
Syntactic Metatheory of
Higher-Order Subtyping

Andreas Abel and Dulma Rodriguez

Department of Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany
{andreas.abel|dulma.rodriguez}@ifi.lmu.de

Abstract. We present a new proof of decidability of higher-order sub-
typing in the presence of bounded quantification. The algorithm is for-
mulated as a judgement which operates on beta-eta-normal forms. Tran-
sitivity and closure under application are proven directly and syntacti-
cally, without the need for a model construction or reasoning on longest
beta-reduction sequences. The main technical tool is hereditary substi-
tution, i.e., substitution of one normal form into another, resolving all
freshly generated redexes on the fly. Hereditary substitutions are used to
keep types in normal-form during execution of the subtyping algorithm.
Termination of hereditary substitutions can be proven in an elementary
way, by a lexicographic induction on the kind of the substituted variable
and the size of the expression substituted into—this is what enables a
purely syntactic metatheory.
Keywords: Higher-order subtyping, bounded quantification, algorith-
mic subtyping, hereditary substitution.

1 Introduction

Higher-order subtyping with bounded quantification has been used to model
aspects of object-oriented programming languages [Pie02, Ch. 32]. Decidability
is non-trivial and has been studied extensively in the past. Both Compagnoni
[Com95] and Pierce and Steffen [PS97] have provided an algorithm for deciding
subtyping for Kernel System Fω<: and proven its completeness by establishing
a strong normalization theorem, while Compagnoni and Goguen [CG03,CG06]
have studied the more general system Fω≤ and proved completeness by construct-
ing a Kripke model.

The cited works are impressive, but the complexity of the proofs is a bit
overwhelming when it comes to formalizing them in a theorem prover like Coq,
Isabelle, or Twelf. The reason is that strong normalization theorems or models
are laborious to mechanize and little is known about automating the involved
proofs. However, recently there have been successes in formalizing purely syn-
tactical developments of metatheory of programming languages, most notably
SML [LCH07]. Such formalizations use only first-order inductive judgements
over syntactical objects and proofs by induction over these judgements or sim-
ple arithmetical measures.

A modern technique to treat the metatheory of systems which rely on nor-
malization is hereditary substitution [WC+03]. Hereditary substitution provides
an algorithm for bottom-up normalization whose termination can be proven by
a simple lexicographic induction—provided the proof-theoretical strength of the
language does not exceed that of the simply-typed lambda-calculus. The tech-
nique of hereditary substitution simplifies the metatheory considerably. Hered-
itary substitution has been successfully used for the normalization of the Con-
current Logical Framework [WC+03], the Edinburgh LF [HL07], and the type
language of SML [LCH07].

In this article, we present a purely syntactic metatheory of Fω<: using the
technique of hereditary substitution, affirming that it is flexible enough to ac-
count for bounded quantification, which is similar to lazy let-binding or singleton
types. The result is a major simplification of the metatheory of Fω<: and a proof
structure that is ready for formalization in a proof assistant even with low proof-
theoretical complexity such as Twelf.

Detailed proofs for the theorems of this paper can be found in the diploma
thesis of the second author [Rod07].

Contents. In Section 2, we recapitulate System Fω<: with kinding, equality and
declarative subtyping and present a subtyping algorithm which works on η-long
β-normal type constructors. In Section 3 we present algorithms for hereditary
substitution and normalization and prove their correctness; this section contains
the main technical work. Afterwards, in Section 4, we show soundness, com-
pleteness, and termination of the subtyping algorithm, which is in essence a
consequence of the results of Section 3. Finally, we discuss related and further
work in the conclusions.

Judgements. In this article, the following judgements will be defined inductively:

Γ ` F : κ constructor F has kind κ in context Γ
Γ ` F = F ′ : κ F and F ′ of kind κ are βη-equal
Γ ` F ≤ F ′ : κ F is a higher-order subtype of F ′

Γ ` V ⇑ κ V is hereditarily normal of kind κ
Γ à V ≤ V ′ V is a subtype of V ′, algorithmically

When we write D :: J , we mean that judgement J is established by derivation D.
Then, |D| denotes the height of this derivation. We consider derivations ordered
by their height: D1 ≤ D2 iff |D1| ≤ |D2|.

2 System F ω
<:

This section introduces the syntax and the rules of kinding, equality, and sub-
typing of system Fω<: , a typed λ-calculus of polymorphic functions, subtyping,
and type operators.

2.1 Constructors and Kinds

System Fω<: consists of terms (programs), type constructors and kinds. This
article is dedicated to the decidability of subtyping alone, thus, we ignore terms
and typing completely. Note, however, that decidability of typing follows from
decidability of subtyping (via the concept of promotion [Pie02, Ch. 28.1] [PS97]).

