A Core Calculus for Covering Copatterns

David Thibodeau, Andreas Abel

1 August 2012

1 Terms and Types

Types A, B, C ::= D (Inductive data type) | R (Coinductive record type) | $A \to B \mid A \times B \mid 1$

Datatype $D = c_1 A_1 | \cdots | c_n A_n$ where $c_i : A_i \to D$. More precisely, $D = \mu X. \langle c_1 A_1 | \dots | c_n A_n \rangle$ where $c_i = A_i [D/X] \to D$.

Record type $R = \{d_1 : A_1, \dots, d_n : A_n\}$ where $d_i : R \to A_i$. More precisely, $R = \nu Y \cdot \{d_1 : A_1, \dots, d_n : A_n\}$ where $d_i : R \to A_i[R/Y]$.

Terms t, s ::= f (Functions) $\mid x$ (Variables) $\mid t_1 \mid t_2 \mid c \mid t \mid t_d \mid (t_1, t_2) \mid ()$

1.1 Typing Rules

$$\begin{array}{cccc} \overline{\Delta, x: A \vdash x: A} & \mathrm{T}_{\mathrm{Var}} & \overline{\Delta \vdash f: \Sigma(f)} & \mathrm{T}_{\mathrm{Fun}} & \overline{\Delta \vdash (): 1} & \mathrm{T}_{\mathrm{Unit}} \\ \\ \underline{\Delta \vdash t_1: A_1 \rightarrow A_2 & \Delta \vdash t_2: A_1} & \mathrm{T}_{\mathrm{App}} & \underline{\Delta \vdash t: \nu X. R} \\ \overline{\Delta \vdash t_1: A_1 & \Delta \vdash t_2: A_2} & \mathrm{T}_{\mathrm{App}} & \overline{\Delta \vdash t: D_c[\mu X. R/X]} & \mathrm{T}_{\mathrm{Dest}} \\ \\ \\ \underline{\Delta \vdash (t_1, t_2): A_1 \times A_2} & \mathrm{T}_{\mathrm{Pair}} & \underline{\Delta \vdash t: D_c[\mu X. D/X]} \\ \overline{\Delta \vdash c \ t: \mu X. D} & \mathrm{T}_{\mathrm{Const}} \end{array}$$

We note that $\Sigma(f)$ is the type of f as defined in the signature Σ , a global predefined context.

Lemma 1 (Inversion lemmas for typing). The following holds:

- 1. If $\Delta \vdash x : A$, then $\Delta = \Delta', x : A$ for some Δ' ;
- 2. If $\Delta \vdash f : A$, then $A = \Sigma(f)$;
- 3. If $\Delta \vdash () : A$, then A = 1;
- 4. If $\Delta \vdash t_1 \ t_2 : A$, then there is a type B such that $\Delta \vdash t_1 : B \to A$ and $\Delta \vdash t_2 : B$;

- 5. If $\Delta \vdash (t_1, t_2) : A$, then $A = A_1 \times A_2$ for some A_1, A_2 and $\Delta \vdash t_1 : A_1$ and $\Delta \vdash t_2 : A_2$;
- 6. If $\Delta \vdash t.d : A$, then $A = R_d[\nu X.R/X]$ and $\Delta \vdash t : \nu X.R$;
- 7. If $\Delta \vdash c \ t : A$, then $A = \mu X.D$ and $\Delta \vdash t : D_c[\mu X.D/X]$.

Proof. All the statements are proved by case analysis on the derivation rule.

- 1. There is only one case: T_{Var} . Then, $\Delta = \Delta', x : A$.
- 2. There is only one case: T_{Fun} . Then, $A = \Sigma(f)$.
- 3. There is only one case: T_{Unit} . Then, A = 1.
- 4. There is only one case: T_{App} . Then, there must be a type A_1 such that $\Delta \vdash t_1 : A_1 \to A_2$ and $\Delta \vdash t_2 A_1$.
- 5. There is only one case: T_{Pair} . Then, $A = A_1 \times A_2$ and we have that $\Delta \vdash t_1 : A_1$ and $\Delta \vdash t_2 : A_2$.
- 6. There is only one case: T_{Dest}. Then $\Delta \vdash t : \nu X.R$ and $A = R_d[\nu X.R/X]$.
- 7. There is only one case: T_{Const}. Then, $A = \mu X.D$ and $t : D_c[\mu X.D/X]$.

1.2 Typechecking Rules

Inference mode is described with \Rightarrow and checking mode is described with \Leftarrow .

$$\begin{split} \overline{\Delta}, x : A \vdash x \Rightarrow A \quad \mathrm{TC}_{\mathrm{Var}} \quad \overline{\Delta \vdash f \Rightarrow \Sigma(F)} \quad \mathrm{TC}_{\mathrm{Fun}} \quad \overline{\Delta \vdash () \Leftarrow 1} \quad \mathrm{TC}_{\mathrm{Unit}} \\ \frac{\Delta \vdash t_1 \Rightarrow A_1 \to A_2 \quad t_2 \Leftarrow A_1}{\Delta \vdash t_1 \quad t_2 \Rightarrow A_2} \quad \mathrm{TC}_{\mathrm{App}} \quad \frac{\Delta \vdash t \Rightarrow \nu X.R}{\Delta \vdash t.d \Rightarrow R_d[R/X]} \quad \mathrm{TC}_{\mathrm{Dest}} \\ \frac{\Delta \vdash t_1 \Leftarrow A_1 \quad \Delta \vdash t_2 \Leftarrow A_2}{\Delta \vdash (t_1, t_2) \Leftarrow A_1 \times A_2} \quad \mathrm{TC}_{\mathrm{Pair}} \quad \frac{\Delta \vdash t \Leftrightarrow D_c[D/X]}{\Delta \vdash c \ t \Leftarrow \mu X.D} \quad \mathrm{TC}_{\mathrm{Const}} \\ \frac{\Delta \vdash t \Rightarrow A \quad A = C}{\Delta \vdash t \Leftarrow C} \quad \mathrm{TC}_{\mathrm{Switch}} \end{split}$$

The missing elimination and introduction rules for our types are described through pattern matching. We thus need to define patterns.

2 Patterns

Patterns $p ::= x | (p_1, p_2) | c p | ()$

Destructor Patterns $q ::= \cdot | q p | q.d$

2.1 Typechecking Rules

Pattern typing always returns a context representing all the variables in the pattern. The patterns must be linear, that is, a variable appears only once. There are again two modes for pattern typing. The checking mode, denoted by $\Delta \vdash p \Leftarrow A$, follows the checking mode for regular typing. The inference mode, denoted by $\Delta \mid A \vdash q \Rightarrow C$ is a bit more complicated. In this case, both Δ and C are returned. We need to provide the type of the head of the pattern. We note that $[\cdot]$ acts as a placeholder for the head. [f] means the instantiation of the head by f.

$$\begin{split} \frac{\Delta \vdash p \Leftarrow D_c[\mu X.D/X]}{\Delta \vdash c \ p \Leftarrow \mu X.S} \ & \operatorname{PC_{Const}} \\ \hline \\ \frac{}{\vdash () \Leftarrow 1} \ & \operatorname{PC_{Unit}} \quad \frac{\Delta_1 \vdash p_1 \Leftarrow A_1 \quad \Delta_2 \vdash p_2 \Leftarrow A_2}{\Delta_1, \Delta_2 \vdash (p_1, p_2) \Leftarrow A_1 \times A_2} \ & \operatorname{PC_{Pair}} \\ \hline \\ \frac{}{\cdot \mid A \vdash [\cdot] \Rightarrow A} \ & \operatorname{PC_{Head}} \quad \frac{\Delta \mid A \vdash q \Rightarrow \nu X.R}{\Delta \mid A \vdash q.d \Rightarrow R_d[\nu X.R/X]} \ & \operatorname{PC_{Dest}} \\ \\ \frac{\Delta_1 \mid A \vdash q \Rightarrow B \to C \quad \Delta_2 \vdash p \Leftarrow B}{\Delta_1, \Delta_2 \mid A \vdash q \ p \Rightarrow C} \ & \operatorname{PC_{App}} \\ \\ \frac{\Delta \mid \Sigma(f) \vdash q \Rightarrow C \quad \Delta \vdash u \Leftarrow C}{\vdash q[f] \to u} \ & \operatorname{D_{Pattern}} \end{split}$$

Lemma 2 (Inversion lemmas for patterns). The following holds:

