
Constructing Type-Safe Operators for
Software Composition?

Axel Rauschmayer, Andreas Abel, Alexander Knapp, Martin Wirsing

Institut für Informatik
Ludwig-Maximilians-Universität München

{rauschma,abel,knapp,wirsing}@informatik.uni-muenchen.de

Abstract. Grey-box software composition appears in many areas of
software engineering: Mixin layers, aspects and traits are just a few ex-
amples and even regular inheritance can be viewed as composition. Oper-
ators used for these kinds of composition share two deficiencies: (1) They
are monolithic and are thus paradoxically supporting reuse without being
implemented in a reusable fashion. (2) There is usually no type system
that allows us to check if a composition is legal before performing it.
In this publication, we introduce Graft, a small language that aims to
“decompose composition” by providing atomic commands for software
manipulation that can be combined to express powerful composition op-
erators. Applicability of atomic and composite commands is checked for
by a type system. We demonstrate and motivate Graft’s use by looking
at mixin layer composition which is fully expressible in Graft.

1 Introduction

Software composition is one of the central mechanisms used in software engineer-
ing to enable reuse and structuring in a complex system. Large-scale software
composition mainly uses a black box approach, whereas smaller-scale compo-
sition usually favors grey boxes as atomic components. With all the hype sur-
rounding large-scale, black-box components such as Enterprise JavaBeans or
.NET components, one would think that nobody uses grey-box composition any
more. But that is not true: It is the underlying principle of many lower-level
reuse infrastructures. Examples are mixin layers [Smaragdakis and Batory, 1998]
(which we’ll take a look at in a moment), aspects [Kiczales et al., 2001] and traits
[Schärli et al., 2003]. Even regular inheritance can be viewed as grey-box compo-
sition. Each of these reuse infrastructures comes with its own set of operators for
performing composition. This is where we get to a paradox: Even though these
operators enable software composition, they are not, themselves, implemented
in a reusable fashion. This would make a lot of sense, though, because most of
these operators are very similar and adhere to certain basic principles. Addition-
ally, there is often a need for many variations in performing composition even

? Supported by Deutsche Forschungsgemeinschaft (DFG) project WI 841/6-1 “InOp-
Sys”

within the same environment. Being able to express these generically would be
very helpful.

Our approach is to “decompose composition”: We want to find out if com-
position is really a monolithic operator or rather a composite of more basic
operators. If the latter is true and we want to prove that a certain property
holds for any (legal) composition operator, we only need to prove the property
for the atomic operators and for the operator combination mechanism. In Sect. 2,
we present one possible set of atomic manipulation operators, a language we call
Graft. We also show how Graft can be used to express mixin layer composi-
tion. In Sect. 3, we introduce a type system that checks for applicability of any
combination of operators and whether such combinations are legal. This allows
us to generically express and type grey-box software composition. Sect. 4 gives a
more formal explanation of Graft’s type system. The last two sections, 5 and
6, present related work and the conclusions of this document. Consult App. A
for a formal specification of the Graft language.

2 Finding Operators for Mixin Layer Composition

To find out more about the issues involved in software composition, we start by
looking at one approach to object-oriented software composition: mixin layers.
Fig. 1(a), 1(b) and 1(c) introduce our running example: a system consisting of
the program base and the mixin layers undo and subonly. A first clue about
composition is that applying a layer to a program can be viewed as applying a
function to a constant: Take base (Fig. 1(a)) as our base program with the single
class Calculator. Then layer undo (Fig. 1(b)) is a “function” that, if applied to
the “constant” base produces the new program undoCalc = undo(base) with an
incremented version of Calculator: It now contains the new field savedMemory
and the new method undo and a statement has been prepended to method add.
Layer subonly (Fig. 1(c)) removes one method and adds another one.

Is there a way to create some kind of programming language to express the
changes performed by a mixin layer? We first need to find out what kind of data
is to be manipulated by such a programming language. This will hopefully lead
us to a better understanding of what operators make sense. How can an object-
oriented program in general and a base program in particular be represented in
an elegant data structure? Looking at a diagram of base (Fig. 2(a)) it is fairly
obvious that it is a labeled tree. We often leave the root unlabeled and annotate
the arrows with labels because this reflects the data structure for trees that we’ll
introduce later. Generally, at every level of encapsulation in an object-oriented
program, there is an entity that contains a set of named entities: A class contains
a set of methods, a package contains a set of classes etc. (Fig. 2(b)). We call sets
of entities collectives (set Coll) and all entities (including collectives) units1 (set
Unit ⊃ Coll). Another way to look at a labeled tree is as nested records. Then
a collective is a record and each of the collective’s members is a field in that

1 We use this term differently from the unit type in type theory!

2

prog base;

class Calculator {

Int memory;

Calculator() {

this.memory = new Int();

}

void add(Int i) {

this.memory.add(i);

}

}

(a) Program base provides the initial version of class Calculator. Calculator
contains an internal memory and can add() values of type Int to it.

layer undo;

class Calculator {

Int savedMemory;

@before void add(Int i) {

this.savedMemory = this.memory;

}

void undo() {

if (this.savedMemory == null) { } // Exception
this.memory = this.savedMemory;

this.savedMemory = null;

}

}

(b) Layer undo introduces the new member variable savedMemory to remember the
last value of the memory and method undo() to restore this value. Additionally, we
prepend code to method add() to make sure we save the state of memory before
changing it. Note that we are using the JSR-175-style attribute [Bloch et al., 2002]
@before to denote that method add is to be prepended to an existing method with
the same name.

layer subonly;

class Calculator {

@remove add(Int i);

void sub(Int i) {

this.memory.sub(i);

}

}

(c) Layer subonly removes addition from the calculator and introduces subtrac-
tion. We are using the attribute @remove to denote that an existing method add

has to be removed.