Constructors are classified by their kind, i.e., as types, functions on types,
etc. Kinds are given by the grammar:

κ ::= ∗ | κ1 → κ2

Let κ→ κ′ be an abbreviation for κ1 → κ2 → . . .→ κn → κ′ where |κ| = n. Let
|κ| ∈ N denote a measure on kinds with |κ′| ≤ |κ → κ′| and |κ| < |κ → κ′|. An
example of such a measure is the rank, which is defined recursively as rk(κ →
∗) = max{1 + rk(κi) | 1 ≤ i ≤ |κ|}. In particular, rk(∗) = 0.

Constructors are given by the following Church-style type-level λ-calculus.
The meta-variable X ranges over a countable infinite set of constructor variables.

A,B, F,G ::= X | λX :κ. F | F G | A→ B | ∀X≤G :κ.A | >

As usual, λX : κ. F binds variable X in F . We identify constructors up to α-
equivalence, i.e., up to renaming of bound variables. Sometimes, when we want to
stress syntactic identity of constructors, we use ≡ for α-equivalence. The letters
U, V,W denote β-normal constructors and A,B constructors of kind ∗ (types).
We define >κ→∗ = λY : κ.> (meaning λY1 : κ1. . . . λY|Y | : κ|κ|.>) where the
lengths of Y and κ coincide. A vector notation is also used for application: F G
means F G1 . . . G|G|, where application associates to the left as usual.

Contexts follow the grammar Γ ::= � | Γ,X ≤G : κ. We refer to G as the
bound of X. We assume all variables bound in Γ to be distinct and define the
notation Γ,X :κ as an abbreviation for Γ,X≤>κ : κ.

2.2 Kinding and Well-formed Contexts

Well-formed contexts Γ `, defined mutually with the kinding judgement Γ `
F : κ in Figure 1, are constructed from the empty context by adding well-kinded
type variable declarations. Kinding is decidable and unique, since constructor
variables are annotated with their kinds.

The extra assumption Γ ` G : κ in rule (K-Var) is due to Pierce and Steffen
[PS97] and simplifies the proof of Theorem 1, which entails termination of the
subtyping algorithm.

We maintain the invariant that kinding statements are only derivable in well-
formed contexts (see Lemma 1.1). Bounds do not matter for kinding, i.e., if a
constructor F has kind κ in a context Γ , and Γ ′ is the same context as Γ but
with different, well-kinded bounds, then F has kind κ in context Γ ′ as well.

Lemma 1 (Admissible rules for kinding).

1. Validity: If Γ ` F : κ then Γ `.

Γ `

(C-Empty) � ` (C-Bound)
Γ ` Γ ` G : κ

Γ,X≤G :κ `

Γ ` F : κ

(K-Var)
(X≤G :κ) ∈ Γ Γ ` G : κ

Γ ` X : κ
(K-Top)

Γ `
Γ ` > : ∗

(K-Abs)
Γ,X :κ ` F : κ′

Γ ` λX :κ. F : κ→ κ′
(K-App)

Γ ` F : κ→ κ′ Γ ` G : κ

Γ ` F G : κ′

(K-Arr)
Γ ` A : ∗ Γ ` B : ∗

Γ ` A→ B : ∗ (K-All)
Γ ` G : κ Γ,X≤G :κ ` A : ∗

Γ ` ∀X≤G :κ.A : ∗

Γ ` F = F ′ : κ

(Eq-β)
Γ,X :κ ` F : κ′ Γ ` G : κ

Γ ` (λX :κ. F)G = [G/X]F : κ′
(Eq-η)

Γ ` F : κ→ κ′ X 6∈ FV(F)

Γ ` λX :κ. FX = F : κ→ κ′

(Eq-Var)
(X ≤ G :κ) ∈ Γ Γ ` G : κ

Γ ` X = X : κ
(Eq-Abs)

Γ,X :κ ` F = F ′ : κ′

Γ ` λX :κ. F = λX :κ. F ′ : κ→ κ′

(Eq-App)
Γ ` F = F ′ : κ→ κ′ Γ ` G = G′ : κ

Γ ` F G = F ′G′ : κ′

(Eq-Top)
Γ `

Γ ` > = > : ∗ (Eq-Arr)
Γ ` A = A′ : ∗ Γ ` B = B′ : ∗

Γ ` A→ B = A′ → B′ : ∗

(Eq-All)
Γ ` G = G′ :κ Γ,X ≤ G :κ ` A = A′ : ∗

Γ ` ∀X ≤ G :κ.A = ∀X ≤ G′ :κ.A′ : ∗

(Eq-Sym)
Γ ` F = F ′ : κ

Γ ` F ′ = F : κ
(Eq-Trans)

Γ ` F1 = F2 : κ Γ ` F2 = F3 : κ

Γ ` F1 = F3 : κ

Γ ` F ≤ F ′ : κ

(S-Var)
Γ ` G : κ X≤G :κ ∈ Γ

Γ ` X ≤ G : κ
(S-App)