- 1. If $\Delta \vdash x \Leftarrow A$ then $\Delta = x : A$;
- 2. If $\Delta \vdash () \Leftarrow A$ then $\Delta = \cdot$ and A = 1;
- 3. If $\Delta \vdash c \ p \Leftarrow A$ then $A = \mu X.D$ and $\Delta \vdash p \Leftarrow D_c[\mu X.D/X];$
- 4. If $\Delta \vdash (p_1, p_2) \Leftarrow A$ then $A = A_1 \times A_2$ for some A_1, A_2 and there are Δ_1, Δ_2 such that $\Delta = \Delta_1, \Delta_2, \Delta_1 \vdash p_1 \Leftarrow A_1$ and $\Delta_2 \vdash p_2 \Leftarrow A_2$;
- 5. If $\Delta \mid A \vdash [\cdot] \Rightarrow B$ then $\Delta = \cdot$ and A = B;
- 6. If $\Delta \mid A \vdash q.d \Rightarrow B$ then $B = R_d[\nu X.R/X]$ and $\Delta \mid A \vdash q \Rightarrow \nu X.R$;
- 7. If $\Delta \mid A \vdash q \ p \Rightarrow C$ then there a type B and contexts Δ_1 and Δ_2 such that $\Delta = \Delta_1, \Delta_2, \ \Delta_1 \mid A \vdash q \Rightarrow B \rightarrow C$ and $\Delta_2 \vdash p \Leftarrow B$;
- 8. If $\vdash q[f] \rightarrow u$ then there is a type C and a context Δ such that $\Delta \mid \Sigma(f) \vdash q \Rightarrow C$ and $\Delta \vdash u \Leftarrow C$.

Proof. All the statements are proved by case analysis on the possible rules allowing us to obtain such derivation.

- 1. There is only one case: PC_{Var} . Thus, $\Delta = x : A$.
- 2. There is only one case: PC_{Unit} . Thus, A = 1 and $\Delta = \cdot$.
- 3. There is only one case: PC_{Const}. Thus, $A = \mu X.D$ and $\Delta \vdash p \leftarrow D_c[\mu X.D/X]$.
- 4. There is only one case: PC_{Pair}. Thus, $A = A_1 \times A_2$ for some A_1 , A_2 there is Δ_1, Δ_2 such that $\Delta = \Delta_1, \Delta_2$ and $\Delta_1 \vdash p_1 \Leftarrow A_1$ and $\Delta_2 \vdash p_2 \Leftarrow A_2$.
- 5. There is only one case: PC_{Head} . Thus, A = B and $\Delta = \cdot$.
- 6. There is only one case: PC_{Dest}. Thus, $B = R_d[\nu X.R/X]$ and $\Delta \mid A \vdash q \Rightarrow \nu X.R$.
- 7. There is only one case: PC_{App} . Thus, there are Δ_1, Δ_2 and a type B such that $\Delta = \Delta_1, \Delta_2$ and $\Delta_1 \mid A \vdash q \Rightarrow B \to C$ and $\Delta_2 \vdash p \Leftarrow B$.
- 8. There is only one case: D_{Pattern}. Thus, there is Δ and C such that $\Delta \mid \Sigma(f) \vdash q \Rightarrow C$ and $\Delta \vdash u \Leftarrow C$.

3 Pattern Matching

We use the judgment $t = p \searrow \sigma$ to mean that the term t matches with the pattern p with resulting substitution σ . More generally, $t = q[f] \searrow \sigma$ is used when it is applied to a function.

$$\frac{1}{t = ? x \searrow t/x} \operatorname{PM}_{\operatorname{Var}} \frac{1}{f = ? f \searrow} \operatorname{PM}_{\operatorname{Fun}} \frac{1}{() = ? () \searrow} \operatorname{PM}_{\operatorname{Unit}} \frac{e = ? q \boxtimes \sigma}{() = ? () \searrow} \operatorname{PM}_{\operatorname{Unit}} \frac{1}{() = ? () \boxtimes} \operatorname{PM}_{\operatorname{Unit}} \frac{1}{() = ? () \boxtimes} \frac{1}{() = ? () \boxtimes} \operatorname{PM}_{\operatorname{Const}} \frac{1}{c t = ? q \boxtimes \sigma}{c t = ? c p \searrow \sigma} \operatorname{PM}_{\operatorname{Const}} \frac{1}{c t = ? p \boxtimes \sigma}{(t_1, t_2) = ? (p_1, p_2) \searrow \sigma_1, \sigma_2} \operatorname{PM}_{\operatorname{Pair}} \frac{1}{c t = ? q \boxtimes \sigma}{\frac{1}{c t = ? q \boxtimes \sigma}} \operatorname{PM}_{\operatorname{Dest}}$$

4 Reductions

$$\frac{e \stackrel{?}{=} q[f] \searrow \sigma}{e \mapsto u[\sigma]} q[f] \to u \quad \frac{e \mapsto e'}{e \to e'}$$

$$\frac{e_1 \to e_1'}{(e_1, e_2) \to (e_1', e_2)} \operatorname{R}_{\operatorname{Pairl}} \quad \frac{e_2 \to e_2'}{(e_1, e_2) \to (e_1, e_2')} \operatorname{R}_{\operatorname{Pairr}} \quad \frac{e \to e'}{c \ e \to c \ e'} \operatorname{R}_{\operatorname{Const}}$$
$$\frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} \operatorname{R}_{\operatorname{Appl}} \quad \frac{e_2 \to e_2'}{e_1 \ e_2 \to e_1 \ e_2'} \operatorname{R}_{\operatorname{Appr}} \quad \frac{e \to e'}{e.d \to e'.d} \operatorname{R}_{\operatorname{Dest}}$$

5 Subject Reduction

Before proving subject reduction, we need to prove a few results first.

Lemma 3 (Substitution Lemma). If $\mathcal{D} :: \Delta \vdash u : C$ and $\mathcal{E} :: \Gamma \vdash \sigma : \Delta$ then $\mathcal{F} :: \Gamma \vdash u[\sigma] : C$ for some \mathcal{F} .

Proof. The proof is done by induction on the derivation $\mathcal{D} :: \Delta \vdash u : C$.

Base case : $\mathcal{D} :: \overline{\Delta', x : C \vdash x : C}$. \mathcal{E} contains $\Gamma \vdash \sigma(x) : C$ by assumption. $\mathcal{F} :: \Gamma \vdash x[\sigma] : C = \Gamma \vdash \sigma(x) : C$ by definition of substitution. Base case: $\mathcal{D} :: \Delta \vdash f : \Sigma(f)$ $\Gamma \vdash f[\sigma] : \Sigma = \Gamma \vdash f : \Sigma(f)$ by T_{Fun} and definition of substitution. Base case: $\mathcal{D} :: \Delta \vdash () : 1$ $\Gamma \vdash ()[\sigma] : 1 = \Gamma \vdash () : 1$ by T_{Fun} and definition of substitution. Induction step \mathcal{D}_1 \mathcal{D}_2 Case $\mathcal{D} :: \underbrace{\Delta \vdash t_1 : A_1 \to A_2 \quad \Delta \vdash t_2 : A_1}_{\Delta \vdash t_1 : t_2 : A_2}$ $\mathcal{D}'_1 :: \Gamma \vdash t_1[\sigma] : A_1 \to A_2$ by induction hypothesis on \mathcal{D}_1 . $\mathcal{D}_2' :: \Gamma \vdash t_2[\sigma] : A_1$ by induction hypothesis on \mathcal{D}_2 . $\mathcal{F} :: \Gamma \vdash t_1[\sigma] \ t_2[\sigma] : A_2$ by T_{App} . $\Gamma \vdash (t_1 \ t_2)[\sigma] : A_2$ by definition of substitution for the application. Case $\mathcal{D} :: \frac{\mathcal{D}'}{\Delta \vdash t \Rightarrow \nu X.R}$ $\overline{\Delta \vdash t.d \Rightarrow A_d[R/X]}$ $\mathcal{E} :: \Gamma \vdash t[\sigma] : A_d[R/X]$ by induction hypothesis on \mathcal{D}' . $\mathcal{E}' :: \Gamma \vdash t[\sigma].d : \nu X.R$ by T_{Dest} . $\Gamma \vdash t.d[\sigma]: \nu X.R$ by definition of substitution. Case $\mathcal{D} :: \frac{\mathcal{D}_1}{\Delta \vdash t_1 \Leftarrow A_1} \quad \frac{\mathcal{D}_2}{\Delta \vdash t_2 \Leftarrow A_2}$ $\frac{\mathcal{D}_1 \vdash t_1 \Leftarrow A_1}{\Delta \vdash t_2 \Leftarrow A_1 \times A_2}$ $\mathcal{E}_i :: \Gamma \vdash t_i[\sigma] : A_i \text{ for } i = 1, 2$ by induction hypothesis on \mathcal{D}_i . $\mathcal{E} :: \Gamma \vdash (t_1[\sigma], t_2[\sigma]) : A_1 \times A_2$ by T_{Pair} . $\Gamma \vdash (t_1, t_2)[\sigma] : A_1 \times A_2$ by definition of substitution. Case $\mathcal{D} :: \frac{\mathcal{D}'}{\Delta \vdash c \ t \Leftarrow A_c[D/X]}$ $\mathcal{E} :: \Gamma \vdash t[\sigma] : A_c[D/X]$ by induction hypothesis on \mathcal{D} . $\mathcal{E}' :: \Gamma \vdash c \ t[\sigma] : \mu X.D$ by T_{Const} . $\Gamma \vdash (c \ t)[\sigma] : \mu X.D$ by definition of substitution. **Lemma 4.** If $\mathcal{D} :: \Delta \vdash p \Leftarrow A$, $\mathcal{E} :: \Gamma \vdash e : A$ and $\mathcal{F} :: e = ? p \searrow \sigma$ then $\Gamma \vdash \sigma : \Delta$

Proof. The proof is done by induction on the derivation $\mathcal{F} :: e = {}^{?} p \searrow \sigma$.