Fig. 1. Running example.

3

prog base

class
Calculator

field
memory

constructor
Calculator()

method
add()

(a) Looking at the structure of program base, it is obvious that it is a tree.

class C1 class C2 class C3

prog p

method m1 method m2 method m3

(b) An object-oriented program p comprises a set of classes which in turn are
made up of methods. Representing the system as a labeled tree follows naturally
from its structure: The root node has label p, its children the labels C1, C2, C3

etc.

Fig. 2. The structure of object-oriented software.

record. We can now draw on well-established ideas from database theory, more
specifically, from tuple calculus to help us with the design of a language that
operates on our data structure. Any kind of change that a mixin layer performs
can be expressed as a sequence of the following operations; think of using a
catalog of comparatively small refactoring steps for arbitrary transformations of
a program [Fowler, 1999].

– insert : Coll× Name× Unit → Coll adds a named unit to a collective.
– delete : Coll × Name → Coll removes a unit (whose name is given by a

parameter) from a collective.
– project : Coll × Name → Unit extracts a unit (whose name is given by a

parameter) from a collective.

4

Let’s use these operators to describe how layer undo increments program base by
the before-method add: We first have to project method add out of the program
and prepend a new statement to its body. Then we project class Calculator,
delete the old version of add and insert the new one. The result has to replace
the old Calculator in base in the same fashion. We define update : Coll ×
Name×Unit → Coll to be a combination of delete and insert: update(v, n, w) :=
insert(delete(v, n), n, w). We also write projection as the infix ‘.’ (dot) operator
and thus get the following meta program.

1 update(v, Calculator,
2 update(v.Calculator, add,
3 insert(v.Calculator.add, @before,
4 this.savedMemory = this.memory;)))

This is what the code does (we explain the lines bottom-up):

– Lines 3 and 4: v.Calculator.add means: Project method add out of class
Calculator out of the meta2 constant3 v (which holds the complete code of
program base). Then insert the statement “this.savedMemory = this.memory;”
before the (body of) the result of this projection.

– Line 2: Project class Calculator out of v and replace the existing method
add with the result from line 3.

– Line 1: Update v with the new Calculator from line 2.

This is a nice demonstration of how we only need a few basic mechanisms to
implement the changes performed by mixin layers: line 3 and 2 perform an update
on a collective and line 1 inserts a unit into a collective. But it is also apparent
that this notation is too complicated and needs improvement! We’ll explain step
by step what is wrong with it and how it can be fixed.

Step 1—eliminate the meta constant v: v keeps the meta code from being
generic. Instead of running the code like an imperative program that destruc-
tively modifies the base program, we’d like to apply the transformation as a true
function. We therefore use lambda notation to abstract the implicit parameter
v. Then the meta program gets the prefix “λx” and every occurrence of the
constant v is replaced by the variable x.

Step 2—make projection implicit: Lambda abstraction also gives us higher-
order functions, allowing us to create a more elegant kind of update operation
called at : Coll × Name × (Unit → Unit) → Coll. It applies a function to the
member unit u (denoted by its name) of a collective and then replaces u with
the result. This does away with projection as a full-blown separate4 operator
and makes our meta code much more readable:

1 λx. at(x, Calculator,
2 λy. at(y, add,
3 λz.insert(z, @before, this.savedMemory = this.memory;)))

2 v is a constant in a meta language, that’s why we call it a meta constant.
3 v stands for a (completely reduced) value, as opposed to functions and partially

evaluated terms.
4 It is of course still implicitly present in the at operator.

5

Here is what happens:

– Line 1: Bind the collective to be modified to variable x. Update member
Calculator of x by applying. . .

– Line 2: . . . a function that updates member add of its parameter by apply-
ing. . .

– Line 3: . . . a function that prepends a statement to the collective given as its
argument.

Step 3—make parameter variables implicit: If we change at so that the collective
to be modified is the last argument, we can use currying and its signature be-
comes at : Name× (Unit → Unit) → Coll → Coll. Then at is a map from a tuple5

(consisting of a Name and a function from Coll to Coll) to a program transfor-
mation (i. e., a function from Coll to Coll). Changing the signature of insert in
the same manner eliminates the need for lambda notation, because there are no
explicit parameters any more:

at(Calculator,
at(add,

insert(@before, this.savedMemory = this.memory;)))

Step 4—respect order in a collective: Until now, we assumed that a collective
was unordered (i. e., a set). But the sequence of statements in a method6 is also
a collective, so that we generally need to deal with ordered collectives. This leads
to a slightly different set of operators.

at : Name× (Unit → Unit) → Coll → Coll
cons : Name× Unit → Coll → Coll
snoc : Name× Unit → Coll → Coll

delete : Name → Coll → Coll
override : Name× Unit → Coll → Coll

Explanation: cons and snoc are needed for ordered insertion7: cons prepends
a unit to a collective, snoc appends it. delete performs the same job as before.
Interesting is override as a replacement for update. Whereas update was syntactic
sugar for a combined delete/insert operation, we need to think about update
differently if nodes in the tree are labeled ordered locations. Then delete removes
a unit u and its location. We now cannot insert a new unit u′ to replace u at
the old location (unless we remember where the label occurred). Therefore, we

5 We could have used currying for the first two arguments, too, but this signature
corresponds more closely to how we use at and is useful in Sect. 4 where we give the
formal definition of Graft’s type system.

