A Core Calculus for Covering Copatterns

David Thibodeau, Andreas Abel
1 August 2012

1 Terms and Types

Types A, B,C := D (Inductive data type) | R (Coinductive record type) |
A—B|AxB|1

Datatype D = c¢; Ay | -+ | ¢n A, where ¢; : A; — D. More precisely,
D =puX.{c1A4|...|cnA,) where ¢; = A;[D/X] — D.

Recordtype R = {d; : A1,...d, : A,} where d; : R — A;. More precisely,
R=vY{d;: Ay,...,d,: A,} where d; : R — A;[R/Y].

Terms t,s::= f (Functions) | « (Variables) | t; to | ct|t.d| (t1,t2) | ()

1.1 Typing Rules

AoiAFaid Y AFfin() P AR (.1 U
AFt A — Ay A’_fziz‘hT AFt:vX.R T
AFty by Ay AP Abtd: RguX.R/X] P
AktliAl AFtQIAQ) AFtD(.[,LLXD/X] T
AF (t,to): Ay x Ay 0o AFct:puX.D Const

We note that X(f) is the type of f as defined in the signature X, a global
predefined context.

Lemma 1 (Inversion lemmas for typing). The following holds:
1. If A x: A, then A=A,z : A for some A';

IfAF f: A, then A=X(f);

IfAF(): A, then A=1;

™ e e

If AFty ty : A, then there is a type B such that Aty : B — A and
A}_tQZB;

5. If At (t1,t2) : A, then A = Ay x Ay for some Ay, Az and A+ t1 1 Ay
andAl—tngg;

6. If AFtd: A, then A= Ry[vX.R/X]| and AFt:vX.R;
7. If AFct: A, then A=uX.D and AFt: D [uX.D/X].

Proof. All the statements are proved by case analysis on the derivation rule.
1. There is only one case: Tvy,,. Then, A = A’z : A.

There is only one case: Try,. Then, A = X(f).

There is only one case: Typit. Then, A = 1.

Ll

There is only one case: Tapp. Then, there must be a type A; such that
A}—tltAl —>A2 andAl—tQAl.

5. There is only one case: Tpa;,. Then, A = A; x A; and we have that
A}_tllAl andAl—tngg.

6. There is only one case: Tpest- Then AF¢: vX.R and A = Ry[vX.R/X].
7. There is only one case: Tconst- Then, A = uX.D and t: D [uX.D/X].
O

1.2 Typechecking Rules

Inference mode is described with = and checking mode is described with <.

o= ICrun ———F~+— TCuui
Avidrz=4 1OV Ao am) Cru AF()<=1 Cunie
Abt; = A — Ay th<= Ay TC AFt=vX.R TC
Attty = Ay AP Abtd = Rg[R/X] Pt
TCPair TCConst
A"(tl,t2)¢A1><A2 A"CtCﬂXD

AFt=A A=C
ArFt<C

TCSWitch

The missing elimination and introduction rules for our types are described
through pattern matching. We thus need to define patterns.

2 Patterns
Patterns p =z | (p1,p2) |cp] ()

Destructor Patterns ¢ :=-|q¢p]|q.d

2.1 Typechecking Rules

Pattern typing always returns a context representing all the variables in the
pattern. The patterns must be linear, that is, a variable appears only once.
There are again two modes for pattern typing. The checking mode, denoted by
A p <« A, follows the checking mode for regular typing. The inference mode,
denoted by A | A+ ¢ = C is a bit more complicated. In this case, both A and
C' are returned. We need to provide the type of the head of the pattern. We
note that [-] acts as a placeholder for the head. [f] means the instantiation of
the head by f.

AFp< D JuX.D/X]

T AFzeA POV AFcpepXs | Ccom
AbpreA; AgbpyeA
— PCum: 1™ N 1 2™ P2 2 PCpair
FO«=1 A1, Ag = (pr1,p2) <= A1 x Ay
PC A|AFg¢=vX.R pC
JAF[]=A4 " ATAF gd= RvX.R/X] TP

PC
AL M |Abgp=C ApP
AS(f)Frg=C AFu<C
|_q[f] o Pattern

Lemma 2 (Inversion lemmas for patterns). The following holds:
1. If Az < Athen A=x: A

IfAF ()< Athen A=-and A=1;

IfArcp< Athen A=pX.D and A+p< D uX.D/X];

e e

If A+ (p1,p2) < A then A = Ay X Ay for some Ay, Ay and there are
Al,Ag such that A = Al,Ag, Al }—pl = A1 and AQ }—pg = Ag;

IfA|AF[]= B then A=-and A= B;

©o

6. If A| At q.d = B then B=R4[vX.R/X]| and A | Ak q=vX.R;

7. If A| AF g p= C then there a type B and contexts Ay and Ay such that
A=A1,Ay, Ay |AFgq= B — C and Ay - p < B;

8. IfF q[f] — u then there is a type C and a context A such that A | 3(f)
qg=Cand A+-u<C.

Proof. All the statements are proved by case analysis on the possible rules al-
lowing us to obtain such derivation.