Base case $\mathcal{F} :: e = {}^? x \searrow e/x$. $\mathcal{D}' :: x : A \vdash x \Leftarrow A$ by inversion on \mathcal{D} . $\Gamma \vdash \sigma(x) : A$ by \mathcal{F} .

Base case: $\mathcal{F} :: () = ?() \searrow \cdot$ By inversion on $\mathcal{D}, \Delta = \cdot$, so there is nothing to show.

 $\begin{array}{ll} \mathcal{F}' \\ \text{Case } \mathcal{F} :: \underbrace{e =^? p \searrow \sigma}{c \ e =^? \ c \ p \searrow \sigma} \\ \mathcal{D} :: \Delta \vdash c \ p \Leftarrow A \\ \mathcal{E} :: \Gamma \vdash c \ e : A \\ \mathcal{D}' :: \Delta \vdash p \Leftarrow D_c[\mu X.D/X] \text{ and } A = \mu X.D \\ \mathcal{E}' = \Gamma \vdash e : D_c[\mu X.D/X] \\ \Gamma \vdash \sigma : \Delta \end{array} \begin{array}{ll} \text{by assumption.} \\ \text{by inversion on PC_{Const.}} \\ \text{by inversion on T_{Const.}} \\ \text{by inversion on T_{Const.}} \\ \text{by induction hypothesis on } \mathcal{F}'. \end{array}$

Lemma 5. If $\Delta \mid \Sigma(f) \vdash q \Rightarrow C$, $\Gamma \vdash e : D$ and $e = {}^{?} q[f] \searrow \sigma$ then C = D and $\Gamma \vdash \sigma : \Delta$

 $\mathit{Proof.}\,$ The proof is done by induction on the derivations of the pattern matching.

Base case: $\mathcal{D} ::: \overline{f} = \widehat{f} \setminus \overline{f}$ $\mathcal{E} ::\cdot \mid \Sigma(f) \vdash [\cdot] \Rightarrow C$ $\mathcal{E}' ::\cdot \mid \Sigma(f) \vdash [\cdot] \Rightarrow \Sigma(f)$ $\mathcal{F} :: \Gamma \vdash f : D$ $\mathcal{F}' :: \Gamma \vdash f : \Sigma(f)$ Thus, $C = D = \Sigma(f)$ and $\Gamma \vdash \sigma : \Delta$, trivially.

by assumption. by inversion on PC_{Head} . by assumption. by inversion on T_{Fun} .

Induction step

$$\begin{array}{l} \mathcal{D}'\\ \text{Case: } \mathcal{D} :: \underbrace{e \stackrel{?}{=} q \searrow \sigma}{e.d \stackrel{?}{=} q. \bigtriangleup \sigma}\\ \overline{e.d \stackrel{?}{=} q. d \searrow \sigma}\\ \mathcal{E} :: \Delta \mid \Sigma(f) \vdash q. d \Rightarrow C & \text{by assumption.}\\ \mathcal{F} :: \Gamma \vdash e. d: D & \text{by assumption.}\\ \mathcal{E}' :: \Delta \mid \Sigma(f) \vdash q \Rightarrow \nu X. R \text{ and } C = R_d[\nu X. R/X] & \text{by inversion on PC}_{\text{Dest.}}\\ \mathcal{F}' :: \Gamma \vdash e: \nu X. R' \text{ and } D = R'_d[\nu X. R'/X] & \text{by inversion on T}_{\text{Dest.}}\\ \Gamma \vdash \sigma: \Delta \text{ and } \nu X. R = \nu X. R' & \text{by induction hypothesis on } \mathcal{D}'.\\ \text{Thus, } R = R' \text{ and so } C = D.\\ \mathcal{D}_1 & \mathcal{D}_2 \end{array}$$

Case : $\mathcal{D} :: \underline{e} \stackrel{?}{=} \stackrel{?}{q} \searrow \sigma \quad \underline{e'} \stackrel{?}{=} \stackrel{?}{p} \searrow \sigma'$ $e \stackrel{?}{e} \stackrel{?}{=} \stackrel{?}{q} \stackrel{p}{\searrow} \sigma, \sigma'$ $\mathcal{E} :: \Delta \mid \Sigma(f) \vdash q p \Rightarrow C$ by assumption. $\mathcal{E}_1 :: \Delta_1 \mid \Sigma(f) \vdash q \Rightarrow B \to C \text{ and } \mathcal{E}_2 :: \Delta_2 \vdash p \Leftarrow B$ for some type B, and where $\Delta = \Delta_1, \Delta_2$ by inversion on PC_{App} . $\mathcal{F}::\Gamma\vdash e\ e':D$ by assumption. $\mathcal{F}_1 :: \Gamma \vdash e : D' \to D \text{ and } \mathcal{F}_2 :: \Gamma \vdash e' : D'$ for some type D^\prime by inversion on T_{App} . $B \to C = D' \to D$ and $\Gamma \vdash \sigma : \Delta_1$ by induction hypothesis on \mathcal{D}_1 , using \mathcal{E}_1 and \mathcal{F}_1 . Thus, B = D' and C = D $\Gamma \vdash \sigma' : \Delta_2$ by lemma 4 on $\mathcal{D}_2, \mathcal{E}_2, \mathcal{F}_2$. $\Gamma \vdash \sigma, \sigma' : \Delta_1, \Delta_2$

Lemma 6 (Correctness of Contraction). If $\Gamma \vdash e : C, \vdash [f] q \rightarrow u$ and e = ? $q[f] \searrow \sigma$ then $\Gamma \vdash u[\sigma] : C$.

Proof. By assumption, we have $\mathcal{D} :: \frac{\mathcal{D}_1}{\Delta \mid \Sigma(f) \vdash q \Rightarrow D} \quad \frac{\mathcal{D}_2}{\Delta \vdash u \Leftarrow D}$ since it is $\vdash q[f] \rightarrow u$

the only rule that could have been used.

By lemma 5, using \mathcal{D}_1 and both assumptions we have that C = D and $\Gamma \vdash \sigma : \Delta$. Then, by substitution lemma and \mathcal{D}_2 , we conclude that $\Gamma \vdash u[\sigma] : C$.

Theorem 7 (Subject Reduction). If $\Gamma \vdash e : A$ and $e \mapsto e'$ then $\Gamma \vdash e' : A$

Proof. The proof is done by induction on the reduction rules. $\begin{array}{c} \mathcal{D}'\\ \text{Base Case}: \mathcal{D}:: \underbrace{e=^? q \searrow \sigma}{e \mapsto u[\sigma]} q[f] \to u.\\ \text{By assumption, } \mathcal{D}' \text{ and wellformedness of } q[f] \to u, \text{ we obtain from the cor-}\\ \end{array}$

rectness of contraction lemma that $\Gamma \vdash u[\sigma] : C$.

