise 5 (Strong η). Find two derivations D and E such that D =⇒η

E =⇒η D.

1.7 Absurdity

Falsehood or absurdity ⊥ is the empty disjunction. We have 0 introduction
rules and for elimination, we have to consider 0 cases:

⊥ true

C true
⊥E

This rule is also known as ex falsum quod libet.
Again there is no β-reduction, but we have strong η-expansion. Let

D
⊥ true

9

then ·······
E [D/x]

C true

=⇒η

D
⊥ true

⊥E
C true

A use of strong η might let us shorten a complicated proof of C to one
directly using absurdity elimination.

Exercise 6 (Strong η for absurdity).

• First derive ⊥ ⇒ ((⊥ ⇒ C)⇒ C) true via modus ponens. Then apply
η.

• Find a derivation D that gets bigger by strong η-expansion for ⊥.

1.8 Notational definitions

Negation ¬A can be defined via implication and absurdity:

¬A = A⇒ ⊥

We consider ¬A as just an abbreviation or notation for A⇒ ⊥.
Similarily, logical equivalence A ⇐⇒ B can be defined via implication

and conjunction:
A⇐⇒ B = (A⇒ B) ∧ (B ⇒ A)

Exercise 7. Prove the following tautologies:

1. ¬(A ∧ ¬A)

2. A⇒ ¬¬A

3. ¬¬¬A⇐⇒ ¬A

4. (¬A ∨B)⇒ (A⇒ B)

5. (¬A ∧ ¬B)⇐⇒ ¬(A ∨B)

6. (¬A ∨ ¬B)⇒ ¬(A ∧B)

1.9 Summary

Figure 1 summarizes the inference rules for constructive propositional logic.

10

A true “Proposition A is true”.

Implication.

x
A true···
B true

⇒Ix
A⇒ B true

A⇒ B true A true

B true
⇒E

Truth and conjunction.

A true B true

A ∧B true
∧I

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

Absurdity and disjunction.

A true

A ∨B true
∨I1

B true

A ∨B true
∨I2

A ∨B true

x
A true···
C true

y
B true···
C true

∨Ex,y
C true

Truth and absurdity.

> true
>I

⊥ true

C true
⊥E

Figure 1: Summary: Natural deduction for propositional logic.

11

2 Explicit hypotheses

We have presented the introduction of hypotheses via open derivations that
were closed by the discharging of hypotheses. This is motivated by the
view of implication internalizing a meta-implication into propositional logic.
However, the handling of hypotheses can be error-prone when large proof
trees are involved. Thus we consider a more explicit and verbose, but more
local handling of hypotheses. We introduce the hypothetical judgement

A1 true, . . . , An true ` C true

stating “under the assumptions of the truth of A1..n, proposition C is true”.
We now may also drop the prefix true since there is no confusion between
a proposition C and its truth

A1, . . . , An ` C.

Finally, we let Γ denote a list of hypotheses A1..n and write Ai ∈ Γ if
1 ≤ i ≤ n.

Application of a hypothesis now becomes an explicit rule invokation.

A ∈ Γ

Γ ` A
hyp

Rules introducing hypotheses add them at the end of the list:

Γ, A ` B
Γ ` A⇒ B

⇒I
Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
∨E

All other rules leave the context unchanged. See Figure 2 for a summary of
the rules.

12

Γ ` A “Under assumptions Γ, proposition A is true”.

Hypotheses.

A ∈ Γ

Γ ` A
hyp

Implication.

Γ, A ` B
Γ ` A⇒ B

⇒I
Γ ` A⇒ B Γ ` A

Γ ` B
⇒E

Truth and conjunction.

Γ ` A Γ ` B
Γ ` A ∧B

∧I
Γ ` A ∧B

Γ ` A
∧E1

Γ ` A ∧B
Γ ` B

∧E2

Absurdity and disjunction.

Γ ` A
Γ ` A ∨B

∨I1
Γ ` B

Γ ` A ∨B
∨I2

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C

∨E

Truth and absurdity.

Γ ` >
>I

Γ ` ⊥
Γ ` C

⊥E

Figure 2: Inference rules with explicit hypotheses.

13

3 Simply typed λ-calculus

The lambda calculus [Barendregt, 1984] forms the core of most functional
(aka applicative) programming languages (Scheme, SML, ocaml, Haskell,
etc.). The simply-typed lambda calculus goes back to Church [1940] (Simple
Theory of Types).

Here, we consider the lambda-calculus with tuples and variants. It allows
us to construct and apply functions, form tuples and project from them, and
form alternatives and distinguish cases over them.