6 In formal languages that are not used for programming (e. g., markup languages),
order is also often significant. Therefore, this step prepares us for future uses of our
framework.

7 We do not yet need positional insertion, but can easily add it to a future version of
our framework should it be necessary.

6

need an in-place update and override serves that purpose8. It replaces an existing
member of a collective (whose name equals the first argument) with the second
argument. Note that cons, snoc and override are always used with Unit literals.

Step 5—allow sequences of modifications: Right now, we can only apply sin-
gle modifications to a collective, so we’re still missing a mechanism for apply-
ing a sequence of operations. As every manipulation is a function, we should
obviously draw on function composition. As a slight twist, we don’t use the
traditional functional composition operator ‘◦’ that evaluates from right to left:
subonly(undo(base)) would become subonly◦undo(base). Instead, we prefer di-
agrammatic composition with the ‘;’ operator which evaluates from left to right.
The previous composition is then written as (base)undo; subonly. This gives the
meta language more of an imperative feel and makes meta programs easier to
read. At last, we have a very compact notation for performing mixin layer com-
position. We have now arrived at the final version of Graft and demonstrate its
use by implementing layer undo. Operator cons is used with the underscore ‘ ’ as
the empty (or anonymous) label. That is, we don’t want to label the statement
“this.savedMemory = this.memory”:

at(Calculator,
cons(savedMemory, Int savedMemory);
at(add,

cons(, this.savedMemory = this.memory));
snoc(undo, void undo() {. . . }))

3 Motivating the Type System

In this document, software composition means either one of two things: We can
(1) apply a function to a constant (i. e., apply a mixin layer to a base program)
and we can (2) compose two functions (i. e., compose two layers to produce one
combined layer). In either case, we want to know if the composition is possible
before performing it. Guaranteeing safety of an operation is usually handled by
a type system. But it is not obvious what the type of a layer should be. We will
therefore look at a concrete example to find out what we need for checking the
the feasibility of a composition:

1. Applying layer undo to a base program v: v cannot be just any program.
There are certain constraints imposed on its structure by the operations
used in undo. For example, there has to be a class Calculator and it has to
contain a method add, otherwise we wouldn’t be able to perform the @before
operation.

2. Composing layer undo and subonly: Applying layer undo after subonly will
never work, because subonly deletes method add which makes it impossible
for undo to prepend the @before code.

8 Another way to look at override is that override(n, v) is “lambda-free” syntactic sugar
for at(n, λx.v).

7

Note that there are two cases of illegal composition that we (for now) do not
want to catch:

– Applying subonly after undo disables undo. This is a semantic problem that
we don’t treat here.

– The above composed layer, if applied to base, still produces a well-typed
program (in the sense of the Java language specification [Gosling et al.,
2000]). But what if the delete operation had removed a method that is called
by another method. Then the modified program won’t compile any longer.
This is basically a dependence problem and subject of current and future
research.

What we do want to find out is what constrains the applicability of atomic and
composite operations. It turns out that it depends on the presence or absence of
nodes in the tree of the base program:

– at : Name × (Unit → Unit): at(n, f) can be applied to a collective c if in c,
there is a unit u whose name is n. Additionally, f has to be applicable to u.

– cons : Name × Unit: cons(n, u) can be applied to a collective c if there is no
unit in c that has the name n.

– The same constraint holds for snoc.
– delete : Name: We can only perform a delete operation if the name given

exists in the collective that is to be modified.
– The same constraint holds for override.

That means that the type system does not need all the information stored in a
code tree v to decide if an operation is applicable. It can work with an abstraction
abs(v) of v. This abstraction only records the presence of nodes. That is, even
though abs(v) is a labeled tree that is isomorphic to v, it is undecorated and
unordered. Given a Graft program f , we can use the rules listed above to au-
tomatically infer the applicability constraints of f . We encode these constraints
in a data structure G that is called guard, because it serves the same purpose
as guards in functional programming languages. Applicability is then tested by
a guard check operator ‘|’: abs(v) | G holds if and only if f is applicable to v. As
guards are matched against abstracted programs, it is natural to also express
them as labeled unordered trees. The guard tree is decorated with elements of
the set9 {⊕,	}. If a node has to exist, we tag it with a plus ⊕. If the node must
not exist, we use a minus 	. Otherwise, we don’t care about the node and it does
not appear in the guard. Fig. 3 shows the guard tree for one instance of snoc and
one instance of delete. Constructing the guard for at is a bit more complicated,
because it depends on the guard of the second argument. Fig. 4 shows how we
construct at’s guard by creating a new root to be the parent of the argument’s
guard. The child’s label is given by the Name argument.

Guards make the feasibility check trivial when applying a layer to a base
program, but we have not yet figured out how to perform it for compositions
9 For uniformity reasons, we decorate nodes in program abstractions with a ⊕ from

now on.