Γ ` F ≤ F ′ : κ→ κ′ Γ ` H : κ

Γ ` FH ≤ F ′H : κ′

(S-Top)
Γ ` A : ∗

Γ ` A ≤ > : ∗ (S-Abs)
Γ,X :κ ` F ≤ F ′ : κ′

Γ ` λX :κ. F ≤ λX :κ. F ′ : κ→ κ′

(S-Arr)
Γ ` A′ ≤ A : ∗ Γ ` B ≤ B′ : ∗

Γ ` A→ B ≤ A′ → B′ : ∗

(S-All)
Γ ` G : κ Γ,X≤G :κ ` A ≤ A′ : ∗
Γ ` ∀X≤G :κ.A ≤ ∀X≤G :κ.A′ : ∗

(S-Eq)
Γ ` F = G : κ

Γ ` F ≤ G : κ
(S-Trans)

Γ ` F ≤ G : κ Γ ` G ≤ H : κ

Γ ` F ≤ H : κ

Fig. 1. Declarative presentation of Fω<: .

2. Weakening: If Γ, Γ ′ ` F : κ′ and Γ ` G : κ then Γ,X≤G :κ, Γ ′ ` F : κ′.
3. Substitution: If Γ,X ≤ H :κ, Γ ′ ` F : κ′ and Γ ` G : κ then Γ, [G/X]Γ ′ `

[G/X]F : κ′.

Since bounds do not matter for kinding, we do not require Γ ` G ≤ H : κ in
the substitution property.

2.3 Equality

In contrast to previous presentations of System Fω<: [Pie02, Ch. 31], we consider
constructors equivalent modulo β and η. Instead of an untyped equality we
define an equality judgement Γ ` F = F ′ : κ, since this is more robust w. r. t.
extensions, e. g., by polarities [Ste98,Abe06b]. The judgement is given by the
axioms (Eq-β) and (Eq-η) plus congruence and equivalence rules (see Figure 1).

The equality judgement has the usual properties.

Lemma 2 (Admissible rules for equality).

1. Reflexivity: If Γ ` F : κ then Γ ` F = F : κ.
2. Validity: If Γ ` G = G′ : κ then Γ ` G : κ and Γ ` G′ : κ.
3. Weakening: If Γ, Γ ′ ` F = F ′ : κ and Γ ` G : κ then Γ,X ≤ G : κ, Γ ′ `

F = F ′ : κ.
4. Substitution: If Γ,X ≤ H : κ, Γ ′ ` F = F ′ : κ′ and Γ ` G : κ then

Γ, [G/X]Γ ′ ` [G/X]F = [G/X]F ′ : κ′.

Proof. Each by induction on the first derivation. In the proof of item 2, case
(Eq-All), we use the fact that bounds do not matter for kinding. �

2.4 Subtyping

The Fω<: subtyping relation Γ ` F ≤ F ′ : κ (see Figure 1) extends the subtyping
relation of system F≤ [CW85]. Subtyping for type operators of higher kind is
defined pointwise, see (S-Abs) and (S-App).

Decidability requires using the Kernel-Fun rule (S-All). Full subtyping would
allow a bound G′ ≤ G on the right hand side, losing decidability [Pie92]. We do
not treat antisymmetry here. Reflexivity is inherited from equality.

Lemma 3 (Admissible rules for subtyping).

1. Validity: If Γ ` F ≤ F ′ : κ then Γ ` F : κ and Γ ` F ′ : κ.
2. Weakening: If Γ, Γ ′ ` F ≤ F ′ : κ and Γ ` G : κ′ then Γ,X ≤ G :κ′, Γ ′ `

F ≤ F ′ : κ.
3. Substitution: If Γ,X ≤ H : κ, Γ ′ ` F ≤ F ′ : κ′ and Γ ` G ≤ H : κ then

Γ, [G/X]Γ ′ ` [G/X]F ≤ [G/X]F ′ : κ′ (not needed in the following).

2.5 Algorithmic Subtyping

The declarative definition of subtyping contains two rules that correspond to a
logical cut : on the level of constructors, the transitivity rule (S-Trans), if one
views types as predicates and subtyping as predicate inclusion; and on the level
of kinds, the application rule (S-App), if one views kinds as implicational propo-
sitions and constructors as their proofs.1 In an algorithmic version of subtyping,
both kinds of cuts have to be eliminated [Com95,PS97]. Application is eliminated
by considering constructors in normal form V only, in our case η-long β-normal
form. Transitivity is incorporated into the variable rule (SA-Bound), which is
a fusion of (S-Var), (S-App), (S-Eq), and (S-Trans). It looks up the bound U
of the head X of a neutral constructor XV and recursively checks subtyping
for U V . To keep everything in normal form, a normalizing application U @V
is employed which will be defined in Section 3.1.

The algorithm receives as input a context Γ and two η-long constructors
V, V ′ such that Γ ` V : κ and Γ ` V ′ : κ and decides Γ ` V ≤ V ′ : κ.