Grammar (lambda-calculus with tuples and variants).

x, y, z variables
r, s, t ::= x | λx.t | r s variables, functions, applications

| 〈s, t〉 | fst r | snd r pairs and projections
| inl t | inr t injections
| case r of inlx⇒ s | inr y ⇒ t case distinction
| 〈〉 empty tuple
| abort r exception

Again we consider terms t generated by the above grammar as abstract
syntax trees which we write in linear form.

The expression forms λx.t and case r of inlx⇒ s | inr y ⇒ t are binders.
Term constructor λx.t binds variable x in the function body t. Likewise,
case r of inlx⇒ s | inr y ⇒ t binds x in s and y in t.

The set of free variables FV(t) of term t is computed by recursion on t
as follows:

FV(x) = {x}
FV(λx.t) = FV(t) \ {x}
FV(r s) = FV(r) ∪ FV(s)
. . .

Exercise 8 (Definiton of free variables). Complete the definition of FV!

The substitution t[s/x] of term s for (free) variable x in t is defined by
recursion on t as follows:

x[s/x] = s
y[s/x] = y if x 6= y
(t t′)[s/x] = (t[s/x]) (t[s/x]′)
(λx.t)[s/x] = λx.t
(λy.t)[s/x] = λy.t[s/x] if x 6= y and y 6∈ FV(s)
(λy.t)[s/x] = λy′.t[y′/y][s/x] if x 6= y 6= y′ 6= x and y′ 6∈ FV(s, t)
. . .

The side conditions in the last two cases and the extra substitution t[y′/y]
in the last case prevent variable capture, i. e., the binding of a free variable
via substitution.

14

Exercise 9 (Definition of substitution). Complete the definition of substi-
tution!

Exercise 10 (Variable capture). Let t{s/x} be textual replacement of all
occurrences of variable x in t (except in binding positions like in λx.y
which would result in the ill-formed term λs.y). Compare the meaning
of (λx.z){λy.x/z} with the one of (λx.z)[λy.x/z].

Exercise 11 (Substitution preserves free variables). Prove: FV(t[s/x]) =
FV(λx.t) ∪ FV(s).

Exercise 12 (Swapping substitutions). Prove t[s/y][r/x] = t[r/x][s[r/x]/y].

Renaming a bound variable does not change the meaning of a λ-term.
Two terms which only differ in the names of their bound variables (but not
in their binding structure) are called α-equivalent. Formally, α-equivalence
is the least congruence closed under the following axioms:

λx.t =α λx′.t[x′/x] if x′ 6∈ FV(t)
case r of inlx⇒ s | inr y ⇒ t =α case r of inlx′ ⇒ s[x′/x] | inr y ⇒ t if x′ 6∈ FV(s)
case r of inlx⇒ s | inr y ⇒ t =α case r of inlx⇒ s | inr y′ ⇒ t[y′/y] if y′ 6∈ FV(t)

On paper, we identify α-equivalent terms and silently rename bound vari-
ables if they conflict with names of free variables. A posteriori, modulo
α-equivalence, substitution under λ could be defined by the single clause

(λy.t)[s/x] = λy.t[s/x] if x 6= y and y 6∈ FV(s)

since the side conditions can always be satisfied by renaming y to a fresh
variable y′.

3.1 Type assignment

The lambda-calculus in its untyped form allows terms like λx. x x “given a
function x apply it to itself” which are hard to make sense of, and even non-
sensical terms such as fst (λx.x) “the first projection of the identity function”
or (inl t) s “the left injection of t applied to argument s”. Such nonsense can
be excluded by simple typing.2

Simple types are given by this grammar:

R,S, T, U ::= S → T function type
| S × T product type
| S + T disjoint sum type
| 1 unit type
| 0 empty type

2However, simple typing severly limits the expressive power of lambda-calculus. The
untyped lambda-calculus is Turing-complete, while the simply-typed lambda-calculus can
only express polynomials with case distinction.

15

The purpose of an empty type 0 for programming is questionable, but we
leave it for completeness. For a full-fledged programming language, we are
lacking recursion (both on the type and the term level).

Let Γ be a finite map from variables to types. We write Γ, x:T for the
insertion or update of key x to value T . That is

(Γ, x:T)(y) =

{
T if x = y
Γ(y) otherwise.

It does not hurt to think of Γ as a list of variable-type pairs, Γ = x1 :
T1, . . . , xn : Tn.

