
A Core Calculus for Covering Copatterns

David Thibodeau, Andreas Abel

1 August 2012

1 Terms and Types

Types A,B,C ::= D (Inductive data type) | R (Coinductive record type) |
A→ B | A×B | 1

Datatype D = c1 A1 | · · · | cn An where ci : Ai → D. More precisely,
D = µX. 〈c1A1| . . . |cnAn〉 where ci = Ai[D/X]→ D.

Recordtype R = {d1 : A1, . . . dn : An} where di : R → Ai. More precisely,
R = νY.{d1 : A1, . . . , dn : An} where di : R→ Ai[R/Y].

Terms t, s ::= f (Functions) | x (Variables) | t1 t2 | c t | t.d | (t1, t2) | ()

1.1 Typing Rules

∆, x : A ` x : A
TVar ∆ ` f : Σ(f)

TFun ∆ ` () : 1
TUnit

∆ ` t1 : A1 → A2 ∆ ` t2 : A1

∆ ` t1 t2 : A2
TApp

∆ ` t : νX.R
∆ ` t.d : Rd[νX.R/X]

TDest

∆ ` t1 : A1 ∆ ` t2 : A2

∆ ` (t1, t2) : A1 ×A2
TPair

∆ ` t : Dc[µX.D/X]
∆ ` c t : µX.D

TConst

We note that Σ(f) is the type of f as defined in the signature Σ, a global
predefined context.

Lemma 1 (Inversion lemmas for typing). The following holds:

1. If ∆ ` x : A, then ∆ = ∆′, x : A for some ∆′;

2. If ∆ ` f : A, then A = Σ(f);

3. If ∆ ` () : A, then A = 1;

4. If ∆ ` t1 t2 : A, then there is a type B such that ∆ ` t1 : B → A and
∆ ` t2 : B;

1

5. If ∆ ` (t1, t2) : A, then A = A1 × A2 for some A1, A2 and ∆ ` t1 : A1

and ∆ ` t2 : A2;

6. If ∆ ` t.d : A, then A = Rd[νX.R/X] and ∆ ` t : νX.R;

7. If ∆ ` c t : A, then A = µX.D and ∆ ` t : Dc[µX.D/X].

Proof. All the statements are proved by case analysis on the derivation rule.

1. There is only one case: TVar. Then, ∆ = ∆′, x : A.

2. There is only one case: TFun. Then, A = Σ(f).

3. There is only one case: TUnit. Then, A = 1.

4. There is only one case: TApp. Then, there must be a type A1 such that
∆ ` t1 : A1 → A2 and ∆ ` t2A1.

5. There is only one case: TPair. Then, A = A1 × A2 and we have that
∆ ` t1 : A1 and ∆ ` t2 : A2.

6. There is only one case: TDest. Then ∆ ` t : νX.R and A = Rd[νX.R/X].

7. There is only one case: TConst. Then, A = µX.D and t : Dc[µX.D/X].

1.2 Typechecking Rules

Inference mode is described with ⇒ and checking mode is described with ⇐.

∆, x : A ` x⇒ A
TCVar ∆ ` f ⇒ Σ(F)

TCFun ∆ ` ()⇐ 1
TCUnit

∆ ` t1 ⇒ A1 → A2 t2 ⇐ A1

∆ ` t1 t2 ⇒ A2
TCApp

∆ ` t⇒ νX.R
∆ ` t.d⇒ Rd[R/X]

TCDest

∆ ` t1 ⇐ A1 ∆ ` t2 ⇐ A2

∆ ` (t1, t2)⇐ A1 ×A2
TCPair

∆ ` t⇐ Dc[D/X]
∆ ` c t⇐ µX.D

TCConst

∆ ` t⇒ A A = C
∆ ` t⇐ C

TCSwitch

The missing elimination and introduction rules for our types are described
through pattern matching. We thus need to define patterns.

2 Patterns

Patterns p ::= x | (p1, p2) | c p | ()

Destructor Patterns q ::= · | q p | q.d

2

2.1 Typechecking Rules

Pattern typing always returns a context representing all the variables in the
pattern. The patterns must be linear, that is, a variable appears only once.
There are again two modes for pattern typing. The checking mode, denoted by
∆ ` p⇐ A, follows the checking mode for regular typing. The inference mode,
denoted by ∆ | A ` q ⇒ C is a bit more complicated. In this case, both ∆ and
C are returned. We need to provide the type of the head of the pattern. We
note that [·] acts as a placeholder for the head. [f] means the instantiation of
the head by f .

x : A ` x⇐ A
PCVar

∆ ` p⇐ Dc[µX.D/X]
∆ ` c p⇐ µX.S

PCConst

` ()⇐ 1
PCUnit

∆1 ` p1 ⇐ A1 ∆2 ` p2 ⇐ A2

∆1,∆2 ` (p1, p2)⇐ A1 ×A2
PCPair

· | A ` [·]⇒ A
PCHead

∆ | A ` q ⇒ νX.R

∆ | A ` q.d⇒ Rd[νX.R/X]
PCDest

∆1 | A ` q ⇒ B → C ∆2 ` p⇐ B

∆1,∆2 | A ` q p⇒ C
PCApp

∆ | Σ(f) ` q ⇒ C ∆ ` u⇐ C

` q[f]→ u
DPattern

Lemma 2 (Inversion lemmas for patterns). The following holds:

1. If ∆ ` x⇐ A then ∆ = x : A;

2. If ∆ ` ()⇐ A then ∆ = · and A = 1;

3. If ∆ ` c p⇐ A then A = µX.D and ∆ ` p⇐ Dc[µX.D/X];

4. If ∆ ` (p1, p2) ⇐ A then A = A1 × A2 for some A1, A2 and there are
∆1,∆2 such that ∆ = ∆1,∆2, ∆1 ` p1 ⇐ A1 and ∆2 ` p2 ⇐ A2;

5. If ∆ | A ` [·]⇒ B then ∆ = · and A = B;

6. If ∆ | A ` q.d⇒ B then B = Rd[νX.R/X] and ∆ | A ` q ⇒ νX.R;

7. If ∆ | A ` q p⇒ C then there a type B and contexts ∆1 and ∆2 such that
∆ = ∆1,∆2, ∆1 | A ` q ⇒ B → C and ∆2 ` p⇐ B;

8. If ` q[f]→ u then there is a type C and a context ∆ such that ∆ | Σ(f) `
q ⇒ C and ∆ ` u⇐ C.

Proof. All the statements are proved by case analysis on the possible rules al-
lowing us to obtain such derivation.