Induction Step

Case : $\mathcal{D} :: \underbrace{e \mapsto e'}{e \to e'}$ $\mathcal{E} :: \Gamma \vdash e : A$ by assumption. $\mathcal{E}'::\Gamma\vdash e':A$ by induction hypothesis on \mathcal{D}' . Case : $\mathcal{D} :: \frac{\mathcal{D}'}{(e_1, e_2) \to (e'_1, e_2)}$ $\mathcal{E} :: \Gamma \vdash (e_1, e_2) : A$ by assumption. $\mathcal{E}_i::\Gamma\vdash e_i:A_i$ where i=1,2 and $A=A_1\times A_2$ by inversion on T_{Pair} . by induction hypothesis on \mathcal{D}' $\mathcal{E}_1'::\Gamma\vdash e_1':A_1$ $\Gamma \vdash (e_1', e_2) : A_1 \times A_2$ by T_{Pair} . Case : $\mathcal{D} :: \frac{\mathcal{D}'}{(e_1, e_2) \to (e_1, e'_2)}$ $\mathcal{E} :: \Gamma \vdash (e_1, e_2) : A$ by assumption. $\mathcal{E}_i :: \Gamma \vdash e_i : A_i \text{ where } i = 1, 2 \text{ and } A = A_1 \times A_2$ by inversion on T_{Pair} . by induction hypothesis on \mathcal{D}' by T_{Pair} . Case: $\mathcal{D} :: \frac{\mathcal{D}'}{e_1 e_2 \to e_1'}$ $\mathcal{E} :: \Gamma \vdash e_1 \ e_2 : \bar{A}$ by assumption. $\mathcal{E}_1::\Gamma\vdash e_1:B\to A,\,\mathcal{E}_2::\Gamma\vdash e_2:B$ for some Bby inversion on T_{App} . $\mathcal{F}::\Gamma\vdash e_1':B\to A$ by induction hypothesis on \mathcal{D}' . $\Gamma \vdash e_1' \ e_2 : A$ by T_{ADD} . Case: $\mathcal{D} :: \frac{\mathcal{D}'}{e_2 \to e'_2}$ $e_1 \ e_2 \to e_1 \ e'_2$ $\mathcal{E} :: \Gamma \vdash e_1 \ e_2 : A$ $\mathcal{E}_1 :: \Gamma \vdash e_2 : C$ by assumption. $\mathcal{E}_1 :: \Gamma \vdash e_1 : B \to A, \mathcal{E}_2 :: \Gamma \vdash e_2 : B \text{ for some } B$ by inversion on T_{App} . $\mathcal{F}::\Gamma\vdash e_{2}^{\prime}:B$ by induction hypothesis on \mathcal{D}' . $\Gamma \vdash e_1 \ e'_2 \ : A$ by T_{App}. Case: $\mathcal{D} :: \frac{\mathcal{D}'}{c \ e \to e'}$ $\mathcal{E} :: \Gamma \vdash c \ e : A$ by assumption. $\mathcal{E}' :: \Gamma \vdash e : D_c[\mu X.D/X] \text{ and } A = \mu X.D$ by inversion on T_{Const} . $\mathcal{F} :: \Gamma \vdash e' : D_c[\mu X.D/X]$ by induction hypothesis on \mathcal{D}' . $\Gamma \vdash c \ e' : \mu X.D$ by T_{Const} . Case: $\mathcal{D} :: \frac{\mathcal{D}'}{e.d \to e'.d}$

 $\mathcal{E} :: \Gamma \vdash e.d : A$ $\mathcal{E}' :: \Gamma \vdash e : \nu X.R \text{ and } A = R_d[\nu X.R/X]$ $\mathcal{F} :: \Gamma \vdash e' : \nu X.R$ $\Gamma \vdash e'.d : R_d[\nu X.R/X]$ by assumption. by inversion on T_{Dest} . by induction hypothesis on \mathcal{D}' . by T_{Dest} .

6 Values

We now define values. We represent them with a new judgment $\Gamma \vdash_v e : A$. With this judgment, we will often denote e as v to obtain $\Gamma \vdash_v v : A$.

The rules are

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash_{v} x : A} \operatorname{V}_{\operatorname{Var}} \quad \frac{\Gamma \vdash_{v} v : D_{c}[\mu X.D/X]}{\Gamma \vdash_{v} c v : \mu X.D} \operatorname{V}_{\operatorname{Const}} \quad \frac{\Gamma \vdash e : \nu X.R}{\Gamma \vdash_{v} e : \nu X.R} \operatorname{V}_{\operatorname{Record}}$$
$$\frac{\Gamma \vdash_{v} v_{1} : A_{1} \quad \Gamma \vdash_{v} v_{2} : A_{2}}{\Gamma \vdash_{v} (v_{1}, v_{2}) : A_{1} \times A_{2}} \operatorname{V}_{\operatorname{Pair}} \quad \frac{\Gamma \vdash e : A \to B}{\Gamma \vdash_{v} e : A \to B} \operatorname{V}_{\operatorname{Arrow}}$$

We also have some inversion lemmas for values.

Lemma 8. The following hold for $v \neq x$.

- 1. If $\Gamma \vdash_v v : A_1 \times A_2$ then $v = (v_1, v_2)$, $\Gamma \vdash_v v_1 : A_1$ and $\Gamma \vdash_v v_2 : A_2$;
- 2. If $\Gamma \vdash_v v : 1$ then v = ();
- 3. If $\Gamma \vdash_v v : \mu X.D$ then v = c v' and $\Gamma \vdash v' : D_c[\mu X.D/X]$.

Proof. All the statements are proved by case analysis on the rules for values.

- 1. The only possible case is V_{Pair} . Thus, $v = (v_1, v_2)$ for some v_1, v_2 and $\Gamma \vdash_v v_1 : A_1$ and $\Gamma \vdash_v v_2 : A_2$.
- 2. The only possible case is V_{Unit} . Thus, v = ().
- 3. The only possible case is V_{Const} . Thus, v = c v' for some v' and $\Gamma \vdash_v v'$: $D_c[\mu X.D/X]$.

7 Coverage

We introduce a judgment to indicate that a series of patterns cover a given type. The goal is to prove that if a series of patterns cover a given type and that we have a term of that type, then this term will match against one of the patterns. The judgment is $A \triangleleft (\Delta_1 \vdash p_1) \dots (\Delta_n \vdash p_n)$, or for convenience, $A \triangleleft \vec{\Delta} \vdash \vec{p}$ or $A \triangleleft \vec{P}$.

We introduce the following rules

$$\frac{A \triangleleft \vec{P} (\Delta, x : \mu X.D \vdash p(x))}{A \triangleleft \vec{P} (\Delta, x : 1 \vdash p(x))} C_{\text{Var}} \quad \frac{A \triangleleft \vec{P} (\Delta, x : \mu X.D \vdash p(x))}{A \triangleleft \vec{P} (\Delta, x : D_c[\mu X.D/X] \vdash p(c \ x))_{c \in D}} C_{\text{Const}}$$

$$\frac{A \triangleleft \vec{P} (\Delta, x : 1 \vdash p(x))}{A \triangleleft \vec{P} (\Delta \vdash p())} C_{\text{Unit}} \quad \frac{A \triangleleft \vec{P} (\Delta, x : A_1 \times A_2 \vdash p(x))}{A \triangleleft \vec{P} (\Delta, x_1 : A_1, x_2 : A_2 \vdash p(x_1, x_2))} C_{\text{Pair}}$$

We want to prove the following

Theorem 9. If $\mathcal{D} :: A \triangleleft (\Delta_1 \vdash p_1) \dots (\Delta_n \vdash p_n)$ and $\mathcal{E} :: \vdash_v v : A$, then there is an *i* such that $v = {}^? p_i \searrow \sigma$.

Before proving those, we will need a few lemmas.

Lemma 10. If $\mathcal{D} :: \Delta, x : A_1 \times A_2 \vdash p(x) \leftarrow C, \mathcal{E} :: \vdash_v v : C \text{ and } \mathcal{F} :: v = ^?$ $p(x) \searrow \sigma \text{ then } \Delta, x_1 : A_1, x_2 : A_2 \vdash p(x_1, x_2) \leftarrow C, v = ^? p(x_1, x_2) \searrow \sigma' \text{ and } \sigma = \sigma'[x \mapsto (\sigma'(x_1), \sigma'(x_2))]$

Proof. The proof is done by induction on \mathcal{F} .

Base Case $\mathcal{F} :: v = x \searrow v/x$ $\mathcal{D} :: \Delta, x : A_1 \times A_2 \vdash x \Leftarrow C$ by assumption. $C = A_1 \times A_2$ and $\Delta = \cdot$ by inversion on PC_{Var} . $\mathcal{D}_i :: x_i : A_i \vdash x \Leftarrow A_i \text{ for } i = 1, 2$ by PC_{Var} $\mathcal{D}' :: x_1 : A_1, x_2 : A_2 \vdash (x_1, x_2) \Leftarrow A_1 \times A_2$ by PC_{Pair} $\mathcal{E} :: \vdash_v v : A_1 \times A_2$ by assumption. $\mathcal{E}_1 :: \vdash_v v_1 : A_1, \mathcal{E}_2 :: \vdash_v v_2 : A_2, \text{ and } v = (v_1, v_2) \text{ for some } v_1, v_2$ by lemma 8 $\begin{aligned} \mathcal{F}_i &:: v_i = \stackrel{?}{} x_i \searrow v_i / x_i \text{ for } i = 1,2 \\ \mathcal{F}' &:: (v_1, v_2) = \stackrel{?}{} (x_1, x_2) \searrow v_1 / x_1, v_2 / x_2 \\ \mathcal{F}' &:: v = \stackrel{?}{} (x_1, x_2) \searrow \sigma' \text{ where} \end{aligned}$ by PM_{Var} . by PM_{Pair}. $\sigma(x) = v = (v_1, v_2) = (\sigma'(x_1), \sigma'(x_2))$ and $\sigma(y) = \sigma'(y)$ for $y \neq x$.