Type assignment is given by the judgement

Γ ` t : T

verbalized as “in context Γ, term t has type T”, with the following inference
rules:

Γ(x) = T

Γ ` x : T

Γ, x:S ` t : T

Γ ` λx.t : S → T

Γ ` r : S → T Γ ` s : S

Γ ` r s : T

Γ ` s : S Γ ` t : T

Γ ` 〈s, t〉 : S × T
Γ ` r : S × T
Γ ` fst r : S

Γ ` r : S × T
Γ ` snd r : T

Γ ` s : S

Γ ` inl s : S + T

Γ ` t : T

Γ ` inr t : S + T

Γ ` r : S + T Γ, x:S ` s : U Γ, y:T ` t : U

Γ ` case r of inlx⇒ s | inr y ⇒ t : U

Γ ` 〈〉 : 1

Γ ` r : 0

Γ ` abort r : U

The typing rules also ensures well-scoping : If Γ ` t : T , then FV(t) ⊆
dom(Γ), meaning that all free variables of term t are bound to some type in
the context Γ.

Exercise 13 (Lambda-terms). Construct terms of the following types:

1. T → T

2. S → ((S → T)→ T)

3. (R→ (S → T))→ (S → (R→ T))

16

4. ((R× S)→ T)→ (R→ (S → T))

5. (R→ (S → T))→ ((R× S)→ T)

6. (R+ S)→ (((R→ T)× (S → U))→ (T + U))

7. (T + 0)→ T

Exercise 14 (Well-scoping). Prove “if Γ ` t : T , then FV(t) ⊆ dom(Γ)” by
induction on the typing derivation.

Exercise 15 (Inversion). Prove the following inversion theorem for appli-
cation:

If Γ ` r s : T then there exists some type S such that Γ ` r :
S → T and Γ ` s : S.

Formulate and prove similar theorems for all the other term constructors.

Exercise 16 (Ill-typed terms). Prove that the following typings are impos-
sible for any Γ and T :

1. Γ ` λx.(xx) : T

2. Γ ` fst (λx.x) : T

3. Γ ` (inl t)s : T

Hint: Exercise 15 might prove useful here!

A variable x:S is a placeholder for an arbitrary term s of type S. This
is substantiated in the substitution lemma.

Lemma 1 (Substitution). If Γ, x:S ` t : T and Γ ` s : S then Γ ` t[s/x] :
T .

Exercise 17 (Proof of the Substitution Lemma). Prove the Substitution
Lemma (1) by induction on the typing derivation of t. You might have to
generalize the statement to get the proof through for the case that t is a
binder.

3.2 Computation

Terms constitute programs whose value is computed by iterated application

of reduction t −→ t′ . Here in t is called redex (from reducible expression)

17

and t′ reduct. Reduction is given by the following axioms, aka (redex)
contraction rules:

(λx.t)s −→ t[s/x]

fst 〈s, t〉 −→ s
snd 〈s, t〉 −→ t

case (inl r) of inlx⇒ s | inr y ⇒ t −→ s[r/x]
case (inr r) of inlx⇒ s | inr y ⇒ t −→ t[r/y]

The first rule computes the application of a function value λx.t to an argu-
ment s. The second and third project components from a pair. The fourth
and fifth reduce a case distinction for a known scrutinee.

The reduction rules can be applied to any matching subterm. If no
further reduction on a term is possible, it is in normal form.

Example 2 (Computation).

(λp. fst p) (case inl 〈〉 of inlx⇒ 〈x, x〉 | inr y ⇒ y)

−→ (λp. fst p) (〈x, x〉[〈〉/x])

= (λp. fst p) 〈〈〉, 〈〉〉
−→ fst 〈〈〉, 〈〉〉
−→ 〈〉

Exercise 18 (Compatibility rules). Make “can be applied to any matching
subterm” explicit by adding compatibility rules for all term constructors,
like for application:

r −→ r′

r s −→ r′ s

s −→ s′

r s −→ r s′

Reduction is defined on untyped terms, however, it preserves typing.

Theorem 1 (Subject reduction). If Γ ` t : T and t −→ t′ then Γ ` t′ : T .

Exercise 19. Proof the Subject Reduction Theorem. Inversion of typing
(Exercise 15) could be useful.

“Good” normal forms can actually be characterized by a grammar that
rules out redexes.

Nf 3 v, w ::= u | λx.v | 〈〉 | 〈v, w〉 | inl v | inr v normal form
Ne 3 u ::= x | u v | fstu | sndu | abort u neutral normal form

| caseu of inlx⇒ v | inr y ⇒ w

A neutral term is blocked by a variable.