3

1. There is only one case: PCVar. Thus, ∆ = x : A.

2. There is only one case: PCUnit. Thus, A = 1 and ∆ = ·.

3. There is only one case: PCConst. Thus, A = µX.D and ∆ ` p ⇐
Dc[µX.D/X].

4. There is only one case: PCPair. Thus, A = A1×A2 for some A1, A2 there
is ∆1,∆2 such that ∆ = ∆1,∆2 and ∆1 ` p1 ⇐ A1 and∆2 ` p2 ⇐ A2.

5. There is only one case: PCHead. Thus, A = B and ∆ = ·.

6. There is only one case: PCDest. Thus, B = Rd[νX.R/X] and ∆ | A ` q ⇒
νX.R.

7. There is only one case: PCApp. Thus, there are ∆1,∆2 and a type B such
that ∆ = ∆1,∆2 and ∆1 | A ` q ⇒ B → C and ∆2 ` p⇐ B.

8. There is only one case: DPattern. Thus, there is ∆ and C such that
∆ | Σ(f) ` q ⇒ C and ∆ ` u⇐ C.

3 Pattern Matching

We use the judgment t =? p ↘ σ to mean that the term t matches with the
pattern p with resulting substitution σ. More generally, t =? q[f] ↘ σ is used
when it is applied to a function.

t =? x↘ t/x
PMVar

f =? f ↘ ·
PMFun

() =? ()↘ ·
PMUnit

e =? q ↘ σ e′ =? p↘ σ′

e e′ =? q p↘ σ, σ′
PMApp

t =? p↘ σ

c t =? c p↘ σ
PMConst

t1 =? p1 ↘ σ1 t2 =? p2 ↘ σ2

(t1, t2) =? (p1, p2)↘ σ1, σ2

PMPair
e =? q ↘ σ

e.d =? q.d↘ σ
PMDest

4 Reductions

e =? q[f]↘ σ

e 7→ u[σ]
q[f]→ u e 7→ e′

e→ e′

e1 → e′1
(e1, e2)→ (e′1, e2)

RPairl

e2 → e′2
(e1, e2)→ (e1, e′2)

RPairr
e→ e′

c e→ c e′
RConst

e1 → e′1
e1 e2 → e′1 e2

RAppl
e2 → e′2

e1 e2 → e1 e
′
2

RAppr
e→ e′

e.d→ e′.d
RDest

4

5 Subject Reduction

Before proving subject reduction, we need to prove a few results first.

Lemma 3 (Substitution Lemma). If D :: ∆ ` u : C and E :: Γ ` σ : ∆ then
F :: Γ ` u[σ] : C for some F .

Proof. The proof is done by induction on the derivation D :: ∆ ` u : C.
Base case : D :: ∆′, x : C ` x : C.

E contains Γ ` σ(x) : C by assumption.
F :: Γ ` x[σ] : C = Γ ` σ(x) : C by definition of substitution.

Base case: D :: ∆ ` f : Σ(f)
Γ ` f [σ] : Σ = Γ ` f : Σ(f) by TFun and definition of substitution.

Base case: D :: ∆ ` () : 1
Γ ` ()[σ] : 1 = Γ ` () : 1 by TFun and definition of substitution.

Induction step

Case D ::
D1

∆ ` t1 : A1 → A2

D2

∆ ` t2 : A1

∆ ` t1 t2 : A2
D′1 :: Γ ` t1[σ] : A1 → A2 by induction hypothesis on D1.
D′2 :: Γ ` t2[σ] : A1 by induction hypothesis on D2.
F :: Γ ` t1[σ] t2[σ] : A2 by TApp.
Γ ` (t1 t2)[σ] : A2 by definition of substitution for the application.

Case D ::
D′

∆ ` t⇒ νX.R
∆ ` t.d⇒ Ad[R/X]

E :: Γ ` t[σ] : Ad[R/X] by induction hypothesis on D′.
E ′ :: Γ ` t[σ].d : νX.R by TDest.
Γ ` t.d[σ] : νX.R by definition of substitution.

Case D ::
D1

∆ ` t1 ⇐ A1

D2

∆ ` t2 ⇐ A2

∆ ` (t1, t2)⇐ A1 ×A2

Ei :: Γ ` ti[σ] : Ai for i = 1, 2 by induction hypothesis on Di.
E :: Γ ` (t1[σ], t2[σ]) : A1 ×A2 by TPair.
Γ ` (t1, t2)[σ] : A1 ×A2 by definition of substitution.

Case D ::
D′

∆ ` t⇐ Ac[D/X]
∆ ` c t⇐ µX.D

E :: Γ ` t[σ] : Ac[D/X] by induction hypothesis on D.
E ′ :: Γ ` c t[σ] : µX.D by TConst.
Γ ` (c t)[σ] : µX.D by definition of substitution.

5

Lemma 4. If D :: ∆ ` p ⇐ A, E :: Γ ` e : A and F :: e =? p ↘ σ then
Γ ` σ : ∆

Proof. The proof is done by induction on the derivation F :: e =? p↘ σ.