1. There is only one case: PCvy,,. Thus, A =z : A.
2. There is only one case: PCypjt. Thus, A=1and A = -.

3. There is only one case: PCcopst- Thus, A = puX.D and A F p «
D [uX.D/X].

4. There is only one case: PCpa;,. Thus, A = Ay x Ay for some Ay, As there
is A1, As such that A = A1, Ay and A1 F p; < Ay andAs - py <= As.

5. There is only one case: PCyeaq. Thus, A =B and A = -

6. There is only one case: PCpest. Thus, B = Rg[vX.R/X]and A | AF g =
vX.R.

7. There is only one case: PCapp. Thus, there are A;, Ay and a type B such
that A =A;,Ay and Ay |AFg= B — C and Ay Fp < B.

8. There is only one case: Dpattern. Thus, there is A and C such that
AlE(f)Fg=Cand AFu<=C.

O

3 Pattern Matching

We use the judgment ¢t =’ p \, ¢ to mean that the term ¢ matches with the
pattern p with resulting substitution o. More generally, t =" ¢[f] \, o is used
when it is applied to a function.

——— PMy ——— PMg ——— PMuyuit
t="aNot/e T fETANG T 0="0N T
e="qg\ o €="p\ 0o t="p\.o
P ; PMApp - PMConst
ee ="qgp\, o,0 ct="cp\ o
t:?p \, O t:?p \, O e:?q\a
: - - — 2 2 2 PMpair ————— PMpess
1,t2) =" \P1,P2 01,02 €.a="4g. g
(t1,t2) =" (p1,p2) \ d d\
4 Reductions
e="qlf] \No e e
———dflmu ——
e — ufo] e— ¢
/ A
e1 — €} €2 — €5 e—eé
Rpaj Rpa; ———— R
(el’ 62) N (6/1, 62) Pairl (61, 62) N (el’ 6’2) Pairr ce—c e/ Const
e e e e’ /
Lfl Rappl Lﬂ)/ Rappr —€=€ R
€1 e2 — €] € e1 e2 — eg e e.d—e'.d

5 Subject Reduction

Before proving subject reduction, we need to prove a few results first.

Lemma 3 (Substitution Lemma). If D : AFu:C and & = T F o : A then
F Tk ulo]: C for some F.

Proof. The proof is done by induction on the derivation D :: A+ : C.

Basecase : DAz :CHux: C.
& contains I' - o(z) : C
FuTkzo]:C=TFo(z):C

Base case: D ::m
Tk flo] : Z=TF f:3(f)

Base case: D Ak ():1
F'F(o]:1=TF(:1

Induction step

by assumption.
by definition of substitution.

by Trun and definition of substitution.

by Trun and definition of substitution.

Dy D,
Case D AFt: Al - Ay Aty Ay
At tl tg : A2
D) =T Ftfo]: Ay — Ay by induction hypothesis on D;.
Dy Tk tao]: Ay by induction hypothesis on Ds.
F Tk ty[o] ta|o] : Ag by Tapp-
T'F (t1 t2)[o] : Asg by definition of substitution for the application.

/
Case D :: A-t=vX.R
Ak td= AyR/X]
E T kFtlo]: Ag[R/X]
& :Thrtlold:vX.R
I'ktdo]: vX.R

D1 Dy
Case D ARt <A AFty < Ay

A (tl,tg) < A X Ay
52‘ F"tz[U]Al fori:1,2
E =T F (tio], t2[o]) : A1 x Asg
'k (tl,tg)[()'] : A1 X A2

D/
Case D :: At < A[D/X]
AkFct<puX.D
E T rHtlo]: A]D/X]
& wTketlo]: uX.D
'k (ct)|o]: uX.D

by induction hypothesis on D’.
by TDest~
by definition of substitution.

by induction hypothesis on D;.
by Tpair-
by definition of substitution.

by induction hypothesis on D.
by TConst-

by definition of substitution.
O

Lemma 4. IfD:AbFp< A =T Fe:Aand F s e ="p\, o then
'kFo:A

Proof. The proof is done by induction on the derivation F :: e =" p \, 0.

Base case F:ie=' 2\, e/x.
Diux:Arz < A by inversion on D.
F'ko(z): A by F.

Base case: F:: () =" () \,"
By inversion on D, A = -, so there is nothing to show.