8

–

undo
+

add

Fig. 3. Guard trees for snoc(undo, . . .) and delete(add)

+

add
+ =+

Calculator
+

Calculator

+

add

Fig. 4. Guard tree for at(Calculator, delete(add)): The guard of delete plus a
new root is the composite guard of at.

of layers. Two problems have to be solved: (1) How to check if a layer com-
position is legal and (2) how to calculate the composite guard for the com-
bined layer. The difficulty with the combined guard is that it is not just the
union of the two guards, because the changes effected by the first layer might
fulfill some of the preconditions of the second guard. This is the case if we
write cons(foo, . . .); delete(foo)—we are deleting something that we introduced,
therefore the precondition of delete that foo has to exist does not have to be
propagated to the composite guard. On the other hand, an operation might
make subsequent guards impossible to satisfy: In delete(bar); override(bar, . . .),
we remove bar and cannot override it afterwards. The guard can be seen as an
abstract interface of a Graft program f . But it has become obvious that, if
we are to compute combined guards, this interface should not only describe the
prerequisites for, but also the effects of, f . Thus, we express the interface of f
as a pair (G, U), where G is the guard and U is a data structure that encodes
how f modifies a program. We write f ↑ G U to say that f has the interface
(G, U). Just like we abstracted code trees, we also abstract the effect of f and
are only interested whether it adds or removes nodes. For the same reasons as
above, we record U as a labeled unordered tree and call it update tree. An update
tree has the same format as a guard. It is, however, interpreted differently: If a
node is decorated with ⊕, it means that an operation adds this node, 	 indicates
a removal. To give an example, we show that the construction of the update tree
for at resembles what we have done with guards: We “prepend” a root to the
update tree of the argument (Fig. 5). The root is always decorated with a ⊕,
because any change inside a collective has to guarantee its existence.

Coming back to our problems, we can solve (2), how to compute the combined
guard, if we overload operator ‘;’ for (G, U) pairs. Then, if we compose two
operations as f ; g where f ↑ G1 U1 and g ↑ G2 U2, we get the combined
guard G′ from (G′, U ′) = (G1, U1); (G2, U2). Problem (2), how to check for legal

9

–

add
+ =+

Calculator
+

Calculator

–

add

Fig. 5. Update tree for at(Calculator, delete(add))

layer compositions, is solved by letting the composition operator return undefined
if U1 and G2 are incompatible. This makes composition a partial function.

4 Type System

In this section, we give a more rigorous and formal definition of Graft’s type
system. Recall that a transformation f of a typed source program v into a target
program w may be unsuccessful for one of the following reasons:

1. One of the operations involved in f fails (e. g., modifying a non-existent
method).

2. The transformed program does not compile any more.
3. The target program does not exhibit the expected behavior.

We now develop a type system which helps to detect some of these failures stat-
ically (i. e., before actually carrying out the transformation). Errors of category
3 are clearly out of reach for automatic analyses; to ensure preservation of well-
typedness (cat. 2) would be desirable, but for now, we only guarantee that all
operations can be performed (cat. 1).

4.1 Typing

Our type system results from an abstract interpretation [Cousot, 2001] of pro-
grams v, w (as types A, B) and operations f .

v
f //

abs

��

w

abs

��
A

abs(f) // B

It has the following soundness property: If the abstract operation abs(f) succeeds
on the abstract program A, then the concrete operation f also succeeds on
the concrete program v. We follow standard programming language theory and
introduce these notions:

v : A The program v has type A. From now on, we call the abstraction function
from programs to types typeof, therefore A = typeof(v)

10

f : A → B Operation f takes programs of type A to programs of type B. Equiv-
alently, we can say that the abstract operation abs(f) maps an abstract
program A to an abstract program B.

In our case, a program v is just a labeled tree with some data d at each node.
Its type A abstracts away the stored data and only tells us which nodes exist
in the tree. Thus, to get A, we simply replace all data in v by a special symbol
⊕ (Fig. 6). Alternatively, A can be seen as a function from paths p into the set
{⊕,	} where A(p) = ⊕ if the path p exists in v, otherwise A(p) = 	.

+

Calculator

+ + +

Calculator()
add()

memory

Fig. 6. The abstract interpretation of program prog is a tree. Note that the
order of children is not significant.

A well-typed operation f : A → B is applicable to all trees v which have
shape A and results in trees of type B. The result type B can be computed from
A by performing the abstract version of the operation f on A. For instance,

cons(n, v) : A → B
if A(n) = 	 and B = A[n 7→ typeof(v)]

Here “A(n) = 	” says that the singleton path n does not exist in A, and
“B = A[n 7→ typeof(v)]” expresses that B results from adding the type of v
as a subtree named n to A. For the other operators, we get similar typing rules
(see appendix).

A term is either a value (i. e. a program) v or a Graft operation f applied
to a value as (v)f . Evaluation of terms is defined using two relations: t ⇓ v means
that term t reduces to value v. v −−f−→ w means that applying operation f to
value v results in value w.

The type system has the desired properties: each well-typed program trans-
formation can be executed.

Theorem 1 (Type preservation and normalization).

1. If t : A then A 6= 	, t ⇓ v and v : A.

11

2. If v : A and f : A → B then v −−f−→ w and w : B.

The proof is easy after a complete formalization of the type system (see ap-
pendix).

4.2 Type inference

At the current state, we can compute the type A of a tree v and the type
B of applying a transformation f to v. This is not yet satisfactory; we want
to compute the type of f independently of its argument, because this enables
us to type-check each mixin layer f , g individually and then check whether a
composition f ; g is possible. The problem with the type system so far is that we
can assign an infinite number of types A → B to an operation f . (For example,
the domain A of operation delete(n) can be any type with A(n) = ⊕.)

In the following, we overcome this problem by specifying an inference system
for most general types f ↑ G U . A most general type of an operation f consists
of a guard G and an update U . Given the most general type, f can be assigned
a type A → B if the domain A fulfills guard G, written A | G, and if B results
from A updated by U , written B = A[U].