Base case F :: e =? x↘ e/x.
D′ :: x : A ` x⇐ A by inversion on D.
Γ ` σ(x) : A by F .

Base case: F :: () =? ()↘ ·
By inversion on D, ∆ = ·, so there is nothing to show.

Induction step.

Case F ::
F1

e1 =? p1 ↘ σ1

F2

e2 =? p2 ↘ σ2

(e1, e2) =? (p1, p2)↘ σ1, σ2

D :: ∆ ` (p1, p2)⇐ A by assumption.
E :: Γ ` (e1, e2) : A by assumption.
Di :: ∆i ` pi : Ai for i = 1, 2
where A = Ai ×A2 and ∆ = ∆1,∆2 by inversion on PCPair.
Ei :: Γ ` ei : Ai for i = 1, 2 by inversion on TPair.
Γ ` σi : ∆i by induction hypothesis on Fi.
Γ ` σ1, σ2 : ∆1,∆2.

Case F ::
F ′

e =? p↘ σ

c e =? c p↘ σ
D :: ∆ ` c p⇐ A by assumption.
E :: Γ ` c e : A by assumption.
D′ :: ∆ ` p⇐ Dc[µX.D/X] and A = µX.D by inversion on PCConst.
E ′ = Γ ` e : Dc[µX.D/X] by inversion on TConst.
Γ ` σ : ∆ by induction hypothesis on F ′.

Lemma 5. If ∆ | Σ(f) ` q ⇒ C, Γ ` e : D and e =? q[f]↘ σ then C = D and
Γ ` σ : ∆

Proof. The proof is done by induction on the derivations of the pattern match-
ing.

Base case: D :: f =? f ↘ ·
E :: · | Σ(f) ` [·]⇒ C by assumption.
E ′ :: · | Σ(f) ` [·]⇒ Σ(f) by inversion on PCHead.
F :: Γ ` f : D by assumption.
F ′ :: Γ ` f : Σ(f) by inversion on TFun.
Thus, C = D = Σ(f) and Γ ` σ : ∆, trivially.

Induction step

6

Case: D ::
D′

e =? q ↘ σ

e.d =? q.d↘ σ
E :: ∆ | Σ(f) ` q.d⇒ C by assumption.
F :: Γ ` e.d : D by assumption.
E ′ :: ∆ | Σ(f) ` q ⇒ νX.R and C = Rd[νX.R/X] by inversion on PCDest.
F ′ :: Γ ` e : νX.R′ and D = R′d[νX.R′/X] by inversion on TDest.
Γ ` σ : ∆ and νX.R = νX.R′ by induction hypothesis on D′.
Thus, R = R′ and so C = D.

Case : D ::
D1

e =? q ↘ σ
D2

e′ =? p↘ σ′

e e′ =? q p↘ σ, σ′

E :: ∆ | Σ(f) ` q p⇒ C by assumption.
E1 :: ∆1 | Σ(f) ` q ⇒ B → C and E2 :: ∆2 ` p⇐ B
for some type B, and where ∆ = ∆1,∆2 by inversion on PCApp.
F :: Γ ` e e′ : D by assumption.
F1 :: Γ ` e : D′ → D and F2 :: Γ ` e′ : D′

for some type D′ by inversion on TApp.
B → C = D′ → D and Γ ` σ : ∆1 by induction hypothesis on D1, using E1 and
F1.
Thus, B = D′ and C = D
Γ ` σ′ : ∆2 by lemma 4 on D2, E2, F2.
Γ ` σ, σ′ : ∆1,∆2

Lemma 6 (Correctness of Contraction). If Γ ` e : C, ` [f] q → u and e =?

q[f]↘ σ then Γ ` u[σ] : C.

Proof. By assumption, we have D ::
D1

∆ | Σ(f) ` q ⇒ D
D2

∆ ` u⇐ D

` q[f]→ u
since it is

the only rule that could have been used.
By lemma 5, using D1 and both assumptions we have that C = D and

Γ ` σ : ∆. Then, by substitution lemma and D2, we conclude that Γ ` u[σ] : C.

Theorem 7 (Subject Reduction). If Γ ` e : A and e 7→ e′ then Γ ` e′ : A

Proof. The proof is done by induction on the reduction rules.

Base Case : D ::
D′

e =? q ↘ σ

e 7→ u[σ]
q[f]→ u

.

By assumption, D′ and wellformedness of q[f]→ u, we obtain from the cor-
rectness of contraction lemma that Γ ` u[σ] : C.

Induction Step

7

Case : D ::
D′

e 7→ e′

e→ e′
E :: Γ ` e : A by assumption.
E ′ :: Γ ` e′ : A by induction hypothesis on D′.

Case : D ::
D′

e1 → e′1
(e1, e2)→ (e′1, e2)

E :: Γ ` (e1, e2) : A by assumption.
Ei :: Γ ` ei : Ai where i = 1, 2 and A = A1 ×A2 by inversion on TPair.
E ′1 :: Γ ` e′1 : A1 by induction hypothesis on D′
Γ ` (e′1, e2) : A1 ×A2 by TPair.

Case : D ::
D′

e2 → e′2
(e1, e2)→ (e1, e′2)

E :: Γ ` (e1, e2) : A by assumption.
Ei :: Γ ` ei : Ai where i = 1, 2 and A = A1 ×A2 by inversion on TPair.
E ′2 :: Γ ` e′2 : A2 by induction hypothesis on D′
Γ ` (e1, e′2) : A1 ×A2 by TPair.