Induction step.
Fi Fa

Case F=e1=p1\ o1 e =" py\, 09
(e1,e2) =" (p1,p2) \L 01,02

D:AF (p1,p2) <= A by assumption.
E:xTF(er,e9): A by assumption.
Di AlelAl fori:1,2
where A = A; X Ay and A = Ay, Ay by inversion on PCpaj,.
E i Thke A fori=1,2 by inversion on Tp,j,.
I'ko; t A; by induction hypothesis on F;.
'k 01,02 : Al,AQ.
‘7'/
Case F:: €="p\, 0

ce="ecp\ o
D:AFcp<A by assumption.
E:Tkce: A by assumption.
D :AFp<DJuX.D/X] and A= puX.D by inversion on PCgopgt-
& =Tte:DfuX.D/X] by inversion on Tconst -
'o:A by induction hypothesis on F”.

O

Lemma 5. If A | X(f)Fq=C,TFe:D ande="q[f] \, o then C = D and
'kFo:A

Proof. The proof is done by induction on the derivations of the pattern match-
ing.

Base case: D= f =" f\,-

Ex|E(HF[]=C by assumption.
E | S(HE=Z() by inversion on PCreaq.
FauT'+f:D by assumption.
F «TkEf:XS(f) by inversion on Tgyp.

Thus, C =D =%(f) and I' - o : A, trivially.

Induction step

D/
Case: D :: e="qg\. o

ed="qd\, o
ExA|E(f)Fqgd=C by assumption.
FuTked:D by assumption.
E A |X(f)Fg=vX.Rand C = Ry[vX.R/X] by inversion on PCpegs.
F' u:Tre:vX.R and D = R)[vX.R'/X] by inversion on Tpegs.
''o:Aand vX.R=vX.R by induction hypothesis on D’.

Thus, R = R’ and so C = D.
D, Do
Case: Due="qg\o ¢ ="p\ o
ee ="qgp\ o0

ExA|E(f)Fgqp=>C by assumption.
E1:A | 2(f)Fg=B—->Cand & :: Ay-p< B

for some type B, and where A = Ay, Ay by inversion on PCapyp.
FuTkee:D by assumption.
FiruTke: D = Dand Fo :T'Fe : D

for some type D’ by inversion on TApp.
B—C=D"—DandTF o:A; by induction hypothesis on Dj, using £; and
Fi.

Thus, B= D" and C =D

I'Fo': Ay by lemma 4 on Dy, &, Fo.

I'ko,o’ : A, Ag
O

Lemma 6 (Correctness of Contraction). IfT'Fe: C, F [f] ¢ — u and e =*
qlf] \\o thenT +ulo] : C.

Dl DQ
Proof. By assumption, we have D :: & | 2(f)Fg=D AFu< D gince it is
Falfl —u

the only rule that could have been used.
By lemma 5, using D; and both assumptions we have that C' = D and
I'F o : A. Then, by substitution lemma and Ds, we conclude that I F u[o] : C.
O

Theorem 7 (Subject Reduction). IfT'Fe: A and e ¢ thenT e : A

Proof. The proof is done by induction on the reduction rules.
D/
Base Case: Du€=' g\, 0
e — ufo]
By assumption, D’ and wellformedness of ¢[f] — u, we obtain from the cor-
rectness of contraction lemma that I' - ufo] : C.

qlf] —w

Induction Step

D/
Case: D:ier e

e — ¢
ExThke: A
ETke: A

D/
Case: D :: el — e}

(e1,e2) — (€], e2)
E:TF(er,e0): A

E Tke:A; wherei=1,2and A= A; x Ay

EuThkel: Ay
'k (6/1,62) : Al X A2
DI
Case: D :: ez — €h

(e1,€2) — (e1,€3)
EuTF (e1,e2): A

E Thke: A wherei=1,2and A= A; x Ay

EhuTheh: As
Fl—(el,eé):Al XA2

D/
!/
Case: D:: €1 —¢€
el e3 — €} ey

ExThele: A

E1u:TkFe:B— A & :TFey: B for some B

Fu:Tkef:B—A
F'keje: A

D/
/
Case: D:: €27 €
€1 ea — €1 €

E:Threle: A

E1:TkFe:B— A E :T'Fey: B for some B

Fu:Tkey:B
Fkeey: A
D/
Case: D:: e—é
ce—ce
ExThkce: A

E wThe:DfuX.D/X]) and A = uX.D

FuTke:D|uX.D/X]
F'kce :uX.D

D/
Case: D:: e— ¢
ed—e.d

by assumption.
by induction hypothesis on D’.

by assumption.

by inversion on Tp,j;.

by induction hypothesis on D’
by TPair'

by assumption.

by inversion on Tp,j;.

by induction hypothesis on D’
by TPair-

by assumption.

by inversion on Tapp.

by induction hypothesis on D’.
by TApp.

by assumption.

by inversion on TApp.

by induction hypothesis on D’.
by TApp.

by assumption.

by inversion on Tconst-

by induction hypothesis on D’.
by Tconst-

E:Tked: A by assumption.