Example 3 (Normal forms).

18

• v := 〈inl 〈〉, λf. f (λx. (f x))〉
• u := abort (snd ((fstx) v))

Exercise 20 (Pathological normal form). Find a term that does not reduce
but does not fit into Nf.

Lemma 2 (Soundness of normal form grammar). v 6−→.

Any well-typed term reduces or is a good normal form. This theorem is
called Progress as it proves that reduction starting with a well-typed term
not in Nf does not get stuck.

Lemma 3 (Progress). If Γ ` t : T then either t −→ t′ or t ∈ Nf.

Exercise 21. Prove lemmata 2 and 3.

Theorem 2 (Type soundness). If Γ ` t : T then either t reduces infinitely
or there is some v ∈ Nf such that t −→∗ v and Γ ` v : T .

Proof. Classically, we can case on whether t reduces infinitely or not. Con-
structively, we emply coindution. In both cases, we rely on Subject Reduc-
tion and Progress. �

Due to the absense of recursion in simply-typed lambda calculus, we can
actually prove the stronger theorem that all typed terms can be reduced to
a normal form.

Theorem 3 (Weak normalization). If Γ ` t : T then there is some v ∈ Nf
such that t −→∗ v.

Furthermore, no matter which reduction we choose, we will terminate in
the end.

Theorem 4 (Strong normalization). If Γ ` t : T then any reduction se-
quence t −→ t1 −→ t2 −→ . . . starting with t is finite.

The normalization theorems are not trivial to prove, they need extra
structure.

19

4 The Curry-Howard Isomorphism

Independently by Haskell Curry and William Alvin Howard and Nicolas
de Bruijn a correspondence between logic an computation in general, and
natural deduction and lambda-calculus in particular has been discovered.

• Propositional formulæ correspond to simple types.

Proposition Type

A⇒ B S → T
A ∧B S × T
A ∨B S + T
> 1
⊥ 0

• The inference rules of natural deduction correspond to the term con-
structors of lambda-calculus.

Derivation Term

⇒Ix(D) λx.t
⇒E(D1,D2) t1 t2
∧I(D1,D2) 〈t1, t2〉
∧E1(D) fst t
∧E2(D) snd t
∨I1(D) inl t
∨I2(D) inr t

∨Ex,y(D1,D2,D3) case t1 of inlx⇒ t2 | inr y ⇒ t3
>I 〈〉
⊥E(D) abort t

• Proof transformations correspond to computation. In our case, the
unnamed reduction −→ of lambda terms is precisely the β-reduction
for natural deduction derivations.

The Curry Howard Isomorphism (or the Curry Howard De Bruijn Cor-
respondence) enables the following synergies:

1. No separate languages are needed for programming and proving.

2. Lambda-terms can be used to write proofs.

3. Types can be mixed with propositions, allowing rich function specifi-
cations.

20

4. Results and insights from logic can be transferred to programming
language theory and vice versa.

For instance, we can use the Normalization Theorem of simply-typed
lambda-calculus to prove important theorems of propositional logic:

Theorem 5 (Consistency of propositional logic). There is no derivation of
` ⊥ true.

Proof. Suppose D ::` ⊥ true. By Curry-Howard, there exists a closed term
` t : 0 of the empty type. By Normalization, there exists a closed normal
form v ∈ Nf of the empty type ` v : 0. By Inversion, this can only be a
neutral term v ∈ Ne. Every neutral term has at least one free variable. This
is a contradiction to the closedness of v. �

Theorem 6 (Disjunction property). If Γ ` A ∨B true then Γ ` A true or
Γ ` B true.

Proof. Again, by Curry-Howard, Normalization, and Inversion. �

References

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, Amsterdam, 1984.

Alonzo Church. A formulation of the simple theory of types. J. Symb. Logic,
5(2):56–68, 1940. doi: 10.2307/2266170. URL http://dx.doi.org/10.

2307/2266170.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. URL http://gdz.sub.

uni-goettingen.de/. English translation in M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

21

http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.2307/2266170
http://gdz.sub.uni-goettingen.de/
http://gdz.sub.uni-goettingen.de/

	Natural deduction for propositional logic
	Propositions
	Judgements and derivations
	Introduction and elimination rules
	Trivial proposition
	Hypothetical judgements
	Disjunction
	Absurdity
	Notational definitions
	Summary

	Explicit hypotheses
	Simply typed -calculus
	Type assignment
	Computation

	The Curry-Howard Isomorphism