Case: D ::
D′

e1 → e′1
e1 e2 → e′1 e2

E :: Γ ` e1 e2 : A by assumption.
E1 :: Γ ` e1 : B → A, E2 :: Γ ` e2 : B for some B by inversion on TApp.
F :: Γ ` e′1 : B → A by induction hypothesis on D′.
Γ ` e′1 e2 : A by TApp.

Case: D ::
D′

e2 → e′2
e1 e2 → e1 e

′
2

E :: Γ ` e1 e2 : A by assumption.
E1 :: Γ ` e1 : B → A, E2 :: Γ ` e2 : B for some B by inversion on TApp.
F :: Γ ` e′2 : B by induction hypothesis on D′.
Γ ` e1 e′2 : A by TApp.

Case: D ::
D′

e→ e′

c e→ c e′
E :: Γ ` c e : A by assumption.
E ′ :: Γ ` e : Dc[µX.D/X] and A = µX.D by inversion on TConst.
F :: Γ ` e′ : Dc[µX.D/X] by induction hypothesis on D′.
Γ ` c e′ : µX.D by TConst.

Case: D ::
D′

e→ e′

e.d→ e′.d

8

E :: Γ ` e.d : A by assumption.
E ′ :: Γ ` e : νX.R and A = Rd[νX.R/X] by inversion on TDest.
F :: Γ ` e′ : νX.R by induction hypothesis on D′.
Γ ` e′.d : Rd[νX.R/X] by TDest.

6 Values

We now define values. We represent them with a new judgment Γ `v e : A.
With this judgment, we will often denote e as v to obtain Γ `v v : A.

The rules are

Γ ` x : A
Γ `v x : A

VVar

Γ `v v : Dc[µX.D/X]
Γ `v c v : µX.D

VConst
Γ ` e : νX.R
Γ `v e : νX.R

VRecord

Γ `v () : 1
VUnit

Γ `v v1 : A1 Γ `v v2 : A2

Γ `v (v1, v2) : A1 ×A2
VPair

Γ ` e : A→ B
Γ `v e : A→ B

VArrow

We also have some inversion lemmas for values.

Lemma 8. The following hold for v 6= x.

1. If Γ `v v : A1 ×A2 then v = (v1, v2), Γ `v v1 : A1 and Γ `v v2 : A2;

2. If Γ `v v : 1 then v = ();

3. If Γ `v v : µX.D then v = c v′ and Γ ` v′ : Dc[µX.D/X].

Proof. All the statements are proved by case analysis on the rules for values.

1. The only possible case is VPair. Thus, v = (v1, v2) for some v1, v2 and
Γ `v v1 : A1 and Γ `v v2 : A2.

2. The only possible case is VUnit. Thus, v = ().

3. The only possible case is VConst. Thus, v = c v′ for some v′ and Γ `v v
′ :

Dc[µX.D/X].

7 Coverage

We introduce a judgment to indicate that a series of patterns cover a given type.
The goal is to prove that if a series of patterns cover a given type and that we
have a term of that type, then this term will match against one of the patterns.
The judgment is A / (∆1 ` p1) . . . (∆n ` pn), or for convenience, A / ~∆ ` ~p or
A / ~P .

We introduce the following rules

9

A / (x : A ` x)
CVar

A / ~P (∆, x : µX.D ` p(x))

A / ~P (∆, x : Dc[µX.D/X] ` p(c x))c∈D

CConst

A / ~P (∆, x : 1 ` p(x))

A / ~P (∆ ` p())
CUnit

A / ~P (∆, x : A1 ×A2 ` p(x))

A / ~P (∆, x1 : A1, x2 : A2 ` p(x1, x2))
CPair

We note that the rules are used non-deterministically since they imply choosing
a pattern among the list we currently have.

We want to prove the following

Theorem 9. If D :: A / (∆1 ` p1) . . . (∆n ` pn) and E :: `v v : A, then there is
an i such that v =? pi ↘ σ.

Before proving those, we will need a few lemmas.

Lemma 10. If D :: ∆, x : A1 × A2 ` p(x) ⇐ C, E :: `v v : C and F :: v =?

p(x) ↘ σ then ∆, x1 : A1, x2 : A2 ` p(x1, x2) ⇐ C, v =? p(x1, x2) ↘ σ′ and
σ = σ′[x 7→ (σ′(x1), σ′(x2))]

Proof. The proof is done by induction on F .

Base Case F :: v =? x↘ v/x
D :: ∆, x : A1 ×A2 ` x⇐ C by assumption.
C = A1 ×A2 and ∆ = · by inversion on PCVar.
Di :: xi : Ai ` x⇐ Ai for i = 1, 2 by PCVar

D′ :: x1 : A1, x2 : A2 ` (x1, x2)⇐ A1 ×A2 by PCPair

E :: `v v : A1 ×A2 by assumption.
E1 :: `v v1 : A1, E2 :: `v v2 : A2, and v = (v1, v2) for some v1, v2 by lemma 8
Fi :: vi =? xi ↘ vi/xi for i = 1, 2 by PMVar.
F ′ :: (v1, v2) =? (x1, x2)↘ v1/x1, v2/x2 by PMPair.
F ′ :: v =? (x1, x2)↘ σ′ where
σ(x) = v = (v1, v2) = (σ′(x1), σ′(x2)) and σ(y) = σ′(y) for y 6= x.

Induction step

Case F ::
F1

v1 =? p1(x)↘ σ1

F2

v2 =? p2 ↘ σ2

(v1, v2) =? (p1(x), p2)↘ σ1, σ2

Without loss of generality, we chose x to be in p1. The proof is the same for
x in p2 with 1 and 2 swapped.
D :: ∆, x : A1 ×A2 ` (p1(x), p2)⇐ C by assumption.
D1 :: ∆1, x : A1 ×A2 ` p1(x)⇐ C1, D2 :: ∆2 ` p2 ⇐ C2

where ∆ = ∆1,∆2 and C = C1 × C2 by inversion on PCPair.
E :: `v (v1, v2) : C1 × C2 by assumption.
Ei :: `v vi : Ci by inversion on TPair.
D′1 :: ∆1, x1 : A1, x2 : A2 ` p1(x1, x2)⇐ C1,
F ′1 :: v1 =? p1(x1, x2)↘ σ′1, and
σ1 = σ′1[x 7→ (σ′1(x1), σ′1(x2))] by induction hypothesis on D1, E1 and F1.