& uTke:vX.Rand A= Ry[vX.R/X] by inversion on Tpegy.
FuTke:vX.R by induction hypothesis on D’.
I'te.d: RylvX.R/X] by Tpest-

O
6 Values

We now define values. We represent them with a new judgment I" -, e : A.
With this judgment, we will often denote e as v to obtain I' -, v : A.
The rules are

Lho:d y Py v: DelpX D/X] Tre:wX.R |
Thyz:A Y™ Th,co:puX.D ™ TF e:vX.R " Hecord
Provi:d; Thov:dy Ihe:A— B

A% air L . A D rrow
P I'kye: A— B Va

m Vunit [y (v1,v9) 0 A X Ay
We also have some inversion lemmas for values.
Lemma 8. The following hold for v # x.
1. If Tk, v Ay X Ay thenv = (v1,v2), D'y v1 0 Ay and Tk, v 1 Ag;
2. IfT'kFyv:1 thenv = ();
3. IfTH,v:uX.D thenv=cv and T ' : D JuX.D/X].

Proof. All the statements are proved by case analysis on the rules for values.

1. The only possible case is Vpai;. Thus, v = (v1,v9) for some vy, ve and
I'kyvi i A and Ty v 0 Ao

2. The only possible case is Vypit. Thus, v = ().

3. The only possible case is Voonst. Thus, v = ¢ v’ for some v/ and T -, v :
D [uX.D/X].

O

7 Coverage

We introduce a judgment to indicate that a series of patterns cover a given type.
The goal is to prove that if a series of patterns cover a given type and that we
have a term of that type, then this term will match against one of the patterns.
The judgment is A< (A1 F p1)... (A, F pp), or for convenience, A < AF por
A< P.

We introduce the following rules

A<dP (A,z:pX.DFp(z))
A<dP (A,z: D JuX.D/X]+ plc x))een

CVar CConst

Ad(x: AFx)

A<dP (Az:1F p(x)) AP (A,z: A x Ay b p())
AaB (AFp0)) M AaP (A,ar: Aras : As b plan,)

CPair

We note that the rules are used non-deterministically since they imply choosing
a pattern among the list we currently have.
We want to prove the following

Theorem 9. IfD:: A< (A1 Fp1)...(AnbFpp) and € :: by, v A, then there is
an i such that v="1p; \, 0.

Before proving those, we will need a few lemmas.

Lemma 10. If D Az : Ay x Ay Fp(a) < C, E by v:C and F v =’
p(z) \, o then A,z : Aj,xo 0 Ag F p(x1,12) <= O, v =" p(x1,12) \, 0’ and
o =o'z (0'(x1),0'(22))]
Proof. The proof is done by induction on F.

Base Case F v =2 \,v/x

DuAzx: A x A bxz<=C by assumption.
C=A; x Ay and A =- by inversion on PCya,.
D;x;: AjFx<=A; fori=1,2 by PCvar
D Xy - Al,mg : AQ H (.’171,,(62) = Al X A2 by PCpair
Eubky,v:i Al x Ay by assumption.
E1 by A, & i by vgt Ao, and v = (v, ve) for some vi,v2 by lemma 8
Fivvg =" 1 \ vi/a; fori =1,2 by PMv.r.
f/ . (’1)1,'[}2) =7 ($1,$2) \ U1/£E1,U2/.’E2 by PMPair~

F' v =" (21,22) \, 0/ where
o(xz) =v = (v1,v2) = (¢'(x1),0'(x2)) and o(y) = o'(y) for y # x.

Induction step
F1 Fa
Case F 01 =" pi(x) \\o1 vy ="py \ 02
(v1,v2) =’ (p1(x),p2) \ 01,02
Without loss of generality, we chose x to be in p;. The proof is the same for
z in py with 1 and 2 swapped.

D:Ajx: A X Ay b (pr(x),pe) = C by assumption.
Dy :: Ahl’ i Ay x Ag Fpl(l‘) = Cl, Dy 1 Ay sz <= (Cy

where A = Ay, Ay and C' = Cy x Cy by inversion on PCpaj;.
E iy (v1,v2) 1 C1 X Cy by assumption.
Ei by G by inversion on Tp,j;.

Di Ay Az A b pr(z, 22) < Oy,
Fl oy =" pr(x, 22) \, 0}, and
o1 = oz — (o) (1), 0] (22))] by induction hypothesis on Dy, £ and Fj.