Γ à V ≤ V ′

(SA-Top)
Γ à V ≤ >

(SA-Refl)
Γ à XV ≤ XV

(SA-Bound)
(X≤U :κ→ ∗) ∈ Γ Γ à U @V ≤W

Γ à XV ≤W

(SA-Arr)
Γ à W ≤ V : ∗ Γ à V

′ ≤W ′

Γ à V → V ′ ≤ W →W ′

(SA-All)
Γ,X≤V :κ à W ≤W ′

Γ à ∀X≤V :κ.W ≤ ∀X≤V :κ.W ′

(SA-Abs)
Γ,X :κ à V ≤ V ′

Γ à λX :κ. V ≤ λX :κ. V ′

Observe that since we are dealing with η-long forms, the only constructors of
higher kind are λ-abstractions (SA-Abs). The rules specify a deterministic algo-
rithm if one checks applicability of rules earlier in the list prior to rules mentioned
later. In particular, (SA-Top) is checked first, and (SA-Refl) before (SA-Bound).

Our algorithmic subtyping rules correspond to Compagnoni’s [Com95] and
Pierce and Steffen’s [PS97]—except that they consider Church-style β-normal
constructors, hence, their algorithm does not validate η-equality. Thus, one can-
not claim our algorithm is new, but in the remainder of this article we will
present a novel, very direct and concise correctness proof with purely syntactic
methods, which has a realistic chance of being mechanized in a theorem prover
such as Coq, Isabelle, or Twelf.
1 More precisely, (S-App) is the rule of modus ponens, but in unrestricted form it

allows non-normal proofs.

[G/X]κF

[G/X]κY := Gκ if X = Y
Y otherwise

[G/X]κ(λY :κ′. F) := λY :κ′. [G/X]κF where Y fresh for X,G

[G/X]κ(FH) := ([Ĥ/Y]κ1F ′)κ2 if F̂ = (λY :κ′1. F
′)κ1→κ2

F̂ Ĥ otherwise

herein, F̂ = [G/X]κF

Ĥ = [G/X]κH

[G/X]κ(A→ B) := [G/X]κA→ [G/X]κB

[G/X]κ(∀Y ≤ H :κ.A) := ∀Y ≤ [G/X]κH :κ.

[G/X]κA where Y fresh for X,G

[G/X]κ> := >

F @G

(λX :κ. F) @G := [G/X]κF

F @G := F G if F 6= λX :κ. F ′

F @ G

F @ G := ((F @G1) @G2 . . .) @G|G|

Fig. 2. Hereditary substitution.

3 Normalization of Constructors

In last section we have described a decision procedure for subtyping which works
on η-long β-normal forms. In this section, we will describe a normalization al-
gorithm nf−(−) which is correct w. r. t. judgmental equality:

1. Sound: If Γ ` F : κ then Γ ` nfΓ (F) = F : κ.
2. Complete: If Γ ` F = F ′ : κ then nfΓ (F) ≡ nfΓ (F ′).

3.1 Hereditary Substitution

There are abundant strategies to compute β-normal forms; we use bottom-up
normalization, because its termination can be shown directly in a simply-typed
setting—in our case it is a simply-kinded setting.

The bottom-up strategy nf (H) normalizes the immediate subterms of H and
then puts them back together. For an application H = F G, normalization nf (F)
of the function part may yield an abstraction λY :κ. F ′. In this case, a β-normal
form can be recovered by substituting nf (G) for Y in F ′. New redexes may be
created in turn which are resolved immediately by another substitution etc. The
iteration of this process, which we call hereditary substitution, terminates since
the kind of the substituted variable decreases with each iteration.

Hereditary substitutions are implicit in combinatorial normalization proofs,
e. g., Prawitz [Pra65], Levy [Lév76], Girard, Lafont, and Taylor [GLT89, Ch. 4],
and Amadio and Curien [AC97, Thm. 2.2.9]. They were first made explicit by
Watkins et. al. [WC+03] and Adams [Ada05] for dependent types. We follow the
presentation of the first author [Abe06a].

Hereditary substitution (see Figure 2) is given as a 4-ary function [G/X]κH,
whose result F̂ is either just a constructor F or a constructor annotated with a
kind, written Fκ. If G and H are β-normal (and well-kinded) then the result will
also be β-normal (and well-kinded). Results can be coerced back to constructors
via an erasure operation given by Fκ = F and F = F .

It is easy to see that if [G/X]κH = Fκ2 then |κ2| ≤ |κ|. This invariant ensures
the termination of hereditary substitution. For correctness we need to show that,
modulo β-equality, hereditary substitution is conventional substitution. In the
following, we leave the coercion implicit.

Lemma 4 (Termination and soundness of hereditary substitutions).
If D :: Γ,X : κ, Γ ′ ` F : κ′ and Γ ` G : κ then Γ, [G/X]Γ ′ ` [G/X]F =
[G/X]κF : κ′.

Proof. By lexicographical induction on (|κ|,D). The proof is a straightforward
extension of the soundness proof in [Abe06a]. �

Corollary 1. If Γ ` F : κ→ κ′ and Γ ` G : κ then Γ ` F @G = F G : κ′.