In essence, guards G are partial types, specifying only these parts of the ab-
stract tree of A which it has to contain for an operation to be executed. Formally,
guards are partial functions from paths into the set {⊕,	}, or, equivalently, to-
tal functions in Path → {⊕,	, ?}. Here, G(p) = ? means that does not impose
any conditions on path p. If otherwise G(p) ∈ {⊕,	}, then A(p) has to match
G(p). This is expressed in the following definition: The relation A | G holds iff
for all paths p, A(p) coincides with G(p) unless G(p) = ?.

Updates U are of the same shape as guards. The effect of an update B = A[U]
can be described pointwise for all paths p: if U(p) = ?, i. e., no update is specified,
then nothing changes and B(p) = A(p); otherwise, the old content is overwritten
as specified by U and B(p) = U(p).

We are now ready to give most general types for the basic operations, e. g.

cons(n, v) ↑ {n 7→ 	} {n 7→ A}
where A = typeof(v)

Here, the guard G is a partial function which maps n to 	 and is completely
undefined elsewhere. The update U specifies that name n should now be mapped
to subtree A. By looking at the original typing rule of cons we can immediately
verify that this guard/update pair is the most general type of cons(n, v).

A little more work has to be done for composite operators f ; g. Assume
f ↑ G1 U1 and g ↑ G2 U2, what should guard G and update U of
the composite operation f ; g look like? If f and g are disjoint, i. e., modifying
different regions of a program, then the common guard G = G1∪G2 is the union
of the two partial functions G1 and G2 (and similar for U). For the case that
f and g interfere, the common update is simply given by U = U1[U2], which is
defined in the same way as the update on types B = A[U] (see above). In this
case, g may override some updates performed by f .

12

To compute the common guard G, let us first consider that U1 does not
interfere with G2, i. e., f does not update parts of the tree G2 speaks about.
The joint guard G is written G1 ∨ G2 and does not exist if G1 contradicts G2.
This is, for instance, the case if G1 requires some path p to be present and G2

requires it to be absent (or the other way round). Otherwise G1∨G2 = G1∪G2.
Some type A passes the two single guards, A | G1 and A | G2, if and only if the
joint guard G = G1 ∨G2 is defined and A | G holds.

In some cases the first update U1 will fulfill some requirements of the second
guard G2. When we compute the joint guard, these requirements can be dropped.
To this end, we define a partial simplification operation G\U with the following
behavior: A[U] | G if and only if G′ = G\U is defined and A | G′. The new guard
G′ is defined if U does not contradict G, i. e., if G∨U is defined. In this case, G′

can be computed pointwise: if the old requirement G(p) if fulfilled by the update
U(p), it is dropped and G(p′) = ?, otherwise it is kept and G(p) = G(p′). Now
the typing rule for composition should be clear:

f ↑ G1 U1 g ↑ G2 U2

f ; g ↑ G1 ∨ (G2 \ U1) U1[U2]
if G1 ∨ (G2 \ U1) defined

For completeness, we present the rules for the type inference t ↑ A for terms.
The typing rule for application of operations f to trees t connects most general
types to ordinary types:

v ↑ typeof(v)
v ↑ A f ↑ G U

(v)f ↑ A[U]
if A | G

It remains to show that type inference is sound, which can be done by inspecting
the typing rules, using the fundamental properties of guard and update joining.

Theorem 2 (Soundness of type inference).

1. If t ↑ A then t : A.
2. If f ↑ G U and A | G then f : A → A[U].

For a proof and a complete formalization, consult the appendix.

4.3 Example

Let’s demonstrate type inference for the layers subonly and undo and show
how typing of the composite operation subonly;undo fails. Layer subonly is
implemented in Graft as follows:

subonly = at(Calculator,
delete(add);
snoc(sub, . . .))

13

We give the result of type inference for subonly step by step:

delete(add) ↑ {add 7→ ⊕} {add 7→ 	}
snoc(sub, . . .) ↑ {sub 7→ 	} {sub 7→ ⊕}

delete(. . .); snoc(. . .) ↑ {add 7→ ⊕, sub 7→ 	} {add 7→ 	, sub 7→ ⊕}
at(Calculator, . . .) ↑ {Calculator 7→ {add 7→ ⊕, sub 7→ 	}} =: G1

 {Calculator 7→ {add 7→ 	, sub 7→ ⊕}} =: U1

For layer undo we get the guard

G2 = {Calculator 7→ {savedMemory 7→ 	, add 7→ ⊕, undo 7→ 	}}

In the process of calculating the joint guard for (subonly; undo), the simplifica-
tion operation G2 \U1 fails already, since the operands differ on the existence of
the path (Calculator, add):

U1(Calculator, add) = 	
G2(Calculator, add) = ⊕

Hence type inference fails for the composition of the two layers, which indicates
an inconsistency.

5 Related Work

Related work can be grouped into the following categories:

– Composition paradigms: Each of these paradigms supports one kind of com-
position. Additionally, and this is similar to Graft, they enable validity
checks for their operations. The advantage of concentrating on only one way
of composition is that these validity checks are very evolved and well adapted
for this one purpose. Graft’s goals for the future are broader: We want a
less sophisticated framework (with specialized “plug-ins” for some features)
to support several ways of composition and more artifacts than just code.
Examples: Detection and resolution of aspect interactions [Douence et al.,
2002], invasive composition [Aßmann, 2003], traits [Schärli et al., 2003], com-
position of class hierarchies [Snelting and Tip, 2002].