10

DAy, A717$2 1 Ag, Ao (pi(zr, 22),p2) = Cp x Cy by PCpajr-
F' (v, v2) =" (pr(21,22),p2) \ 01,02 by PMpa;;-
f/
Case F:: U =" p(r) \ o
cv="cplx)\L o

DuAx:A xAybkeplx)<=C by assumption.
D Ajx: Al x Ay b p(x) < D [nX.D/X)]

and C' = puX.D for some D by inversion on PCgopst-
Eubycv:puX.D by assumption.
E bk, v: D JuX.D/X] by inversion on Tconst -

D" Ajxy: Ay wg s Ag b p(a, 22) <= De[uX.D/X],
F'" v =" p(wy,20) \, 0, and
o(z) = (0'(x1),0'(22)) and o (y) = o' (y)

fory #x by induction hypothesis on D’, £ and F'.
Aazl : A17:172 : A2 Fe p(l'l,diz) ~ IU‘XD by PCConst-
C’U:? Cp(xth) \0/ by PMConst~

O

Lemma 11. If D :: Az : uX.DFp(z) € C, € =, v:C and F = v =’
p(x) \, o then there is a ¢ € D such that A,z’ : D [uX.D/X] F p(c z) < C,
7 / / _ 1l
v="plcz’)\ o and o =o'[x — c o'(2)].
Proof. The proof is done by induction on F.
Base Case F v =" 2 \,v/z

DuAzx:pX.DFx<=C by assumption.
C=pX.Dand A =- by inversion on PCya,.
D' o' D fuX.D/X]F o' < D [uX.D/X] by PCvyar
D" 2’ : D JuX.D/X]|Fca’ < uX.D by PCconst-
Eubyv:puX.D by assumption.
E by v DfpuX.D/X] and v = ¢ V'

for some v’ and some ¢ € D by lemma 8.
N N AN by PMysr.
F''uev =M e \ ' /2! by PMconst-

F'" v ="ca' \, o where
olx)=v=cv' =co'(2)) and o(y) = o' (y) for y # .

Induction step
F1 Fo
Case F = v1 = pi(x) \ o1 vy ="py \, 09
(v1, v2) =! (p1(2),p2) \ 01,02
Without loss of generality, we chose x to be in p;. The proof is the same for
x in po with 1 and 2 swapped.

D:Ajx:uX.DF (pi(z),p2) <= C by assumption.
Dl b A17£L' : ,uXD |—p1({1,‘) <~ Ch D2 o Ag |—p2 = 02
where A = Ay, Ag and C = C x Cy by inversion on PCpaj;.

11

E i hy (v1,v2) 1 C1 x Cy by assumption.
Ei by G by inversion on Tp,j;.
Di::Ay,2’ : D JuX.D]F pi(c 2’) < Cy for some ¢ € D,

Fi v =" pi(ca’) \, o}, and

o1 = oyl — cop(a)) by induction hypothesis on Dy, £ and F.

D' Ay, 2’ De[uX.D),As b (p1(c '), p2) <= Cy x Cy by PCpair.

F' i (vg,v2) =7 (pr(e 2'),p2) \ 0}, 02 by PMpa;,-
f/

Case F . v="px) \ 0o
dv="¢cplx)\L o

D:Ajzx:puX.DF p(x)<=C by assumption.
D Ajx:pX.DEplx) < So[pX.S/X)

and C' = pX.S for some S by inversion on PCgopst-
Eubydv:iuX.S by assumption.
E by v So[pX.S/X] by inversion on Tcopst-

D" A2’ : D uX.D/X]F p(c ') < S [nX.S/X],
F'" v ="plca’)\, o', and

o(x) =0o'[v v co'(a) by induction hypothesis on D’, £ and F'.
Az’ DJuX.D/X|F ple ') < pX.S by PCconst-
dv="¢cplca’)\ o by PMconst-

O

Lemma 12. If D Az:1Fpz) = C,ExFyv:C and F v ="px)\ o
then A p() <= C,v="p() Lo’ and o0 = o'[z + ()]

Proof. The proof is done by induction on F.
Base Case F v ="\, v/

D:Ax:1Fzx<=C by assumption.
C=1land A=- by inversion on PCy,;.
D:k()<=1 by PCunit.
Eukyv:l by assumption.
v=() by lemma 8.
.7:/21 () =7 ()\ by PMUnit-
() =" () \, o’ where

Induction step
F1 Fa
Case F =01 = pi(z) \Lo1 v ="ps\ 02
(v1,v2) =7 (p1(2),p2) \ 01,02
Without loss of generality, we chose x to be in p;. The proof is the same for
z in py with 1 and 2 swapped.

D:uAjz:1F (pi(x),p2) = C by assumption.
Dy :: A17$ 01 }_pl(if) = Cl, Dy s Ay "pg <= Cy
where A = Ay, Ag and C = C x Cy by inversion on PCpaj;.

12

E i hy (v1,v2) 1 C1 x Cy by assumption.
Ei by G by inversion on Tp,j;.
Di AL Fpi() < Ch,

Fl o =" pi() \L o}, and

o1(z) = () and 01(y) = o1 (y)

for all y # by induction hypothesis on D, & and Fj.