Induction step

Case $\mathcal{F} :: \frac{v_1 = p_1(x) \searrow \sigma_1}{(v_1 + v_2) = p_2 \searrow \sigma_2}$

 $(v_1, v_2) = (p_1(x), p_2) \searrow \sigma_1, \sigma_2$ Without loss of generality, we chose x to be in p_1 . The proof is the same for x in p_2 with 1 and 2 swapped.

$$\begin{split} \mathcal{D} &:: \Delta, x: A_1 \times A_2 \vdash (p_1(x), p_2) \Leftarrow C & \text{by assumption.} \\ \mathcal{D}_1 &:: \Delta_1, x: A_1 \times A_2 \vdash p_1(x) \Leftarrow C_1, \mathcal{D}_2 :: \Delta_2 \vdash p_2 \Leftarrow C_2 \\ \text{where } \Delta &= \Delta_1, \Delta_2 \text{ and } C = C_1 \times C_2 & \text{by inversion on PC}_{\text{Pair.}} \\ \mathcal{E} &:: \vdash_v (v_1, v_2) : C_1 \times C_2 & \text{by assumption.} \\ \mathcal{E}_i &: \vdash_v v_i : C_i & \text{by assumption.} \\ \mathcal{D}'_1 &:: \Delta_1, x_1 : A_1, x_2 : A_2 \vdash p_1(x_1, x_2) \Leftarrow C_1, \\ \mathcal{F}'_1 &:: v_1 =^? p_1(x_1, x_2) \searrow \sigma'_1, \text{ and} \\ \sigma_1 &= \sigma'_1 [x \mapsto (\sigma'_1(x_1), \sigma'_1(x_2))] & \text{by induction hypothesis on } \mathcal{D}_1, \mathcal{E}_1 \text{ and } \mathcal{F}_1. \end{split}$$

$$\begin{aligned} \mathcal{D}' &:: \Delta_1, x_1 : A_1, x_2 : A_2, \Delta_2 \vdash (p_1(x_1, x_2), p_2) \Leftarrow C_1 \times C_2 \\ \mathcal{F}' &:: (v_1, v_2) = ? (p_1(x_1, x_2), p_2) \searrow \sigma'_1, \sigma_2 \end{aligned}$$
 by PC_{Pair}. by PM_{Pair}.

Case $\mathcal{F} :: \underline{v = \stackrel{\mathcal{F}'}{p(x) \searrow \sigma}}$ $\overline{c} v = c p(x) \searrow \sigma$ $\mathcal{D} :: \Delta, x : A_1 \times A_2 \vdash c p(x) \leftarrow C$ by assumption. $\mathcal{D}' :: \Delta, x : A_1 \times A_2 \vdash p(x) \Leftarrow D_c[\mu X.D/X]$ and $C = \mu X.D$ for some D by inversion on PC_{Const} . $\mathcal{E} :: \vdash_v c \ v : \mu X.D$ by assumption. $\mathcal{E}' :: \vdash_v v : D_c[\mu X.D/X]$ by inversion on T_{Const} . $\mathcal{D}'' :: \Delta, x_1 : A_1, x_2 : A_2 \vdash p(x_1, x_2) \Leftarrow D_c[\mu X . D/X],$ $\mathcal{F}'' :: v = p(x_1, x_2) \searrow \sigma'$, and $\sigma(x) = (\sigma'(x_1), \sigma'(x_2))$ and $\sigma(y) = \sigma'(y)$ by induction hypothesis on $\mathcal{D}', \mathcal{E}'$ and \mathcal{F}' . for $y \neq x$ $\Delta, x_1 : A_1, x_2 : A_2 \vdash c \ p(x_1, x_2) \Leftarrow \mu X.D$ by PC_{Const} . by $\mathrm{PM}_{\mathrm{Const}}$. $c v = c p(x_1, x_2) \searrow \sigma'$

Lemma 11. If $\mathcal{D} :: \Delta, x : \mu X.D \vdash p(x) \leftarrow C, \mathcal{E} :: \vdash_v v : C \text{ and } \mathcal{F} :: v =^?$ $p(x) \searrow \sigma$ then there is a $c \in D$ such that $\Delta, x' : D_c[\mu X.D/X] \vdash p(c x) \leftarrow C,$ $v =^? p(c x') \searrow \sigma'$ and $\sigma = \sigma'[x \mapsto c \sigma'(x')].$

Proof. The proof is done by induction on \mathcal{F} .

Base Case $\mathcal{F} :: v = {}^? x \searrow v/x$ $\mathcal{D}::\Delta, x:\mu X.D \vdash x \Leftarrow C$ by assumption. $C = \mu X.D$ and $\Delta = \cdot$ by inversion on PC_{Var} . $\mathcal{D}' :: x' : D_c[\mu X.D/X] \vdash x' \Leftarrow D_c[\mu X.D/X]$ by PC_{Var} $\mathcal{D}'' :: x' : D_c[\mu X.D/X] \vdash c \ x' \Leftarrow \mu X.D$ by PC_{Const} . $\mathcal{E} :: \vdash_v v : \mu X.D$ by assumption. $\mathcal{E}' :: \vdash_v v' : D_c[\mu X.D/X] \text{ and } v = c \ v'$ for some v' and some $c\in D$ by lemma 8. $\mathcal{F}' :: v' = {}^? x' \searrow v'/x'$ by PM_{Var} . $\mathcal{F}'' :: c \ v' = \stackrel{?}{c} \ x' \searrow v'/x'$ $\mathcal{F}'' :: v = \stackrel{?}{c} \ x' \searrow \sigma' \text{ where }$ by PM_{Const} . $\sigma(x) = v = c \ v' = c \ \sigma'(x')$ and $\sigma(y) = \sigma'(y)$ for $y \neq x$.

Induction step

Case
$$\mathcal{F} :: \frac{\mathcal{F}_1}{(v_1, v_2)} \xrightarrow{\mathcal{F}_2} \sigma_1$$

 $(v_1, v_2) \stackrel{?}{=} (p_1(x), p_2) \searrow \sigma_1, \sigma_2$

Without loss of generality, we chose x to be in p_1 . The proof is the same for x in p_2 with 1 and 2 swapped.

$$\begin{split} \mathcal{D} &:: \Delta, x : \mu X.D \vdash (p_1(x), p_2) \Leftarrow C & \text{by assumption.} \\ \mathcal{D}_1 &:: \Delta_1, x : \mu X.D \vdash p_1(x) \Leftarrow C_1, \ \mathcal{D}_2 :: \Delta_2 \vdash p_2 \Leftarrow C_2 & \text{where } \Delta = \Delta_1, \Delta_2 \text{ and } C = C_1 \times C_2 & \text{by inversion on PC}_{\text{Pair.}} \end{split}$$

 $\begin{array}{lll} \mathcal{E}::\vdash_v (v_1,v_2): C_1 \times C_2 & \text{by assumption.} \\ \mathcal{E}_i::\vdash_v v_i: C_i & \text{by inversion on } T_{\text{Pair.}} \\ \mathcal{D}_1':: \Delta_1, x': D_c[\mu X.D] \vdash p_1(c \; x') \Leftarrow C_1 \text{ for some } c \in D, \\ \mathcal{F}_1':: v_1 = \stackrel{?}{} p_1(c \; x') \searrow \sigma_1', \text{ and} \\ \sigma_1 = \sigma_1'[x \mapsto c \; \sigma_1'(x') & \text{by induction hypothesis on } \mathcal{D}_1, \; \mathcal{E}_1 \text{ and } \mathcal{F}_1. \\ \mathcal{D}':: \Delta_1, x': D_c[\mu X.D], \Delta_2 \vdash (p_1(c \; x'), p_2) \Leftarrow C_1 \times C_2 & \text{by PC}_{\text{Pair.}} \\ \mathcal{F}':: (v_1, v_2) = \stackrel{?}{} (p_1(c \; x'), p_2) \searrow \sigma_1', \sigma_2 & \text{by PM}_{\text{Pair.}} \end{array}$

Case $\mathcal{F} :: \frac{\mathcal{F}'}{c' \ v = ? \ p(x) \searrow \sigma}$ $\mathcal{D} :: \Delta, x : \mu X.D \vdash c' \ p(x) \Leftarrow C$ by assumption. $\mathcal{D}' :: \Delta, x : \mu X.D \vdash p(x) \Leftarrow S_{c'}[\mu X.S/X]$ and $C = \mu X.S$ for some S by inversion on PC_{Const} . $\mathcal{E} :: \vdash_v c' \ v : \mu X.S$ by assumption. $\mathcal{E}' :: \vdash_v v : S_{c'}[\mu X.S/X]$ by inversion on T_{Const} . $\mathcal{D}'' :: \Delta, x' : D_c[\mu X.D/X] \vdash p(c \ x') \Leftarrow S_{c'}[\mu X.S/X],$ $\mathcal{F}'' :: v = {}^? p(c x') \searrow \sigma'$, and $\sigma(x) = \sigma'[x \mapsto c \ \sigma'(x')]$ by induction hypothesis on $\mathcal{D}', \mathcal{E}'$ and \mathcal{F}' . $\Delta, x': D_c[\mu X.D/X] \vdash c' \ p(c \ x') \Leftarrow \mu X.S$ by PC_{Const}. $c' v = c' p(c x') \searrow \sigma'$ by PM_{Const} .