– Object-oriented language calculi: This category is even more specialized than
the last one, but shares the use of formal methods with Graft. Examples:
Reduction semantics for classes and mixins [Flatt et al., 1999], core calculus
of classes and mixins [Bono et al., 1999].

– General meta programming: These are full-blown languages which enable
many powerful program generation tasks that Graft can’t perform. In con-
trast, we aim for simplicity and our focus on program transformation is
slightly different. Examples: Logic meta programming [Brichau et al., 2002],
OpenJava [Tatsubori et al., 2000], multi-stage languages [Calcagno et al.,
2003].

14

– Program transformation: This category has many similarities to the last one
and is closely related to Graft. Again, we sacrifice generality for simplicity
which makes many consistency checks easier to perform. Examples: Strategic
programming [Lämmel et al., 2003], program transformation through the
manipulation of semantic graphs [Gosling, 2003].

– Separate compilation: Separate compilation is mainly concerned with pro-
viding self-sufficient typing for program fragments. This is an area that is
currently completely ignored by Graft. On the other hand, separate com-
pilation is only concerned with composition as linking and other manipu-
lations are—if at all—limited. Examples: Fragment calculus [Drossopoulou
et al., 1999], true separate compilation of Java classes [Ancona et al., 2002].

Two publications deserve particular mention, because they are the most similar
in nature to Graft:

– Design rule checking [Batory and Geraci, 1997]: Design rules are complemen-
tary to our approach. They are manual annotations of units in propositional
logic and capture semantics. Whereas Graft relies on syntactic analysis
that is performed automatically.

– Reuse contracts: are concerned with step-wise evolution of programs while
checking consistency constraints [Mens, 2001]. They also have a well-defined
and powerful type system and have already been applied to a wide vari-
ety of artifacts [Mens and D’Hondt, 2000]. While our work is currently less
ambitious, using trees and a language for their manipulation makes Graft
simpler and easier to understand.

6 Conclusions and Future Research

In this paper, we have presented Graft, a simple meta language for generically
expressing composition. It is complemented by a type system that allows one to
check the applicability of a Graft program before actually applying it. As a
practical example, we demonstrated Graft’s ability to express mixin layer com-
position. The main contributions of our work are Graft’s simplicity, elegance
and universality; its rigorous definition (where many composition mechanisms
are not that clearly defined); and the type-safety of its programs, which includes
the use of inference to save human effort. The intended “end-user” of Graft is
not the programmer. Instead, tool implementors will write compilers that trans-
late source code plus annotations into Graft in order to perform checks and
verification. Another possible use case is to let small Graft programs execute
type-safe refactorings.

We strove to make this first version of Graft a minimal, clean core to help
us understand the issues involved in creating a composition language. These
attributes make the core a strong foundation for the following future experiments
and extensions:

– We have started to implement Graft in Haskell (which, in this case, is
the meta meta language). This version of Graft operates on MJ [Bierman
et al., 2003], a subset of Java.

15

– We cannot yet guarantee the well-typedness of a program after it has been
manipulated by Graft code. To achieve this, we have experimented with
partial types and plan to make them part of a future version of Graft.

– Graft should also support more features of the language that is to be mod-
ified (the object language): Reflective features, pre/post conditions, call his-
tory enforcement and others come to mind. For that, more of the semantics
of the object language has to be made explicit.

– We will investigate what other programming language features (such as con-
ditionals, loops, quantifiers, procedures etc.) make sense for Graft.

– In creating Graft, we lay some groundwork for the future support of arti-
fact types other than code (documentation, UML diagrams etc.). AHEAD
[Batory et al., 2003] already gives some ideas how mixin layer composition
can be extended to non-code artifacts. Frame-based programming [Bassett,
1996] can also be used to produce all sorts of artifacts and motivated some of
Graft’s basic features. We hope that our type system will remain generic
enough to be applicable across artifact kinds. Consistency enforcement could
then be cross-cutting, too (e. g., if a class is part of the source code, it also
has to appear in the UML class diagram).

– Finally, we have to find out how Graft can express other composition
mechanisms than mixin layers, such as aspects.

Acknowledgements. Thanks to Jörg Striegnitz for recommending MJ.

A Graft Specification

A.1 Trees
Name 3 n, m Names
Path 3 p ::= n1, . . . , nk (k ≥ 0) Paths

D 3 d Data (tree decoration)

Unit 3 u ::= n::v Named units
Coll 3 c ::= u1, . . . , uk (k ≥ 0) Collectives
Tree 3 v, w ::= 〈d; c〉 Decorated trees (values)

Collectives can be viewed as partial functions from names to trees resp. as total
functions to Tree	 := Tree ∪ {	}.

Coll ⊆ Name → Tree	

(−−⇀n::v)(m) = vi if m = ni

(−−⇀n::v)(m) = 	 if m /∈ −⇀n

Similarily, trees can be viewed as as total functions from paths into D	 :=
D ∪ {	}. We extend the domain of this coercion to Tree	.