D' Ay, Ag - gp1(,p2) <= Cp x Oy by PCpair.

F'u(vi,02) =" (p1(),p2) \ 01,02 by PMpaj,.
‘7_‘/

Case F:: v=plx)\o
cv="cplr)\L o

D:Ajx:lbeplax)<=C by assumption.
D Ajx:1kplx) < D JuX.D/X]

and C' = puX.D for some D by inversion on PCgopst-
Eubycv:puX.D by assumption.
& by v: D [uX.D/X] by inversion on Tgonst.

D" AF p() < DouX.D/X),
F'" v ="p()\, o, and
o(z) = () and o(y) = o’ (y)

fory #x by induction hypothesis on D', £ and F'.
At cp(2) < uX.D by PCconst-
cv =" c p() \l o’ by PMConst'

O

Proof (Theorem 9). The proof is done by induction of the derivation of D.

Base case D:: A< (z: AF x)
Eubyv: A by assumption.
v="1\, v/r by PMvar.

Induction step.
’D/
Case D :: AQﬁ(AawiAIXA2FP($))
AP (Ayay: Ay, mg : Ag b p(x1, 22))

Eubyv: A by assumption.
By induction hypothesis, v matches a pattern out of P (A,z: Ay X As F p(x)).
If it matches a pattern in]3, we are done. Thus,
Fuv="plx)\ o without loss of generality.
v ="p(x1,z2) \, 0’ where
o = o'lv (0" (@1)0" (22))]

and Ajxy : A, 20t As Fp(z,20) < A by lemma 10.
D/
Case D :: AaP (A,z: pX.DF p(x))

A<dP (A,z: D JuX.D/X)F p(cx)|ce D)

13

Eubky,v: A . by assumption.
By induction hypothesis, v matches a pattern out of P (A,z : pX.D F p(z)). If
it matches a pattern in P, we are done. Thus,
Fuv="plx)\ o without loss of generality.
v ="p(cz)\, o for some c € D where
o=c[x— cd(z)],
and Az : D JuX.D/X]|Fplcx)<= A by lemma 11.
D/
Case D :: AaP (A,z:1F p(x))
A<aP (AFp()
Eukyv: A . by assumption.
By induction hypothesis, v matches a pattern out of P (A,z : 1+ p(x)). If it
matches a pattern in P, we are done. Thus,

Fuv="plx)\ o without loss of generality.

v="p() \, o where

olz (),

and AFp() <= A by lemma 12.
O

8 Evaluation Context

Before we dive in the definition of an evaluation context, we need to have a closer
look to the semantics of functions symbols. We have a judgment Rules(f) =
{(¢i,€:)i=1,...n} where F ¢;[f] — e; for all i = 1,...,n and such that if ¢ # ¢;
for all 4 then I/ ¢[f] — e for any e. Rules(f) thus defines all possible patterns
for f.

An evaluation context is an expression of the following form.

Evaluation Context F:=-|FEe|E.d

We say that £ =" ¢ \, ¢ if E[f] =" ¢[f] \\ 0. Then, if Rules(f)(q) = e,
E[f] — e[o]. We can also compose evaluation contexts such as E; = Ex[E][]]
Then Ei[f] — Esle[o]]. We have a judgment for typing evaluation context.
I' A+ E : C where A represents the type of f in E[f]. The rules are the
following.

I'|A+E:vX.R
T|AF Ed: RyvX.R/X]

ETHead ETDest

'NAkF-: A
'AFE:B—C Tte:B
'AFFEe:C
We also have another judgment I' | A F, E : C to denote evaluations
contexts applied to values. The rules are very much the same.

I'NAk, E:vX.R
T|AF, Ed: RivX.R/X]

ET app

EVHead

F|Ab, : A EVDest

14

A+, E:B—C T'k,v:B
Ak, Ev:C

EVapp

Lemma 13 (Composition of contexts). If DT | A+ E;:Band £ T | Bl
E2 : C, then T' | Al EQ[El[H :C

Proof. The proof is done by induction on &.
Basecase £ :T' | BF-: B Then C=BandT | AF - [Ey[]]: C.

Induction step
1 52
Caseg::F|B}_E2:D—)C I'te:D
T [BFEye:C
By induction hypothesis on &, we have I' | A + Es[E;[]] : D — C. Thus,
I'| AF Es]Ei[]] e: C by ETapp.
5/
Case & :: I'BFE;:vX.R
I'| BF Es.d: Ry[lvX.R/X]
By induction hypothesis on £, we have I' | AF E3[Eq[]] : vX.R. ThusT' | A+
EsE1[]]d : R[vX.R/X] by ETpess.