Lemma 5 (Commutativity of hereditary substitutions). Let Γ ` U : κ
and Γ,X :κ, Γ ′ ` V : κ′ with κ′ = κ→ κ0.

1. If Γ,X :κ, Γ ′ `Wi : κi for 1 ≤ i ≤ |κ| then

[U/X]κ(V @W) ≡ [U/X]κV @ [U/X]κW

2. If Γ,X :κ, Γ ′, Y :κ′, Γ ′′ `W : κ′′ then:

[U/X]κ([V/Y]κ
′
W) ≡ [[U/X]κV /Y]κ

′
([U/X]κW)

Proof. Simultaneously by simultaneous induction2 on {κ, κ′}, first 1 and then 2.
The proof of 2 proceeds by a local induction on W . �

2 Simultaneous order is defined by {X,Y } < {X ′, Y ′} if X < X ′ and Y ≤ Y ′.

3.2 Computing the Long Normal Form

Well-kinded constructors are β-normalizing, and we can compute their η-long β-
normal form. First, let us define the η-expansion ηκ(N) of a neutral constructor
N at kind κ by η∗(N) = N and ηκ→κ′(N) = λX :κ. ηκ′(N ηκ(X)).

Lemma 6 (η-expansion is sound). If Γ ` N : κ then Γ ` N = ηκ(N) : κ.

Normalization is given by a function nfΓ (F), defined by recursion on F .

nfΓ (X) := ηκ(X) if (X≤ :κ) ∈ Γ
nfΓ (>) := >
nfΓ (λX :κ. F) := λX :κ. nfΓ,X:κ(F)
nfΓ (A→ B) := nfΓ (A)→ nfΓ (B)
nfΓ (∀X≤G :κ.A) := ∀X≤nfΓ (G) :κ. nfΓ,X≤G:κ(A)
nfΓ (F G) := nfΓ (F) @ nfΓ (G)

The algorithm η-expands the variables, this way producing η-long β-normal
constructors. For well-kinded constructors nf () returns the normal form (see
Theorem 1), but not for all ill-kinded constructors, e.g., nf (Ω) = Ω for Ω =
(λX :∗. X X) (λX :∗. X X).

We omit the subscript Γ if clear from the context of discourse. Normalization
can be extended to contexts in the obvious way: nf (Γ) computes a context where
all bounds have been normalized.

Lemma 7 (Soundness and termination of normalization). If Γ ` F : κ
then Γ ` F = nfΓ (F) : κ.

Proof. By induction on the kinding derivation, using Lemma 6 in the variable
case, and Corollary 1 in the application case. �

3.3 Characterization of Long Normal Forms

We will now define a judgement Γ ` V ⇑ κ, read “V is hereditarily normal of
kind κ in context Γ”, that classifies the β-normal constructor V as a possible
input for the subtyping algorithm. In particular, V must be η-long, and new
redexes which might be created by (SA-Bound) during the execution of the
algorithm must be normalizable. We call such redexes hidden, an example is
∀X≤(λY :∗. V) :∗ → ∗. X W which contains the hidden redex (λY :∗. V)W .

Γ ` V ⇑ κ

(LN-Bound)
(X≤U :κ→ ∗) ∈ Γ Γ ` Vi ⇑ κi Γ ` U @V ⇑ ∗ (?)

Γ ` X V ⇑ ∗

(LN-Abs)
Γ,X :κ ` V ⇑ κ′

Γ ` λX :κ. V ⇑ κ→ κ′
(LN-Arr)

Γ ` V ⇑ ∗ Γ `W ⇑ ∗
Γ ` V →W ⇑ ∗

(LN-All)
Γ,X≤U :κ ` V ⇑ ∗
Γ ` ∀X≤U :κ. V ⇑ ∗

(LN-Top)
Γ ⇑

Γ ` > ⇑ ∗

Remark 1. The third hypothesis (?) in (LN-Bound) ensures normalization of
hidden redexes, hence Γ ` V ⇑ κ can be used as a termination measure for
the algorithm. Even without (?) the judgement characterizes the η-long normal
forms.

A context is normal, Γ ⇑, if all bounds in Γ are hereditarily normal. In the
following, we establish that normalization is the identity on long normal forms.
First we prove it for variables.

Lemma 8.

1. If Γ ` V ⇑ κ then [V/X]κηκ(X) ≡ V .
2. If D :: Γ,X :κ, Γ ′ `W ⇑ κ′ then [ηκ(X)/X]κW ≡W .

Proof. Simultaneously by induction on κ, and a local induction on D in 2. �

Lemma 9 (Idempotency of nf). If D :: Γ ` U ⇑ κ then nf (U) ≡ U .

Proof. By induction on D, using Lemma 8 in the variable case. �

We now build up to a normalization theorem: we will show that nf produces
a hereditarily normal form from each well-kinded constructor. The following
lemma, which can be seen as the heart of our technical development, proves
normalization of application.

Lemma 10 (Substitution and application for normal forms).
Let E :: Γ ` U ⇑ κ.