Lemma 12. If $\mathcal{D} :: \Delta, x : 1 \vdash p(x) \leftarrow C$, $\mathcal{E} :: \vdash_v v : C$ and $\mathcal{F} :: v = {}^{?} p(x) \searrow \sigma$ then $\Delta \vdash p() \leftarrow C$, $v = {}^{?} p() \searrow \sigma'$ and $\sigma = \sigma'[x \mapsto ()]$

Proof. The proof is done by induction on \mathcal{F} .

Induction step

Case
$$\mathcal{F} :: \frac{v_1 = p_1(x) \searrow \sigma_1 \quad v_2 = p_2 \searrow \sigma_2}{(v_1, v_2) = (p_1(x), p_2) \searrow \sigma_1, \sigma_2}$$

Without loss of generality, we chose x to be in p_1 . The proof is the same for x in p_2 with 1 and 2 swapped.

 $\begin{aligned} \mathcal{D} :: \Delta, x : 1 \vdash (p_1(x), p_2) &\Leftarrow C & \text{by assumption.} \\ \mathcal{D}_1 :: \Delta_1, x : 1 \vdash p_1(x) &\Leftarrow C_1, \mathcal{D}_2 :: \Delta_2 \vdash p_2 &\Leftarrow C_2 \\ \text{where } \Delta = \Delta_1, \Delta_2 \text{ and } C = C_1 \times C_2 & \text{by inversion on PC}_{\text{Pair.}} \end{aligned}$

 $\mathcal{E} :: \vdash_v (v_1, v_2) : C_1 \times C_2$ by assumption. $\mathcal{E}_i :: \vdash_v v_i : C_i$ by inversion on T_{Pair} . $\mathcal{D}'_1 :: \Delta_1 \vdash p_1() \Leftarrow C_1, \\ \mathcal{F}'_1 :: v_1 \stackrel{?}{=} p_1() \searrow \sigma'_1, \text{ and}$ $\sigma_1(x) = ()$ and $\sigma_1(y) = \sigma'_1(y)$ for all $y \neq x$ by induction hypothesis on \mathcal{D}_1 , \mathcal{E}_1 and \mathcal{F}_1 . $\mathcal{D}' :: \Delta_1, \Delta_2 \vdash (p_1(), p_2) \Leftarrow C_1 \times C_2$ by PC_{Pair} . $\mathcal{F}' :: (v_1, v_2) = ? (p_1(), p_2) \searrow \sigma'_1, \sigma_2$ by PM_{Pair}. Case $\mathcal{F} :: \frac{\mathcal{F}'}{c \ v = ? \ p(x) \searrow \sigma}$ $\mathcal{D} :: \Delta, x : 1 \vdash c \ p(x) \Leftarrow C$ by assumption. $\mathcal{D}' :: \Delta, x : 1 \vdash p(x) \Leftarrow D_c[\mu X.D/X]$ and $C = \mu X.D$ for some D by inversion on PC_{Const} . $\mathcal{E} :: \vdash_v c \ v : \mu X.D$ by assumption. by inversion on T_{Const} . $\mathcal{E}' :: \vdash_v v : D_c[\mu X.D/X]$ $\mathcal{D}'' :: \Delta \vdash p() \Leftarrow D_c[\mu X.D/X],$ $\mathcal{F}'' :: v = p() \searrow \sigma'$, and $\sigma(x) = ()$ and $\sigma(y) = \sigma'(y)$ for $y \neq x$ by induction hypothesis on \mathcal{D}' , \mathcal{E}' and \mathcal{F}' . by PC_{Const} . $\Delta \vdash c \ p(2) \Leftarrow \mu X.D$ $c \ v = \c p() \searrow \sigma'$ by PM_{Const} .

Proof (Theorem 9). The proof is done by induction of the derivation of \mathcal{D} .

Induction step.

$$\begin{array}{c} \mathcal{D}' \\ \text{Case } \mathcal{D} :: \underbrace{A \triangleleft \vec{P} \ (\Delta, x : A_1 \times A_2 \vdash p(x))}_{A \triangleleft \vec{P} \ (\Delta, x_1 : A_1, x_2 : A_2 \vdash p(x_1, x_2))} \\ \mathcal{E} :: \vdash_v v : A \\ \text{By induction hypothesis, } v \text{ matches a pattern out of } \vec{P} \ (\Delta, x : A_1 \times A_2 \vdash p(x)). \\ \text{If it matches a pattern in } \vec{P}, \text{ we are done. Thus,} \end{array}$$

 $\begin{array}{l} \mathcal{F} :: v = \stackrel{?}{=} p(x) \searrow \sigma & \text{without loss of generality.} \\ v = \stackrel{?}{=} p(x_1, x_2) \searrow \sigma' \text{ where} & \\ \sigma = \sigma'[x \mapsto (\sigma'(x_1)\sigma'(x_2))] \\ \text{and } \Delta, x_1 : A_1, x_2 : A_2 \vdash p(x_1, x_2) \Leftarrow A & \text{by lemma 10.} \end{array}$

$$\begin{array}{c} \mathcal{D}'\\ \text{Case}\ \mathcal{D}:: \frac{\mathcal{D}'}{A \triangleleft \vec{P}\ (\Delta, x: \mu X.D \vdash p(x))}\\ \hline A \triangleleft \vec{P}\ (\Delta, x: D_c[\mu X.D/X] \vdash p(c\ x) \mid c \in D) \end{array}$$

By induction hypothesis, v matches a pattern out of $P(\Delta, x : 1 \vdash p(x))$. If it matches a pattern in \vec{P} , we are done. Thus, $\mathcal{F} :: v = p(x) \searrow \sigma$ without loss of generality.

8 Evaluation Context

Before we dive in the definition of an evaluation context, we need to have a closer look to the semantics of functions symbols. We have a judgment $\operatorname{Rules}(f) = \{(q_i, e_i)_{i=1,...,n}\}$ where $\vdash q_i[f] \to e_i$ for all $i = 1, \ldots, n$ and such that if $q \neq q_i$ for all i then $\nvDash q[f] \to e$ for any e. $\operatorname{Rules}(f)$ thus defines all possible patterns for f.

An evaluation context is an expression of the following form.

Evaluation Context $E ::= \cdot | E e | E.d$

We say that $E = {}^{?} q \searrow \sigma$ if $E[f] = {}^{?} q[f] \searrow \sigma$. Then, if Rules(f)(q) = e, $E[f] \mapsto e[\sigma]$. We can also compose evaluation contexts such as $E_1 = E_2[E[]]$ Then $E_1[f] \to E_2[e[\sigma]]$. We have a judgment for typing evaluation context. $\Gamma \mid A \vdash E : C$ where A represents the type of f in E[f]. The rules are the following.

$$\frac{\Gamma \mid A \vdash c : \nu X.R}{\Gamma \mid A \vdash c : R_d [\nu X.R/X]} \text{ ET}_{\text{Dest}}$$

$$\frac{\Gamma \mid A \vdash E : B \to C \quad \Gamma \vdash e : B}{\Gamma \mid A \vdash E : e : C} \text{ ET}_{\text{App}}$$

We also have another judgment $\Gamma \mid A \vdash_v E : C$ to denote evaluations contexts applied to values. The rules are very much the same.

$$\frac{\Gamma \mid A \vdash_{v} \ldots A}{\Gamma \mid A \vdash_{v} \ldots A} \quad \frac{\Gamma \mid A \vdash_{v} E : \nu X.R}{\Gamma \mid A \vdash_{v} E.d : R_{d}[\nu X.R/X]} \quad \text{EV}_{\text{Dest}}$$

$$\frac{\Gamma \mid A \vdash_v E : B \to C \quad \Gamma \vdash_v v : B}{\Gamma \mid A \vdash_v E \; v : C} \; \operatorname{EV}_{\operatorname{App}}$$

Lemma 13 (Composition of contexts). If $\mathcal{D} :: \Gamma \mid A \vdash E_1 : B \text{ and } \mathcal{E} :: \Gamma \mid B \vdash$ $E_2: C, then \Gamma \mid A \vdash E_2[E_1[\cdot]]: C$

Proof. The proof is done by induction on \mathcal{E} .