O

There is a similar version for values. The proof being the very same, we will
not do it.

Lemma 14 (Composition of contexts (values)). IfT' | A+, Ey : B and T |
B Fv E2 : C, then Fl | A Fq, EQ[El[]] :C

We now prove the following that will be needed later.

Lemma 15. If D =T | B —-CF, E: D and E # - then E = E'[- v] with
F'tyv:BandT|CH, E': D.

Proof. The proof is done by induction on the derivation D.
Dl Dg
Basecase D::I'|B—Cht,-:B—C T'k,v:B

'B—Chty-v:C
The statement holds by letting E' = -.

Base case D ::T' | B—Ct, -.d: D
The only derivation that allows to obtain D is EVpes; and this would imply
that vX.R = B — C for some R which is impossible.

Induction step.

For both cases, we assume that E # -. Otherwise, we get back to the two
base cases.

15

D, Dy
Case D:I'|B—-Cr,E:D' —-D Tk,v:D
''B—CkF,Ev:D

E = E'[v/] with
£ :T|Cr, E': D' — D and

Es Tk, v :B by induction hypothesis on D;.
Ex:T|CrH, E'v:D by EVapp.
D/
Case D : 'B—Cr, E:vX.R

I''B—Cht, Ed: Ry[vX.R/X]
E = E'[- v] with
& T |CH, E':vX.R and

EuT'FH,v: B by induction hypothesis on D’.
ExT|Chy E'd: RglvX.R/X] by EVpest-
O

Lemma 16. If D = T | vX.R+, E : D and E # - then E = E'[-.d] with
| RyvX.R/X] o E': D.

Proof. The proof is done by induction on the derivation D.

Base case D =:T' | v X.Rb,-v:D
This case is also impossible as the only rule that can be applied to obtain D is
EVapp and this would require us to have D’ — D = vX.R for some D’ which
is impossible.

I'|vX.Rt, vX.R

' vX.Rb, -d: Rg[vX.R/X]
The statement holds by setting £/ = -.

Base case D ::

Induction step.
For both cases, we assume that F # .. Otherwise, we get back to the two

base cases.
D Do

1
CaseD;;F‘l/X.R}_,UEZDI—)D FI—UU;D/
I'vX.Rky, Ev:D

E = E'[-.d] with

& T | RyvX.R/X|ky E': D' — D by induction hypothesis on Dj.
EuT | RyvX.R/X|F, E' v:D by EV app.
D/
Case D :: ' vX.Rt, E:vX.R

T [vX.RF, Ed : R, [vX.R/X]
E = E'[-.d] with
& =T | RyvX.R/X]|F, E' : vX.R by induction hypothesis on D’.
€T | RyvX.R/X|F, E'd : R, [vX.R'/X] by EVpest-

16

9 Copattern Coverage

We have a different judgment than the one for coverage in the case of copattern.
It is the following A < | (A F ¢ = C) or, more generally, A <| Q where
Q = (A F ¢ < Cy)iz1...n. The meaning behind this judgment is that C is
covered by a list of patterns satisfying the judgments A; | A - ¢; = C;. The

rules are the following.

A <] Q@ (AFQ=ve.R)
Aq|(F-= A CChead 7 4| @ (A q.d = RyvX.R/X))aer

CCDcst

A<|Q(AFq¢=B—C) B<a(AitFp)imy
A <|Q(A7Aikqpiéc)

Theorem 17. IfD::- |AF, E:D and £ = A <| (AjF g = Ci)i=1,...n but
not =, E[f] : D then there are E1, Ey such that E = Ey[Fs[]], Fs =" ¢ \, o
for somei, - | Aby, Ey: C; and - | C; by, By 2 D.

Proof. This is proved by induction on &.

Base case £ 1 A <| (-F-= A)
Choose Ey = E, Ey = -. Then, Ey =" -\ -.

Induction Step.
A<|Q(AFg=B—C) Ba(AiFpii=1,.n

A4l G (AAFgp = Ci=1,...n

By induction hypothesis, the statement holds for one of the patterns in
Q (AF qg= B — (C). If the pattern has been chosen in @ we are done. Thus,
without loss of generality, E = Ey[Es[]], - | Ay E2: B—C,-|B —CF,
E,:D,and Ey =" ¢\, 0.

If By = -then D = B — C and I, E[f] : D holds, which is a contradiction to
our assumptions. If Ey # -, then F; = Fy[- v] with-F, v: Band-|CtF, E] : D
by lemma 15.

Since B < (A; F p;), there is a p; with v =7 p; \, p by theorem 9. Thus,
Ey=FEyv, Al Ey: C by EVapp, and E5 =7 q p; \, 0, p by PMapp.