Tree	 ⊆ Path → D	

	(p) = 	 empty tree
〈d; c〉() = d empty path
〈d; c〉(n, p) = c(n)(p) composite path

16

A.2 Operations and Terms

Op 3 f, g ::= cons(n, v) prepend unit n::v to current collective
| snoc(n, v) append unit
| override(n, v) replace unit named n by new unit n::v
| delete(n) delete unit named n from current collective
| at(n, f) apply operation f to unit named n
| f ; g operation sequence

Term 3 t ::= v tree value
| (v)f (left hand side) application of operation

Transformation of trees v −−f−→ w.

c −−f−→ c′

〈d; c〉 −−f−→ 〈d; c′〉

Transformation of collectives c −−f−→ c′.

c −−cons(n, v)−→ n::v, c
if n /∈ c

c −−snoc(n, v)−→ c, n::v
if n /∈ c

c, n::v, c′ −−override(n, v′)−→ c′, n::v′, c′ c, n::v, c′ −−delete(n)−→ c, c′

v −−f−→ v′

c, n::v, c′ −−at(n, f)−→ c, n::v′, c′
c1 −−f−→ c2 c2 −−g−→ c3

c1 −−f ; g−→ c3

Evaluation t ⇓ v.

v ⇓ v

v −−f−→ w

(v)f ⇓ w

A.3 Tree Types and Typing

Type = (Name → Type) ∪ {	}
Type 3 A,B Types

Type ⊆ Path → {⊕,	}
	(p) = 	
A() = ⊕ if A 6= 	
A(n, p) = A(n)(p)

On the other hand, for each B ∈ Path → {⊕,	}, there exists an equivalent
A ∈ Type: If B(p) = 	 for all p ∈ Path, then A := 	. Otherwise, let recursively
A(n) be the type equivalent to the function B(n,). By this isomorphism, we
can conveniently specify the type of a tree:

typeof ∈ Tree → Type

typeof(v)(p) = 	 if v(p) = 	
typeof(v)(p) = ⊕ else

17

Type update A[n 7→ B] ∈ Type.

	[n 7→ B] = 	
A[n 7→ B](n) = B if A 6= 	
A[n 7→ B](m) = A(m) if A 6= 	 and m 6= n

Typing of terms t : A.

v : typeof(v)
v : A f : A → B

(v)f : B

Typing of operations f : A → B.

If A(n) = 	 :
v : A′

cons(n, v) : A → A[n 7→ A′]
v : A′

snoc(n, v) : A → A[n 7→ A′]

If A(n) 6= 	 :
v : A′

override(n, v) : A → A[n 7→ A′] delete(n) : A → A[n 7→]

f : A(n) → A′

at(n, f) : A → A[n 7→ A′]
if A(n) 6= 	 f : A1 → A2 g : A2 → A3

f ; g : A1 → A3

Theorem 1 (Type preservation and normalization).

1. If t : A then A 6= 	, t ⇓ v and v : A.
2. If v : A and f : A → B then v −−f−→ w and w : B.

Proof. Simultaneously by structural induction on the judgments t : A and f :
A → B.

A.4 Guards and Updates

G ∈ Guard = Path → {⊕,	, ?} conditions on types
U ∈ Update = Path → {⊕,	, ?} modifications of types

Guard checking A | G.

A | G ⇐⇒ A(p) | G(p) for all p ∈ Path where
a | g ⇐⇒ g = ? or a = g

Applying updates U1[U2] ∈ Update. (Defines also P [U] ∈ Type since Type ⊆
Update.)

U1[U2](p) = U1(p)[U2(p)] where
u1[u2] = u1 if u2 = ?
u1[u2] = u2 else

Lemma 1 (Associativity). U1[U2][U3] = U1[U2[U3]].

18

Guard joining G1 ∨G2 ∈ Guard (symmetric partial operation).

(G1 ∨G2)(p) = G1(p) ∨G2(p) where
g1 ∨ g2 = g1 if g1 = g2 or g2 = ?
g1 ∨ g2 = g2 if g1 = ?
g1 ∨ g2 = undefined otherwise

G1 ∨G2 is only defined if G1(p) ∨G2(p) is defined for all p ∈ Path.

Lemma 2 (Joint guard checking). A | G1 and A | G2 iff G12 := G1 ∨G2 is
defined and A | G12.

Guard updates G \ U ∈ Guard (partial operation).

(G \ U)(p) = G(p) \ U(p) where
g \ u = g if g = ? or u = ?
g \ u = ? if g = u
g \ u = undefined otherwise

Lemma 3 (Updated guard checking). A[U] | G iff G′ := G \ U is defined
and A | G′.

A.5 Type Inference

Type inference t ↑ A.

v ↑ typeof(v)
v ↑ A f ↑ G U

(v)f ↑ A[U]
if A | G

Most general types for operations f ↑ G U .

v ↑ A

cons(n, v) ↑ {n 7→ 	} {n 7→ A}
v ↑ A

snoc(n, v) ↑ {n 7→ 	} {n 7→ A}

v ↑ A

override(n, v) ↑ {n 7→ ⊕} {n 7→ A} delete(n) ↑ {n 7→ ⊕} {n 7→ 	}
f ↑ G U

at(n, f) ↑ {n 7→ G} {n 7→ U}
f1 ↑ G1 U1 f2 ↑ G2 U2

f1; f2 ↑ G1 ∨ (G2 \ U1) U1[U2]
if G1 ∨ (G2 \ U1) defined

Theorem 2 (Soundness of type inference).

1. If t ↑ A then t : A.
2. If f ↑ G U and A | G then f : A → A[U].

Proof. Simultaneously by structural induction on the judgments t ↑ A and f ↑
G U .

19

References

Davide Ancona, Giovanni Lagorio, and Elena Zucca. True separate compilation
of Java classes. In Proc. 4th Conf. Principles and Practice of Declarative
Programming (PPDP), pages 189–200. ACM Press, 2002.