10

D′ :: ∆1, x1 : A1, x2 : A2,∆2 ` (p1(x1, x2), p2)⇐ C1 × C2 by PCPair.
F ′ :: (v1, v2) =? (p1(x1, x2), p2)↘ σ′1, σ2 by PMPair.

Case F ::
F ′

v =? p(x)↘ σ

c v =? c p(x)↘ σ
D :: ∆, x : A1 ×A2 ` c p(x)⇐ C by assumption.
D′ :: ∆, x : A1 ×A2 ` p(x)⇐ Dc[µX.D/X]
and C = µX.D for some D by inversion on PCConst.
E :: `v c v : µX.D by assumption.
E ′ :: `v v : Dc[µX.D/X] by inversion on TConst.
D′′ :: ∆, x1 : A1, x2 : A2 ` p(x1, x2)⇐ Dc[µX.D/X],
F ′′ :: v =? p(x1, x2)↘ σ′, and
σ(x) = (σ′(x1), σ′(x2)) and σ(y) = σ′(y)
for y 6= x by induction hypothesis on D′, E ′ and F ′.
∆, x1 : A1, x2 : A2 ` c p(x1, x2)⇐ µX.D by PCConst.
c v =? c p(x1, x2)↘ σ′ by PMConst.

Lemma 11. If D :: ∆, x : µX.D ` p(x) ⇐ C, E :: `v v : C and F :: v =?

p(x) ↘ σ then there is a c ∈ D such that ∆, x′ : Dc[µX.D/X] ` p(c x) ⇐ C,
v =? p(c x′)↘ σ′ and σ = σ′[x 7→ c σ′(x′)].

Proof. The proof is done by induction on F .

Base Case F :: v =? x↘ v/x
D :: ∆, x : µX.D ` x⇐ C by assumption.
C = µX.D and ∆ = · by inversion on PCVar.
D′ :: x′ : Dc[µX.D/X] ` x′ ⇐ Dc[µX.D/X] by PCVar

D′′ :: x′ : Dc[µX.D/X] ` c x′ ⇐ µX.D by PCConst.
E :: `v v : µX.D by assumption.
E ′ :: `v v

′ : Dc[µX.D/X] and v = c v′

for some v′ and some c ∈ D by lemma 8.
F ′ :: v′ =? x′ ↘ v′/x′ by PMVar.
F ′′ :: c v′ =? c x′ ↘ v′/x′ by PMConst.
F ′′ :: v =? c x′ ↘ σ′ where
σ(x) = v = c v′ = c σ′(x′) and σ(y) = σ′(y) for y 6= x.

Induction step

Case F ::
F1

v1 =? p1(x)↘ σ1

F2

v2 =? p2 ↘ σ2

(v1, v2) =? (p1(x), p2)↘ σ1, σ2

Without loss of generality, we chose x to be in p1. The proof is the same for
x in p2 with 1 and 2 swapped.
D :: ∆, x : µX.D ` (p1(x), p2)⇐ C by assumption.
D1 :: ∆1, x : µX.D ` p1(x)⇐ C1, D2 :: ∆2 ` p2 ⇐ C2

where ∆ = ∆1,∆2 and C = C1 × C2 by inversion on PCPair.

11

E :: `v (v1, v2) : C1 × C2 by assumption.
Ei :: `v vi : Ci by inversion on TPair.
D′1 :: ∆1, x

′ : Dc[µX.D] ` p1(c x′)⇐ C1 for some c ∈ D,
F ′1 :: v1 =? p1(c x′)↘ σ′1, and
σ1 = σ′1[x 7→ c σ′1(x′) by induction hypothesis on D1, E1 and F1.
D′ :: ∆1, x

′ : Dc[µX.D],∆2 ` (p1(c x′), p2)⇐ C1 × C2 by PCPair.
F ′ :: (v1, v2) =? (p1(c x′), p2)↘ σ′1, σ2 by PMPair.

Case F ::
F ′

v =? p(x)↘ σ

c′ v =? c′ p(x)↘ σ
D :: ∆, x : µX.D ` c′ p(x)⇐ C by assumption.
D′ :: ∆, x : µX.D ` p(x)⇐ Sc′ [µX.S/X]
and C = µX.S for some S by inversion on PCConst.
E :: `v c

′ v : µX.S by assumption.
E ′ :: `v v : Sc′ [µX.S/X] by inversion on TConst.
D′′ :: ∆, x′ : Dc[µX.D/X] ` p(c x′)⇐ Sc′ [µX.S/X],
F ′′ :: v =? p(c x′)↘ σ′, and
σ(x) = σ′[x 7→ c σ′(x′) by induction hypothesis on D′, E ′ and F ′.
∆, x′ : Dc[µX.D/X] ` c′ p(c x′)⇐ µX.S by PCConst.
c′ v =? c′ p(c x′)↘ σ′ by PMConst.

Lemma 12. If D :: ∆, x : 1 ` p(x)⇐ C, E :: `v v : C and F :: v =? p(x)↘ σ
then ∆ ` p()⇐ C, v =? p()↘ σ′ and σ = σ′[x 7→ ()]

Proof. The proof is done by induction on F .