1. Assume D :: Γ,X :κ, Γ ′ ⇑. Then Γ, [U/X]κΓ ′ ⇑.
2. Assume D :: Γ,X :κ, Γ ′ ` V ⇑ κ′. Then Γ, [U/X]κΓ ′ ` [U/X]κV ⇑ κ′.
3. Assume D :: Γ ` V ⇑ κ→ κ′. Then Γ ` V @U ⇑ κ′.

Proof. Simultaneously by lexicographical induction on (|κ|,D). The interesting
case of item 2 is (LN-Bound) with V ≡ XV , κ = κ→ ∗.

Γ,X :κ, Γ ′ ` Vi ⇑ κi Γ,X :κ, Γ ′ ` >κ @V ⇑ ∗
Γ,X :κ, Γ ′ ` XV ⇑ ∗

By induction hypothesis (2), we have Di :: Γ, [U/X]κΓ ′ ` [U/X]κVi ⇑ κi for
i = 1..|κ|. Moreover, we have by induction hypothesis (3):

E1 :: Γ, [U/X]κΓ ′ ` U @ [U/X]κV1 ⇑ κ2 → . . .→ κn → ∗

because (κ1, E) < (κ,D). We again have by induction hypothesis (3):

E2 :: Γ, [U/X]κΓ ′ ` U @ ([U/X]κV1) @ ([U/X]κV2) ⇑ κ3 → . . .→ κn → ∗

because (κ2, E1) < (κ,D). Continuing this schema, we get

En :: Γ, [U/X]κΓ ′ ` U @ [U/X]κV ⇑ ∗

which is equivalent to Γ, [U/X]κΓ ′ ` [U/X]κ(X V) ⇑ ∗ and we are finished.
In case V ≡ Y V , with Y 6= X, we use Lemma 5. �

Theorem 1 (Normalization).

1. If D :: Γ ` then nf (Γ) ⇑.
2. If D :: Γ ` F : κ then nf (Γ) ` nf (F) ⇑ κ.

Proof. Simultaneously by induction on D, using the previous lemma in case of
application. �

3.4 Completeness of Normalization

In this section, we prove completeness of the normalization function, i.e., that
the normal forms of judgmentally equal constructors are identical.

Lemma 11. If D :: Γ,X : κ, Γ ′ ` F : κ′ and Γ ` G : κ then nf ([G/X]F) ≡
[nf (G)/X]κnf (F).

Proof. By induction on D. In the application case we use Lemma 5. �

Theorem 2 (Completeness of the normalization). If D :: Γ ` F = F ′ : κ
then nf (F) ≡ nf (F ′).

Proof. The proof is by induction on D, in case (Eq-η) we use the characterization
of η-long β-normal forms (Theorem 1 and Lemma 9) and in case (Eq-β) we use
the previous lemma. �

Corollary 2 (Uniqueness of normal forms). If Γ ` V = V ′ : κ and Γ `
V, V ′ ⇑ κ then V ≡ V ′.

Proof. Directly, using Theorem 2 and Lemma 9. �

4 Verification of Algorithmic Subtyping

In this section, we show that the subtyping algorithm is sound and complete for
the declarative rules in Section 2. The difficult part, namely establishing the nec-
essary properties of hereditary substitution and normalization and constructing
a termination measure Γ ` V ⇑ κ, has been completed in the last section. The
actual properties of algorithmic subtyping are now easy to verify.

Soundness of the algorithm is straightforward because the algorithmic rules
are less permissive than the declarative ones.

Lemma 12. Let Γ ` V, V ′ : κ. If D :: Γ à V ≤ V ′, then Γ ` V ≤ V ′ : κ.

Proof. By induction on D. �

Theorem 3 (Soundness of algorithmic subtyping). Let Γ ` F, F ′ : κ. If
D :: nf (Γ) à nf (F) ≤ nf (F ′), then Γ ` F ≤ F ′ : κ.

Proof. Combining lemmata 12 and 7. To account for normalization of Γ , we es-
tablish that declarative equality and subtyping remain valid if we replace bounds
in the context by judgmentally equal ones. �

Completeness of the algorithm means that any derivable statement in the
declarative system is also derivable in the algorithmic system. This is more dif-
ficult to show than soundness, because we have eliminated declarative rules like
(S-Trans) or (S-App). Thus, we need to show that these rules are admissible in
the algorithmic system.

Lemma 13 (Reflexivity). If V is β-normal then Γ à V ≤ V .

Proof. By induction on V . �

Lemma 14 (Transitivity). D1 :: Γ à V1 ≤ V2 and D2 :: Γ à V2 ≤ V3 imply
Γ à V1 ≤ V3.

Proof. By induction on D1. �

The following substitution lemma is the key step in showing that algorithmic
subtyping is closed under application, i.e., complete for rule (S-App).

Lemma 15 (Substitution). Let Γ,X : κ, Γ ′ ` V, V ′ ⇑ κ′ and Γ ` U ⇑ κ. If
D :: Γ,X :κ, Γ ′ à V ≤ V ′ then Γ, [U/X]κΓ ′ à [U/X]κV ≤ [U/X]κV ′.