Base case $\mathcal{E} :: \Gamma \mid B \vdash \cdot : B$ Then C = B and $\Gamma \mid A \vdash \cdot [E_1[\cdot]] : C$.

Induction step

$$\begin{array}{c} \text{finduction step} \\ \text{Case } \mathcal{E} :: \frac{\Gamma \mid B \vdash E_2 : D \to C \quad \Gamma \vdash e : D}{\Gamma \mid B \vdash E_2 : e : C} \end{array}$$

By induction hypothesis on $\tilde{\mathcal{E}}_1$, we have $\Gamma \mid A \vdash E_2[E_1[\cdot]] : D \to C$. Thus, $\Gamma \mid A \vdash E_2[E_1[\cdot]] e : C$ by ET_{App} .

$$\begin{array}{l} \mathcal{E}'\\ \text{Case } \mathcal{E} :: \frac{\Gamma \mid B \vdash E_2 : \nu X.R}{\Gamma \mid B \vdash E_2.d : R_d[\nu X.R/X]}\\ \text{By induction hypothesis on } \mathcal{E}', \text{ we have } \Gamma \mid A \vdash E_2[E_1[\cdot]] : \nu X.R. \text{ Thus } \Gamma \mid A \vdash E_2[E_1[\cdot]].d : R_c[\nu X.R/X] \text{ by ET}_{\text{Dest}}. \end{array}$$

There is a similar version for values. The proof being the very same, we will not do it.

Lemma 14 (Composition of contexts (values)). If $\Gamma \mid A \vdash_v E_1 : B$ and $\Gamma \mid$ $B \vdash_v E_2 : C$, then $\Gamma_1 \mid A \vdash_v E_2[E_1[\cdot]] : C$

We now prove the following that will be needed later.

Lemma 15. If $\mathcal{D} :: \Gamma \mid B \to C \vdash_v E : D$ and $E \neq \cdot$ then $E = E'[\cdot v]$ with $\Gamma \vdash_v v : B \text{ and } \Gamma \mid C \vdash_v E' : D.$

Proof. The proof is done by induction on the derivation \mathcal{D} .

Base case
$$\mathcal{D} :: \frac{\mathcal{D}_1}{\Gamma \mid B \to C \vdash_v \cdot : B \to C} \frac{\mathcal{D}_2}{\Gamma \vdash_v v : B}$$

 $\Gamma \mid B \to C \vdash_v \cdot v : C$

The statement holds by letting $E' = \cdot$.

Base case $\mathcal{D} :: \Gamma \mid B \to C \vdash_v \cdot d : D$ The only derivation that allows to obtain \mathcal{D} is EV_{Dest} and this would imply that $\nu X.R = B \rightarrow C$ for some R which is impossible.

Induction step.

For both cases, we assume that $E \neq \cdot$. Otherwise, we get back to the two base cases.

 $\begin{array}{l} \text{Case } \mathcal{D} :: \underbrace{\Gamma \mid B \to C \vdash_v E : \nu X.R}{\Gamma \mid B \to C \vdash_v E.d : R_d[\nu X.R/X]} \\ E = E'[\cdot v] \text{ with} \\ \mathcal{E}_1 :: \Gamma \mid C \vdash_v E' : \nu X.R \text{ and} \\ \mathcal{E}_2 :: \Gamma \vdash_v v : B \\ \mathcal{E} :: \Gamma \mid C \vdash_v E'.d : R_d[\nu X.R/X] \end{array}$ by induction hypothesis on $\mathcal{D}'.$

Lemma 16. If $\mathcal{D} :: \Gamma \mid \nu X.R \vdash_{v} E : D$ and $E \neq \cdot$ then $E = E'[\cdot.d]$ with $\Gamma \mid R_d[\nu X.R/X] \vdash_{v} E' : D$.

Proof. The proof is done by induction on the derivation \mathcal{D} .

Base case $\mathcal{D} :: \Gamma \mid \nu X.R \vdash_v \cdot v : D$

This case is also impossible as the only rule that can be applied to obtain \mathcal{D} is $\mathrm{EV}_{\mathrm{App}}$ and this would require us to have $D' \to D = \nu X.R$ for some D' which is impossible.

Base case $\mathcal{D} :: \frac{\Gamma \mid \nu X.R \vdash_v \cdot \nu X.R}{\Gamma \mid \nu X.R \vdash_v \cdot d : R_d[\nu X.R/X]}$ The statement holds by setting $E' = \cdot$.

Induction step.

For both cases, we assume that $E \neq \cdot$. Otherwise, we get back to the two base cases.

$$Case \mathcal{D} :: \frac{\Gamma \mid \nu X.R \vdash_{v} E : D' \to D \quad \Gamma \vdash_{v} v : D'}{\Gamma \mid \nu X.R \vdash_{v} E v : D}$$

$$E = E'[\cdot.d] \text{ with}$$

$$\mathcal{E}_{1} :: \Gamma \mid R_{d}[\nu X.R/X] \vdash_{v} E' : D' \to D \qquad \text{by induction hypothesis on } \mathcal{D}_{1}.$$

$$\mathcal{E} :: \Gamma \mid R_{d}[\nu X.R/X] \vdash_{v} E' v : D \qquad \text{by EV}_{App}.$$

$$\begin{array}{l} \mathcal{D}'\\ \text{Case } \mathcal{D} :: \frac{\Gamma \mid \nu X.R \vdash_{v} E : \nu X.R'}{\Gamma \mid \nu X.R \vdash_{v} E.d' : R'_{d'}[\nu X.R'/X]}\\ E = E'[\cdot.d] \text{ with }\\ \mathcal{E}_{1} :: \Gamma \mid R_{d}[\nu X.R/X] \vdash_{v} E' : \nu X.R'\\ \mathcal{E} :: \Gamma \mid R_{d}[\nu X.R/X] \vdash_{v} E'.d' : R'_{d'}[\nu X.R'/X] \end{array}$$
by induction hypothesis on $\mathcal{D}'.$
by EV_{Dest}.

9 Copattern Coverage

We have a different judgment than the one for coverage in the case of copattern. It is the following $A \triangleleft | (\Delta \vdash q \Rightarrow C)$ or, more generally, $A \triangleleft | \vec{Q}$ where $\vec{Q} = (\Delta_i \vdash q_i \leftarrow C_i)_{i=1,\dots,n}$. The meaning behind this judgment is that C is covered by a list of patterns satisfying the judgments $\Delta_i | A \vdash q_i \Rightarrow C_i$. The rules are the following.

$$\frac{A \triangleleft | Q (\Delta \vdash Q \Rightarrow \nu x.R)}{A \triangleleft | Q (\Delta \vdash Q \Rightarrow \nu x.R)} CC_{\text{Head}} \frac{A \triangleleft | Q (\Delta \vdash Q \Rightarrow \nu x.R)}{A \triangleleft | \vec{Q} (\Delta \vdash q.d \Rightarrow R_d[\nu X.R/X])_{d \in R}} CC_{\text{Dest}}$$
$$\frac{A \triangleleft | \vec{Q} (\Delta \vdash q \Rightarrow B \to C) \quad B \triangleleft (\Delta_i \vdash p_i)_{i=1,...,n}}{A \triangleleft | \vec{Q} (\Delta, \Delta_i \vdash q p_i \Rightarrow C)} CC_{\text{App}}$$

Theorem 17. If $\mathcal{D} ::: |A \vdash_{v} E : D$ and $\mathcal{E} :: A \triangleleft | (\Delta_{i} \vdash q_{i} \Rightarrow C_{i})_{i=1,...,n}$ but not $\vdash_{v} E[f] : D$ then there are E_{1}, E_{2} such that $E = E_{1}[E_{2}[\cdot]], E_{2} = ?q_{i} \searrow \sigma$ for some $i, \cdot |A \vdash_{v} E_{2} : C_{i}$ and $\cdot |C_{i} \vdash_{v} E_{1} : D$.

Proof. This is proved by induction on \mathcal{E} .

Base case $\mathcal{E} :: \overline{A \triangleleft | (\cdot \vdash \cdot \Rightarrow A)}$ Choose $E_1 = E, E_2 = \cdot$. Then, $E_2 = ? \cdot \searrow \cdot$.