Base Case F :: v =? x↘ v/x
D :: ∆, x : 1 ` x⇐ C by assumption.
C = 1 and ∆ = · by inversion on PCVar.
D :: ` ()⇐ 1 by PCUnit.
E :: `v v : 1 by assumption.
v = () by lemma 8.
F ′ :: () =? ()↘ · by PMUnit.
() =? ()↘ σ′ where
σ(x) = v = () and σ(y) = σ′(y) for y 6= x.

Induction step

Case F ::
F1

v1 =? p1(x)↘ σ1

F2

v2 =? p2 ↘ σ2

(v1, v2) =? (p1(x), p2)↘ σ1, σ2

Without loss of generality, we chose x to be in p1. The proof is the same for
x in p2 with 1 and 2 swapped.
D :: ∆, x : 1 ` (p1(x), p2)⇐ C by assumption.
D1 :: ∆1, x : 1 ` p1(x)⇐ C1, D2 :: ∆2 ` p2 ⇐ C2

where ∆ = ∆1,∆2 and C = C1 × C2 by inversion on PCPair.

12

E :: `v (v1, v2) : C1 × C2 by assumption.
Ei :: `v vi : Ci by inversion on TPair.
D′1 :: ∆1 ` p1()⇐ C1,
F ′1 :: v1 =? p1()↘ σ′1, and
σ1(x) = () and σ1(y) = σ′1(y)
for all y 6= x by induction hypothesis on D1, E1 and F1.
D′ :: ∆1,∆2 ` (p1(), p2)⇐ C1 × C2 by PCPair.
F ′ :: (v1, v2) =? (p1(), p2)↘ σ′1, σ2 by PMPair.

Case F ::
F ′

v =? p(x)↘ σ

c v =? c p(x)↘ σ
D :: ∆, x : 1 ` c p(x)⇐ C by assumption.
D′ :: ∆, x : 1 ` p(x)⇐ Dc[µX.D/X]
and C = µX.D for some D by inversion on PCConst.
E :: `v c v : µX.D by assumption.
E ′ :: `v v : Dc[µX.D/X] by inversion on TConst.
D′′ :: ∆ ` p()⇐ Dc[µX.D/X],
F ′′ :: v =? p()↘ σ′, and
σ(x) = () and σ(y) = σ′(y)
for y 6= x by induction hypothesis on D′, E ′ and F ′.
∆ ` c p(2)⇐ µX.D by PCConst.
c v =? c p()↘ σ′ by PMConst.

Proof (Theorem 9). The proof is done by induction of the derivation of D.

Base case D :: A / (x : A ` x)
E :: `v v : A by assumption.
v =? x↘ v/x by PMVar.

Induction step.

Case D ::
D′

A / ~P (∆, x : A1 ×A2 ` p(x))

A / ~P (∆, x1 : A1, x2 : A2 ` p(x1, x2))
E :: `v v : A by assumption.
By induction hypothesis, v matches a pattern out of ~P (∆, x : A1 ×A2 ` p(x)).
If it matches a pattern in ~P , we are done. Thus,
F :: v =? p(x)↘ σ without loss of generality.
v =? p(x1, x2)↘ σ′ where
σ = σ′[x 7→ (σ′(x1)σ′(x2))]
and ∆, x1 : A1, x2 : A2 ` p(x1, x2)⇐ A by lemma 10.

Case D ::
D′

A / ~P (∆, x : µX.D ` p(x))

A / ~P (∆, x : Dc[µX.D/X] ` p(c x) | c ∈ D)

13

E :: `v v : A by assumption.
By induction hypothesis, v matches a pattern out of ~P (∆, x : µX.D ` p(x)). If
it matches a pattern in ~P , we are done. Thus,
F :: v =? p(x)↘ σ without loss of generality.
v =? p(c x)↘ σ′ for some c ∈ D where
σ = σ′[x 7→ c σ′(x)],
and ∆, x : Dc[µX.D/X] ` p(c x)⇐ A by lemma 11.

Case D ::
D′

A / ~P (∆, x : 1 ` p(x))

A / ~P (∆ ` p())
E :: `v v : A by assumption.
By induction hypothesis, v matches a pattern out of ~P (∆, x : 1 ` p(x)). If it
matches a pattern in ~P , we are done. Thus,
F :: v =? p(x)↘ σ without loss of generality.
v =? p()↘ σ′ where
σ[x 7→ ()],
and ∆ ` p()⇐ A by lemma 12.

8 Evaluation Context

Before we dive in the definition of an evaluation context, we need to have a closer
look to the semantics of functions symbols. We have a judgment Rules(f) =
{(qi, ei)i=1,...,n} where ` qi[f] → ei for all i = 1, . . . , n and such that if q 6= qi
for all i then 6` q[f] → e for any e. Rules(f) thus defines all possible patterns
for f .

An evaluation context is an expression of the following form.

Evaluation Context E ::= · | E e | E.d
We say that E =? q ↘ σ if E[f] =? q[f] ↘ σ. Then, if Rules(f)(q) = e,

E[f] 7→ e[σ]. We can also compose evaluation contexts such as E1 = E2[E[]]
Then E1[f] → E2[e[σ]]. We have a judgment for typing evaluation context.
Γ | A ` E : C where A represents the type of f in E[f]. The rules are the
following.

Γ | A ` · : A
ETHead

Γ | A ` E : νX.R
Γ | A ` E.d : Rd[νX.R/X]

ETDest

Γ | A ` E : B → C Γ ` e : B
Γ | A ` E e : C

ETApp

We also have another judgment Γ | A `v E : C to denote evaluations
contexts applied to values. The rules are very much the same.