Case € ::

A 4| G (AFq¢=vX.R)
A a| G (AF qd= RyvX.R/X))acr
By induction hypothesis, the statement holds for one of the patterns in
Q (A '+ ¢ = vX.R). If the pattern has been chosen in C,j we are done. Thus,
without loss of generality, E' = E1[Eo[]],- | Aty B2 : vX.R, - |vX. Rty Er 2 D,
and By =" ¢ \, 0.

Case € ::

17

If Ey =- then D = vX.R and b, E[f] : D holds, contradicting our assump-
tion. Thus Fy # - and, by lemma 16, £y = E}[-.d] with - | R4[vX.R/X]| F, E} :
D.

O

10 Progress

Before stating and proving the progress theorem, we need to prove the decom-
position theorem.

Lemma 18 (Decomposition Theorem). If -+ e: A then either
1.e=(),A=1,

e=(e,e2), A= A1 X As,

e=ce,A=uX.D,

™ e e

e = Es[Eq[f] €] where - =, By : B—C, - |CFEy: A andt/, e : B for
some evaluation contexts E1, Eo, some term €' and some types B, C.

5. e=E[fland - |Z(f)F, E: A

Proof. The proof is done by induction on e.
Case - z : A is impossible as the term is closed.

Case - f : A matches with case 5 with £ = - since we trivially have
AR, B A

Case F () : A. Then A =1 by inversion.
Case - (e1,e2) : A. Then, A = A; X As by inversion.
Case Fce: A. Then, A = pX.D by inversion.

Case F e1 es : A. Then by inversion F e; : B — A and F e : B. By induc-
tion hypothesis e; = E[f] with - | X(f) i, E : A for some E or e; = Es[E1[f] €]
for some Fi, Es, and €’ where - |, E; : B—C,-|CF Ey: Aand t/, ¢ : B,
as the 3 other cases are impossible. In the former case, if £, es : B, we can
obtain case 4 by letting E2 = - and E = FE;. This gives us ej e; = -[F[f] eg]. If
Fy e2 @ B, then, by EVapp, - | B(f) by E[f] e2 : A and E' = E ey. In the latter
case, we have Fy[E1[f] €'] ea = F4[E1[f] €] by setting Fs[] ea = Eb[].

Case F e.d : A. Then by inversion, - e : vX.R for some R. By induction
hypothesis, e = E[f] and - | £(f) by E : vX.R, or e = Ex[E1[f] €'] where ¢
is not a value. In the former care, e.d = E[f].d = F’'[f] and - | 2(f) F, E.d :
R4[vX.R/X] by EVpest. In the latter case, e.d = Ex[F1[f] €'].d = E{[E1[f] €].

O

18

From now on, we assume that the rules of every function f we use cover
X(f), more specifically, X(f) <| (A; F ¢; = C;)i=1,...,n where ¢; € Rules(f) and
for all ¢ # g; for all ¢ ¢ & Rules(f). We will denote this X(f) <| Rules(f).

Theorem 19. If D ::te: A then either -, e: A or e — €' for some €

Proof. The proof is done by induction on e. By the decomposition theorem, we
have four possible cases.
Base case e = (), A =1. Then F, () : 1 by Vya,.

Induction step

Case e = (e1,e2), A = A1 X As.
By inversion on Tp,;,, we have - e; : A; and F e : As. By induction hypothesis,
either F, e; : Ay or ey — ¢}. In the latter case, we obtain (e, es) — (€}, e2) by
RPair~

In the former case, we apply induction hypothesis on es; to obtain either
by €2 @ Ay or ea — eb. In the former case, we obtain b, (e1,e2) : A1 x Az by
Vpair- In the latter case, we have (e, e3) — (e1, €5) by Rpair-

Casee=ce', A= puX.D.
By inversion on Tconst, we have e’ : D.[uX.D/X]. By induction hypothesis,
either F, ¢’ : D.[uX.D/X] or ¢ — €”. In the former case, i, ¢ ¢ : uX.D by
Vconst- In the latter case, ¢ ¢ — ¢ €” by Rconst-

Case e = E3[Eq[f] €'] where €’ is not a value.
Then, by induction hypothesis ¢/ — e” for some e’ and so Ey[Ei[f] €] —
Es[Er[f] €],

Case e = E[f] and - | X(f) Fy E : A.

If b, E[f] : A then we are done. Without loss of generality, we assume it is
not the case. By our assumption on f, ¥(f) <| Rules(f). Thus we can apply
theorem 17 and obtain Ej, E; such that E = E;[Es[]], By =7 ¢; \, ¢ for some
g; € Rules(f), - | 2(f) F Ey : C; and - | C; b, Ey : A. Thus, by our reduction
rules Eo[f] — wu;[o] where (¢;,u;) € Rules(f) and so E3[f] — u;[c]. We conclude
that El [E2 [f” — E1 [uz [O’]]

O

19