Proof. By induction on D. The interesting case is (SA-Bound) for V ≡ Y V with
Y bound later in the context than X.

(Y ≤ U ′ :κ→ ∗) ∈ Γ ′ Γ,X :κ, Γ ′ à U
′@V ≤W

Γ,X :κ, Γ ′ à Y V ≤W

By induction hypothesis we have

Γ, [U/X]κΓ ′ à [U/X]κ(U ′@V) ≤ [U/X]κW

which by Lemma 5, part (1), is equivalent to

Γ, [U/X]κΓ ′ à [U/X]κU ′@ [U/X]κV ≤ [U/X]κW.

The goal Γ, [U/X]κΓ ′ à Y [U/X]κV ≤ [U/X]κW follows by (SA-Bound). �

Completeness can now be shown by induction on derivations, using the pre-
vious lemmas: reflexivity, transitivity and substitution.

Theorem 4 (Completeness).
If D :: Γ ` F ≤ F ′ : κ then nf (Γ) à nf (F) ≤ nf (F ′).

Proof. By induction on D, using Lemma 15 in case (S-App). �

Termination of algorithmic subtyping is now proven via the inductive termi-
nation predicate Γ ` V ⇑ κ (which by Theorem 1 holds for all normal forms
of well-kinded constructors). It is a considerable simplification of Compagnoni’s
[Com95] termination measure which features intersection types as well. It has to
be investigated whether the simplicity of our measure can be kept in the presence
of intersection types.

Theorem 5 (Termination of algorithmic subtyping). If D1 :: Γ ` V ⇑ κ
and D2 :: Γ ` V ′ ⇑ κ then the query Γ à V ≤ V ′ terminates.

Proof. By simultaneous induction on {D1,D2}. We detail the case that D1 ends
with (LN-Bound).

(X≤U :κ→ ∗) ∈ Γ Γ ` Vi ⇑ κi for all i Γ ` U @V ⇑ ∗
Γ ` XV ⇑ ∗

In case V ′ 6= XV we apply the rule (SA-Bound)

(X≤U :κ→ ∗) ∈ Γ Γ à U @V ≤ V ′

Γ à XV ≤ V ′

By the induction hypothesis, the query Γ à U @V ≤ V ′ terminates, thus, the
query Γ à XV ≤ V ′ terminates as well. �

Corollary 3 (Decidability). If Γ ` F, F ′ : κ then Γ ` F ≤ F ′ : κ is decid-
able.

Proof. By Theorem 2 nf (Γ) ` nf (F), nf (F ′) ⇑ κ. Hence, the query nf (Γ) à

nf (F) ≤ nf (F ′) terminates by Theorem 5. If it succeeds then Γ ` F ≤ F ′ : κ
by soundness (Theorem 3), if it fails then Γ 6 ` F ≤ F ′ : κ by completeness
(Theorem 4).

5 Conclusions and Related Work

In this article we have proven decidability of subtyping for Fω<: with βη-equality
in a purely syntactical way, with only first-order inductive definitions and simple
induction measures. The proofs have been organized with a formalization in mind
and can be mechanized in proof assistants such as Coq, Isabelle, or Twelf.

Related work. Foundations of Fω<: and the type-theoretic investigation of object-
oriented languages have been laid by Cardelli [Car88], Mitchell [Mit90], and
Abadi and Cardelli [AC96].

Most similar to the present work is the one of Compagnoni [Com95] both
in the design of the subtyping algorithm and the organization of the proofs of
soundness, completeness, and termination. She also treats intersection types but
not η-equality of constructors. The main differences in the proof are: She inserts
the notion of normal subtyping between the declarative and the algorithmic
one, which we do not require, she refers to strong normalization of reduction,
which adds some complexity to the proof, and she has a complicated termination
measure which involves the longest reduction sequences of constructors classified
by a judgement similar to our hereditary normal forms. Our approach has allowed
considerable simplifications in comparison with Compagnoni’s.

Pierce and Steffen [PS97] justify algorithmic subtyping using rewriting the-
ory. They consider an extension of β-reductions by Γ -reduction, which replaces

a head variable by its bound, and >-reduction which witnesses that > is defined
pointwise for higher kinds. The confluence and strong normalization theorems
shed light on the combination of these notions of reduction, however, they are
not the shortest path to the verification of the subtyping algorithm.

Compagnoni and Goguen [CG03] construct a Kripke model based on typed
operational semantics to analyze the metatheory of Fω≤, an extension of Fω<: by
bounded abstraction λX ≤ F.G. They use this model to prove anti-symmetry
[CG06] of subtyping which allows replacing judgmental equality by bi-inclusion.
Recently they have investigated Church-style subtyping [CG07], where each vari-
able is annotated by its bound, hence, the complicated Kripke-model is replaced
by a non-Kripke logical relation. Their subtyping algorithm works with weak-
head normal forms, only the decision whether the bound-lookup rule (SA-Bound)

should fire demands full normalization in some cases. The structure of their
proof, with logical relation and strong normalization theorem, seems very ro-
bust w. r. t. extensions of the type language; however, it cannot compete with us
in terms of proof economics.