Γ | A `v · : A
EVHead

Γ | A `v E : νX.R
Γ | A `v E.d : Rd[νX.R/X]

EVDest

14

Γ | A `v E : B → C Γ `v v : B
Γ | A `v E v : C

EVApp

Lemma 13 (Composition of contexts). If D :: Γ | A ` E1 : B and E :: Γ | B `
E2 : C, then Γ | A ` E2[E1[·]] : C

Proof. The proof is done by induction on E .
Base case E :: Γ | B ` · : B Then C = B and Γ | A ` · [E1[·]] : C.

Induction step

Case E ::
E1

Γ | B ` E2 : D → C
E2

Γ ` e : D
Γ | B ` E2 e : C

By induction hypothesis on E1, we have Γ | A ` E2[E1[·]] : D → C. Thus,
Γ | A ` E2[E1[·]] e : C by ETApp.

Case E ::
E ′

Γ | B ` E2 : νX.R
Γ | B ` E2.d : Rd[νX.R/X]

By induction hypothesis on E ′, we have Γ | A ` E2[E1[·]] : νX.R. Thus Γ | A `
E2[E1[·]].d : Rc[νX.R/X] by ETDest.

There is a similar version for values. The proof being the very same, we will
not do it.

Lemma 14 (Composition of contexts (values)). If Γ | A `v E1 : B and Γ |
B `v E2 : C, then Γ1 | A `v E2[E1[·]] : C

We now prove the following that will be needed later.

Lemma 15. If D :: Γ | B → C `v E : D and E 6= · then E = E′[· v] with
Γ `v v : B and Γ | C `v E

′ : D.

Proof. The proof is done by induction on the derivation D.

Base case D ::
D1

Γ | B → C `v · : B → C
D2

Γ `v v : B
Γ | B → C `v · v : C

The statement holds by letting E′ = ·.

Base case D :: Γ | B → C `v ·.d : D
The only derivation that allows to obtain D is EVDest and this would imply
that νX.R = B → C for some R which is impossible.

Induction step.
For both cases, we assume that E 6= ·. Otherwise, we get back to the two

base cases.

15

Case D ::
D1

Γ | B → C `v E : D′ → D
D2

Γ `v v : D′

Γ | B → C `v E v : D
E = E′[· v′] with
E1 :: Γ | C `v E

′ : D′ → D and
E2 :: Γ `v v

′ : B by induction hypothesis on D1.
E :: Γ | C `v E

′ v : D by EVApp.

Case D ::
D′

Γ | B → C `v E : νX.R
Γ | B → C `v E.d : Rd[νX.R/X]

E = E′[· v] with
E1 :: Γ | C `v E

′ : νX.R and
E2 :: Γ `v v : B by induction hypothesis on D′.
E :: Γ | C `v E

′.d : Rd[νX.R/X] by EVDest.

Lemma 16. If D :: Γ | νX.R `v E : D and E 6= · then E = E′[·.d] with
Γ | Rd[νX.R/X] `v E

′ : D.

Proof. The proof is done by induction on the derivation D.
Base case D :: Γ | νX.R `v · v : D

This case is also impossible as the only rule that can be applied to obtain D is
EVApp and this would require us to have D′ → D = νX.R for some D′ which
is impossible.

Base case D ::
Γ | νX.R `v ·νX.R

Γ | νX.R `v ·.d : Rd[νX.R/X]
The statement holds by setting E′ = ·.

Induction step.
For both cases, we assume that E 6= ·. Otherwise, we get back to the two

base cases.

Case D ::
D1

Γ | νX.R `v E : D′ → D
D2

Γ `v v : D′

Γ | νX.R `v E v : D
E = E′[·.d] with
E1 :: Γ | Rd[νX.R/X] `v E

′ : D′ → D by induction hypothesis on D1.
E :: Γ | Rd[νX.R/X] `v E

′ v : D by EVApp.

Case D ::
D′

Γ | νX.R `v E : νX.R′

Γ | νX.R `v E.d
′ : R′d′ [νX.R′/X]

E = E′[·.d] with
E1 :: Γ | Rd[νX.R/X] `v E

′ : νX.R′ by induction hypothesis on D′.
E :: Γ | Rd[νX.R/X] `v E

′.d′ : R′d′ [νX.R′/X] by EVDest.

16

9 Copattern Coverage

We have a different judgment than the one for coverage in the case of copattern.
It is the following A / | (∆ ` q ⇒ C) or, more generally, A / | ~Q where
~Q = (∆i ` qi ⇐ Ci)i=1,...,n. The meaning behind this judgment is that C is
covered by a list of patterns satisfying the judgments ∆i | A ` qi ⇒ Ci. The
rules are the following.

A / | (· ` · ⇒ A)
CCHead

A / | ~Q (∆ ` Q⇒ νx.R)

A / | ~Q (∆ ` q.d⇒ Rd[νX.R/X])d∈R

CCDest

A / | ~Q (∆ ` q ⇒ B → C) B / (∆i ` pi)i=1,...,n

A / | ~Q (∆,∆i ` q pi ⇒ C)
CCApp

Theorem 17. If D :: · | A `v E : D and E :: A / | (∆i ` qi ⇒ Ci)i=1,...,n but
not `v E[f] : D then there are E1, E2 such that E = E1[E2[·]], E2 =? qi ↘ σ
for some i, · | A `v E2 : Ci and · | Ci `v E1 : D.

Proof. This is proved by induction on E .
Base case E :: A / | (· ` · ⇒ A)

Choose E1 = E, E2 = ·. Then, E2 =? · ↘ ·.

Induction Step.