Uwe Aßmann. Invasive Software Composition. Springer, 2003.
Paul G. Bassett. Framing Software Reuse: Lessons From the Real World. Pren-

tice Hall, 1996.
Don Batory and Bart J. Geraci. Composition Validation and Subjectivity in

GenVoca Generators. IEEE Trans. Software Engineering, 23(2):67–82, 1997.
Don Batory, Jack Sarvela, and Axel Rauschmayer. Scaling Step-Wise Refine-

ment. In Proc. 25st IEEE Int. Conf. Software Engineering (ICSE). IEEE,
2003.

Gavin M. Bierman, Matthew J. Parkinson, and Andrew M. Pitts. MJ: An
imperative core calculus for Java and Java with effects. Technical Report 563,
University of Cambridge, 2003.

Joshua Bloch et al. A Metadata Facility for the Java Programming Language,
2002. URL http://www.jcp.org/en/jsr/detail?id=175. Java Specification
Request 175.

Viviana Bono, Amit Patel, and Vitaly Shmatikov. A Core Calculus of Classes
and Mixins. In Rachid Guerraoui, editor, Proc. 13th Europ. Conf. Object-
Oriented Programming (ECOOP), volume 1628 of Lect. Notes Comp. Sci.,
pages 43–66. Springer, 1999.

Johan Brichau, Kim Mens, and Kris De Volder. Building Composable Aspect-
Specific Languages with Logic Metaprogramming. In Proc. 1st Conf. Genera-
tive Programming and Component Engineering (GPCE), volume 2487 of Lect.
Notes Comp. Sci., pages 110–127, October 2002.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing
Multi-Stage Languages Using ASTs, Gensym, and Reflection. 2003.

Patrick Cousot. Abstract Interpretation Based Formal Methods and Future
Challenges. In Reinhard Wilhelm, editor, Informatics—10 Years Back, 10
Years Ahead, volume 2000 of Lect. Notes Comp. Sci., pages 138–156. Springer,
2001.

Rémi Douence, Pascal Fradet, and Mario Südholt. A Framework for the Detec-
tion and Resolution of Aspect Interactions. In Don S. Batory, Charles Consel,
and Walid Taha, editors, Proc. 1st Conf. Generative Programming and Com-
ponent Engineering (GPCE), volume 2487 of Lect. Notes Comp. Sci., pages
173–188, 2002.

Sophia Drossopoulou, Susan Eisenbach, and David Wragg. A Fragment Calculus
Towards a Model of Separate Compilation, Linking and Binary Compatibility.
In Proc. 14th IEEE Symp. Logic in Computer Science, pages 147–156. IEEE,
1999.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A Program-
mer’s Reduction Semantics for Classes and Mixins. In Jim Alves-Foss, editor,
Formal Syntax and Semantics of Java, volume 1523 of Lect. Notes Comp. Sci.,
pages 241–269. Springer, 1999.

20

http://www.jcp.org/en/jsr/detail?id=175

Martin Fowler. Refactoring. Addison Wesley, 1999.
James Gosling. Program Transformations Through the Manipulation of Se-

mantic Graphs, January 2003. URL http://www.sigs.de/kongresse/oop_
2003/key_gosling.zip. Keynote SIGS-DATACOM Conf. Object-Oriented
Programming (OOP 2003).

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison Wesley, 2000.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In Jørgen Lindskov Knud-
sen, editor, Proc. 15th Europ. Conf. Object-Oriented Programming (ECOOP),
volume 2072 of Lect. Notes Comp. Sci., pages 327–353. Springer, 2001.

Ralf Lämmel, Eelco Visser, and Joost Visser. Strategic Programming Meets
Adaptive Programming. In Proc. 2nd Conf. Aspect-Oriented Software Devel-
opment (AOSD). ACM Press, 2003.

Tom Mens. A Formal Foundation for Object-Oriented Software Evolution. In
Proc. Int. Conf. Software Maintenance (ICSM), pages 549–552. IEEE, 2001.

Tom Mens and Theo D’Hondt. Automating Support for Software Evolution in
UML. Automated Software Engineering, 7(1):39–59, 2000.

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable Units of Behavior. In Proc. 17th Europ. Conf. Object-
Oriented Programming (ECOOP). Springer, 2003. To appear.

Yannis Smaragdakis and Don Batory. Implementing Layered Design with
Mixin Layers. In Eric Jul, editor, Proc. 12th Europ. Conf. Object-Oriented
Programming (ECOOP), volume 1445 of Lect. Notes Comp. Sci., pages
550–570, 1998. URL http://www.cs.utexas.edu/users/schwartz/pub.
htm#ecoop-templates.

Gregor Snelting and Frank Tip. Semantics-Based Composition of Class Hierar-
chies. In Proc. 16th Europ. Conf. Object-Oriented Programming (ECOOP),
volume 2374 of Lect. Notes Comp. Sci., pages 562–584. Springer, 2002.

Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian, and Kozo Itano.
OpenJava: A Class-Based Macro System for Java. In Walter Cazzola,
Robert J. Stroud, and Francesco Tisato, editors, Reflection and Software En-
gineering, volume 1826 of Lect. Notes Comp. Sci., pages 117–133. Springer,
2000.

21

http://www.sigs.de/kongresse/oop_2003/key_gosling.zip
http://www.sigs.de/kongresse/oop_2003/key_gosling.zip
http://www.cs.utexas.edu/users/schwartz/pub.htm#ecoop-templates
http://www.cs.utexas.edu/users/schwartz/pub.htm#ecoop-templates

	Constructing Type-Safe Operators for Software Composition