The first author [Abe06b] considers Fω̂, the higher-order polymorphic lambda-
calculus with sized types and polarized subtyping, but without bounded quan-
tification. His subtyping algorithm uses weak head normal forms and is proven
complete purely syntactically as in this work. The lexicographic induction on
kinds and constructors, which in this article justifies hereditary substitution, is
used by the first author to prove a substitution property for algorithmic subtyp-
ing, which entails completeness. It remains open whether this argument scales
to bounded quantification.

Future work. Steffen has extended his work to Fω<: with polarities, i. e., co-,
contra-, and mixed-variant type constructors are distinguished. For this exten-
sion, only backtracking algorithms exist [Ste98, p. 102]; we would like to see
whether our proof technique can simplify its metatheory as well. The same ques-
tion arises for the extension Fω≤ by bounded abstraction.

Acknowledgments. The research has been partially supported by the EU coor-
dination action TYPES (510996).

References

[Abe06a] A. Abel. Implementing a normalizer using sized heterogeneous types. In
C. McBride and T. Uustalu, eds., Wksh. on Mathematically Structured Func-
tional Programming, MSFP 2006 . 2006.

[Abe06b] A. Abel. Polarized subtyping for sized types. In D. Grigoriev, J. Harrison,
and E. A. Hirsch, eds., Proc. of the 1st Int. Computer Science Symposium
in Russia, CSR 2006 , vol. 3967 of Lect. Notes in Comput. Sci., pp. 381–392.
Springer-Verlag, 2006.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[AC97] R. Amadio and P.-L. Curien. Domains and Lambda Calculi . Cambridge

University Press, 1997.

[Ada05] R. Adams. A Modular Hierarchy of Logical Frameworks. Ph.D. thesis, Uni-
versity of Manchester, 2005.

[Car88] L. Cardelli. Structural subtyping and the notion of power type. In Proc. of
the 15th ACM Symp. on Principles of Programming Languages, POPL’88 ,
pp. 70–79. 1988.

[CG03] A. B. Compagnoni and H. Goguen. Typed operational semantics for higher-
order subtyping. Inf. Comput., 184(2):242–297, 2003.

[CG06] A. Compagnoni and H. Goguen. Anti-symmetry of higher-order subtyping
and equality by subtyping. Math. Struct. in Comput. Sci., 16:41–65, 2006.

[CG07] A. Compagnoni and H. Goguen. Subtyping à la Church. In E. Barendsen,
V. Capretta, H. Geuvers, and M. Niqui, eds., Reflections on Type Theory, λ-
calculus, and the Mind. Essays dedicated to Henk Barendregt on the Occasion
of his 60th Birthday . Radboud University Nijmegen, 2007.

[Com95] A. B. Compagnoni. Decidability of higher-order subtyping with intersection
types. In L. Pacholski and J. Tiuryn, eds., Computer Science Logic, 8th
Int. Wksh., CSL ’94 , vol. 933 of Lect. Notes in Comput. Sci., pp. 46–60.
Springer-Verlag, 1995.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4):471–522, 1985.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, vol. 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[HL07] R. Harper and D. Licata. Mechanizing metatheory in a logical framework.
J. Func. Program., 17(4–5):613–673, 2007.

[LCH07] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of
Standard ML. In M. Hofmann and M. Felleisen, eds., Proc. of the 34th ACM
Symp. on Principles of Programming Languages, POPL 2007 , pp. 173–184.
ACM Press, 2007.

[Lév76] J.-J. Lévy. An algebraic interpretation of the λβK-calculus; and an applica-
tion of a labelled λ-calculus. Theor. Comput. Sci., 2(1):97–114, 1976.

[Mit90] J. C. Mitchell. Toward a typed foundation for method specialization and
inheritance. In Proc. of the 17th ACM Symp. on Principles of Programming
Languages, POPL’90 , pp. 109–124. 1990.

[Pie92] B. C. Pierce. Bounded quantification is undecidable. In POPL, pp. 305–315.
1992.

[Pie02] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[Pra65] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965. Re-

publication by Dover Publications Inc., Mineola, New York, 2006.
[PS97] B. C. Pierce and M. Steffen. Higher order subtyping. Theor. Comput. Sci.,

176(1,2):235–282, 1997.
[Rod07] D. Rodriguez. Algorithmic Subtyping for Higher Order Bounded Quantifica-

tion. Diploma thesis, LMU Munich, 2007.
[Ste98] M. Steffen. Polarized Higher-Order Subtyping . Ph.D. thesis, Technische

Fakultät, Universität Erlangen, 1998.
[WC+03] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical

framework I: Judgements and properties. Tech. rep., School of Computer
Science, Carnegie Mellon University, Pittsburgh, 2003.