Case E ::
A / | ~Q (∆ ` q ⇒ B → C) B / (∆i ` pi)i=1,...,n

A / | ~Q (∆,∆i ` q pi ⇒ C)i=1,...,n

By induction hypothesis, the statement holds for one of the patterns in
~Q (∆ ` q ⇒ B → C). If the pattern has been chosen in ~Q we are done. Thus,
without loss of generality, E = E1[E2[·]], · | A `v E2 : B → C, · | B → C `v

E1 : D, and E2 =? q ↘ σ.
If E1 = · then D = B → C and `v E[f] : D holds, which is a contradiction to

our assumptions. If E1 6= ·, then E1 = E1[· v] with · `v v : B and · | C `v E
′
1 : D

by lemma 15.
Since B / (∆i ` pi), there is a pi with v =? pi ↘ ρ by theorem 9. Thus,

E′2 = E2 v, ·A `v E
′
2 : C by EVApp, and E′2 =? q pi ↘ σ, ρ by PMApp.

Case E ::
A / | ~Q (∆ ` q ⇒ νX.R)

A / | ~Q (∆ ` q.d⇒ Rd[νX.R/X])d∈R

By induction hypothesis, the statement holds for one of the patterns in
~Q (∆ ` q ⇒ νX.R). If the pattern has been chosen in ~Q we are done. Thus,
without loss of generality, E = E1[E2[·]], · | A `v E2 : νX.R, · | νX.R `v E1 : D,
and E2 =? q ↘ σ.

17

If E1 = · then D = νX.R and `v E[f] : D holds, contradicting our assump-
tion. Thus E1 6= · and, by lemma 16, E1 = E′1[·.d] with · | Rd[νX.R/X] `v E

′
1 :

D.

10 Progress

Before stating and proving the progress theorem, we need to prove the decom-
position theorem.

Lemma 18 (Decomposition Theorem). If · ` e : A then either

1. e = (), A = 1,

2. e = (e1, e2), A = A1 ×A2,

3. e = c e′, A = µX.D,

4. e = E2[E1[f] e′] where · |`v E1 : B → C, · | C ` E2 : A and 6`v e
′ : B for

some evaluation contexts E1, E2, some term e′ and some types B,C.

5. e = E[f] and · | Σ(f) `v E : A

Proof. The proof is done by induction on e.
Case ` x : A is impossible as the term is closed.

Case ` f : A matches with case 5 with E = · since we trivially have
· | A `v E : A.

Case ` () : A. Then A = 1 by inversion.

Case ` (e1, e2) : A. Then, A = A1 ×A2 by inversion.

Case ` c e : A. Then, A = µX.D by inversion.

Case ` e1 e2 : A. Then by inversion ` e1 : B → A and ` e2 : B. By induc-
tion hypothesis e1 = E[f] with · | Σ(f) `v E : A for some E or e1 = E2[E1[f] e′]
for some E1, E2, and e′ where · |`v E1 : B → C, · | C ` E2 : A and 6`v e

′ : B,
as the 3 other cases are impossible. In the former case, if 6`v e2 : B, we can
obtain case 4 by letting E2 = · and E = E1. This gives us e1 e2 = ·[E[f] e2]. If
`v e2 : B, then, by EVApp, · | Σ(f) `v E[f] e2 : A and E′ = E e2. In the latter
case, we have E2[E1[f] e′] e2 = E′2[E1[f] e′] by setting E2[·] e2 = E′2[·].

Case ` e.d : A. Then by inversion, ` e : νX.R for some R. By induction
hypothesis, e = E[f] and · | Σ(f) `v E : νX.R, or e = E2[E1[f] e′] where e′

is not a value. In the former care, e.d = E[f].d = E′[f] and · | Σ(f) `v E.d :
Rd[νX.R/X] by EVDest. In the latter case, e.d = E2[E1[f] e′].d = E′2[E1[f] e′].

18

From now on, we assume that the rules of every function f we use cover
Σ(f), more specifically, Σ(f) / | (∆i ` qi ⇒ Ci)i=1,...,n where qi ∈ Rules(f) and
for all q 6= qi for all i q 6∈ Rules(f). We will denote this Σ(f) / | Rules(f).

Theorem 19. If D ::` e : A then either `v e : A or e→ e′ for some e′

Proof. The proof is done by induction on e. By the decomposition theorem, we
have four possible cases.

Base case e = (), A = 1. Then `v () : 1 by VVar.

Induction step
Case e = (e1, e2), A = A1 ×A2.

By inversion on TPair, we have ` e1 : A1 and ` e2 : A2. By induction hypothesis,
either `v e1 : A1 or e1 → e′1. In the latter case, we obtain (e1, e2)→ (e′1, e2) by
RPair.

In the former case, we apply induction hypothesis on e2 to obtain either
`v e2 : A2 or e2 → e′2. In the former case, we obtain `v (e1, e2) : A1 × A2 by
VPair. In the latter case, we have (e1, e2)→ (e1, e′2) by RPair.

Case e = c e′, A = µX.D.
By inversion on TConst, we have ` e′ : Dc[µX.D/X]. By induction hypothesis,
either `v e

′ : Dc[µX.D/X] or e′ → e′′. In the former case, `v c e
′ : µX.D by

VConst. In the latter case, c e′ → c e′′ by RConst.

Case e = E2[E1[f] e′] where e′ is not a value.
Then, by induction hypothesis e′ → e′′ for some e′′ and so E2[E1[f] e′] →
E2[E1[f] e′′].

Case e = E[f] and · | Σ(f) `v E : A.
If `v E[f] : A then we are done. Without loss of generality, we assume it is
not the case. By our assumption on f , Σ(f) / | Rules(f). Thus we can apply
theorem 17 and obtain E1, E2 such that E = E1[E2[·]], E2 =? qi ↘ σ for some
qi ∈ Rules(f), · | Σ(f) ` E2 : Ci and · | Ci `v E1 : A. Thus, by our reduction
rules E2[f] 7→ ui[σ] where (qi, ui) ∈ Rules(f) and so E2[f]→ ui[σ]. We conclude
that E1[E2[f]]→ E1[ui[σ]].

19