Induction Step.

Case $\mathcal{E} :: \frac{A \triangleleft | \vec{Q} (\Delta \vdash q \Rightarrow B \to C) \quad B \triangleleft (\Delta_i \vdash p_i)_{i=1,...,n}}{A \triangleleft | \vec{Q} (\Delta, \Delta_i \vdash q p_i \Rightarrow C)_{i=1,...,n}}$ By induction hypothesis, the statement holds for one of the patterns in

By induction hypothesis, the statement holds for one of the patterns in \vec{Q} ($\Delta \vdash q \Rightarrow B \rightarrow C$). If the pattern has been chosen in \vec{Q} we are done. Thus, without loss of generality, $E = E_1[E_2[\cdot]], \cdot \mid A \vdash_v E_2 : B \rightarrow C, \cdot \mid B \rightarrow C \vdash_v E_1 : D$, and $E_2 = \stackrel{?}{q} \searrow \sigma$.

If $E_1 = \cdot$ then $D = B \to C$ and $\vdash_v E[f] : D$ holds, which is a contradiction to our assumptions. If $E_1 \neq \cdot$, then $E_1 = E_1[\cdot v]$ with $\cdot \vdash_v v : B$ and $\cdot \mid C \vdash_v E'_1 : D$ by lemma 15.

Since $B \triangleleft (\Delta_i \vdash p_i)$, there is a p_i with $v = {}^? p_i \searrow \rho$ by theorem 9. Thus, $E'_2 = E_2 \ v, \ A \vdash_v E'_2 : C$ by EV_{App} , and $E'_2 = {}^? q \ p_i \searrow \sigma, \rho$ by PM_{App} .

Case
$$\mathcal{E} :: \frac{A \triangleleft | \vec{Q} (\Delta \vdash q \Rightarrow \nu X.R)}{A \triangleleft | \vec{Q} (\Delta \vdash q.d \Rightarrow R_d[\nu X.R/X])_{d \in R}}$$

By induction hypothesis, the statement holds for one of the patterns in \vec{Q} ($\Delta \vdash q \Rightarrow \nu X.R$). If the pattern has been chosen in \vec{Q} we are done. Thus, without loss of generality, $E = E_1[E_2[\cdot]], \cdot \mid A \vdash_v E_2 : \nu X.R, \cdot \mid \nu X.R \vdash_v E_1 : D$, and $E_2 = {}^? q \searrow \sigma$.

If $E_1 = \cdot$ then $D = \nu X.R$ and $\vdash_v E[f] : D$ holds, contradicting our assumption. Thus $E_1 \neq \cdot$ and, by lemma 16, $E_1 = E'_1[\cdot.d]$ with $\cdot \mid R_d[\nu X.R/X] \vdash_v E'_1 : D$.

10 Progress

Before stating and proving the progress theorem, we need to prove the decomposition theorem.

Lemma 18 (Decomposition Theorem). If $\cdot \vdash e : A$ then either

- 1. e = (), A = 1,
- 2. $e = (e_1, e_2), A = A_1 \times A_2,$
- 3. $e = c e', A = \mu X.D$,
- 4. $e = E_2[E_1[f] \ e']$ where $\cdot \models_v E_1 : B \to C, \cdot \mid C \vdash E_2 : A \text{ and } \not\models_v e' : B \text{ for some evaluation contexts } E_1, E_2, \text{ some term } e' \text{ and some types } B, C.$
- 5. e = E[f] and $\cdot \mid \Sigma(f) \vdash_v E : A$

Proof. The proof is done by induction on e.

Case $\vdash x : A$ is impossible as the term is closed.

Case $\vdash f : A$ matches with case 5 with $E = \cdot$ since we trivially have $\cdot \mid A \vdash_v E : A$.

Case \vdash () : A. Then A = 1 by inversion.

Case $\vdash (e_1, e_2) : A$. Then, $A = A_1 \times A_2$ by inversion.

Case $\vdash c \ e : A$. Then, $A = \mu X D$ by inversion.

Case $\vdash e_1 e_2 : A$. Then by inversion $\vdash e_1 : B \to A$ and $\vdash e_2 : B$. By induction hypothesis $e_1 = E[f]$ with $\cdot \mid \Sigma(f) \vdash_v E : A$ for some E or $e_1 = E_2[E_1[f] e']$ for some E_1, E_2 , and e' where $\cdot \mid \vdash_v E_1 : B \to C, \cdot \mid C \vdash E_2 : A$ and $\not \vdash_v e' : B$, as the 3 other cases are impossible. In the former case, if $\not \vdash_v e_2 : B$, we can obtain case 4 by letting $E_2 = \cdot$ and $E = E_1$. This gives us $e_1 e_2 = \cdot [E[f] e_2]$. If $\vdash_v e_2 : B$, then, by $EV_{App}, \cdot \mid \Sigma(f) \vdash_v E[f] e_2 : A$ and $E' = E e_2$. In the latter case, we have $E_2[E_1[f] e'] e_2 = E'_2[E_1[f] e']$ by setting $E_2[\cdot] e_2 = E'_2[\cdot]$.

Case $\vdash e.d$: A. Then by inversion, $\vdash e : \nu X.R$ for some R. By induction hypothesis, e = E[f] and $\cdot \mid \Sigma(f) \vdash_v E : \nu X.R$, or $e = E_2[E_1[f] e']$ where e'is not a value. In the former care, e.d = E[f].d = E'[f] and $\cdot \mid \Sigma(f) \vdash_v E.d :$ $R_d[\nu X.R/X]$ by EV_{Dest}. In the latter case, $e.d = E_2[E_1[f] e'].d = E'_2[E_1[f] e']$. From now on, we assume that the rules of every function f we use cover $\Sigma(f)$, more specifically, $\Sigma(f) \triangleleft | (\Delta_i \vdash q_i \Rightarrow C_i)_{i=1,...,n}$ where $q_i \in \text{Rules}(f)$ and for all $q \neq q_i$ for all $i \not q \notin \text{Rules}(f)$. We will denote this $\Sigma(f) \triangleleft | \text{Rules}(f)$.

Theorem 19. If $\mathcal{D} ::\vdash e : A$ then either $\vdash_v e : A$ or $e \to e'$ for some e'

Proof. The proof is done by induction on e. By the decomposition theorem, we have four possible cases.

Base case e = (), A = 1. Then $\vdash_v () : 1$ by V_{Var} .

Induction step

Case $e = (e_1, e_2), A = A_1 \times A_2.$

By inversion on T_{Pair} , we have $\vdash e_1 : A_1$ and $\vdash e_2 : A_2$. By induction hypothesis, either $\vdash_v e_1 : A_1$ or $e_1 \to e'_1$. In the latter case, we obtain $(e_1, e_2) \to (e'_1, e_2)$ by R_{Pair} .

In the former case, we apply induction hypothesis on e_2 to obtain either $\vdash_v e_2 : A_2$ or $e_2 \to e'_2$. In the former case, we obtain $\vdash_v (e_1, e_2) : A_1 \times A_2$ by V_{Pair}. In the latter case, we have $(e_1, e_2) \to (e_1, e'_2)$ by R_{Pair}.

Case $e = c e', A = \mu X.D.$

By inversion on T_{Const} , we have $\vdash e' : D_c[\mu X.D/X]$. By induction hypothesis, either $\vdash_v e' : D_c[\mu X.D/X]$ or $e' \to e''$. In the former case, $\vdash_v c e' : \mu X.D$ by V_{Const} . In the latter case, $c e' \to c e''$ by R_{Const} .

Case $e = E_2[E_1[f] e']$ where e' is not a value. Then, by induction hypothesis $e' \to e''$ for some e'' and so $E_2[E_1[f] e'] \to E_2[E_1[f] e'']$.

Case e = E[f] and $\cdot \mid \Sigma(f) \vdash_v E : A$.

If $\vdash_v E[f] : A$ then we are done. Without loss of generality, we assume it is not the case. By our assumption on f, $\Sigma(f) \triangleleft |\operatorname{Rules}(f)$. Thus we can apply theorem 17 and obtain E_1, E_2 such that $E = E_1[E_2[\cdot]], E_2 = {}^? q_i \searrow \sigma$ for some $q_i \in \operatorname{Rules}(f), \cdot | \Sigma(f) \vdash E_2 : C_i \text{ and } \cdot | C_i \vdash_v E_1 : A$. Thus, by our reduction rules $E_2[f] \mapsto u_i[\sigma]$ where $(q_i, u_i) \in \operatorname{Rules}(f)$ and so $E_2[f] \to u_i[\sigma]$. We conclude that $E_1[E_2[f]] \to E_1[u_i[\sigma]]$.