
Ludwig-Maximilians-Universität München

Institut für Informatik

Type Checking Without Types

Matthias Benkard

April 16, 2013

Zusammenfassung

Wir stellen TypeCore vor, eine funktionale Sprache, deren Typsystem grob an ab-
hängige Typen angelehnt ist, jedoch auf Mereologie anstelle von Mengenlehre ba-
siert. Diese Neuerung macht die Trennung zwischen Typen und kinds sowie das
Vorhandensein eines Set-Typen überflüssig. In unserem Formalismus ist Typisierung
zu Subtyping äquivalent: Ein Wert ist genau dann ein Bewohner des Typen α, wenn
er ein Subtyp von α ist.

Da jeder Wert zugleich ein Typ ist, ist es unnötig, syntaktisch zwischen Typen und
Programmcode zu unterscheiden. Insbesondere lassen sich algebraische Datentypen
durch denselben Fixpunktmechanismus definieren wie rekursiv definierte Funktio-
nen. Ebenso sind Pfeiltypen Funktionen, die wie ihre „Bewohner“ Musterangleich
für Fallunterscheidungen einsetzen. Σ-Typen schließlich sind durch Komprehensio-
nen darstellbar.

ii

Abstractum

Proponimus linguam ordinatri TypeCore, systema classificationis eius, a classi-
ficationes dependentes quidem derivata, non copiis constructa, sed qualitate me-
reologica est. In lingua ea, omnis res certe classificatione, si subclassificatio illius
est.

Omnibus rebus classificationibus, syntax speciala classificationium non necesse
est. Exemplo gratia, classificationes datorum algebraicorum puncto stabile definire
potes, quomodo functiones recursivas definis. Simile, classificationes existentiales
comprehensionibus, universales functionibus expressibiles sunt.

iii

Abstract

We introduce TypeCore, a programming language with a type system roughly
based on dependent types, but built on top of mereology rather than set theory (and
thus without the need for a Set type). In our formalism, typing is equivalent to
subtyping; that is, a value is a member of the type α iff it is a subtype of α.

Since every value is a type, there is no need for special syntax for the declaration
or definition of types. In particular, algebraic data types can be defined through the
same fixed-point mechanism that is used for recursive function definitions. Similarly,
arrow types are functions, employing pattern matching just as their “members” do.
Finally, Σ-types can be represented by object comprehensions.

iv

Acknowledgments

I would like to thank my advisor, Andreas Abel, for his help and patience. He
spent an extroardinary amount of time dispelling my regular confusion and provid-
ing me with valuable input.

Helmut Schwichtenberg introduced me to mathematical logic and frequently en-
couraged me to investigate more advanced topics.

The department graciously funded my first encounter with international scientists,
which was an inspiring and important experience. I would like especially to thank
Martin Hofmann for introducing me to the program and Hans JÃijrgen Ohlbach for
his efforts in providing me with the necessary information and motivation.

Finally, I thank my supervisor, Martin Hofmann, who gave me encouragement not
just in writing this diploma thesis, and who has acquired some of the most helpful
and inspiring research fellows in his position of chair head.

v

Contents

1 Introduction 1

2 Syntax 3
2.1 Grammar . 3
2.2 Examples . 3

2.2.1 Natural numbers . 3
2.2.2 Vectors . 4
2.2.3 Destructuring . 5
2.2.4 Comprehensions and Σ-types . 5

3 Evaluation 7
3.1 Definitions . 7
3.2 Syntactic Classes. 7
3.3 Evaluation. 7
3.4 Pattern matching. 9
3.5 Determinism . 10

4 Type system 11
4.1 Basic checking rules . 11
4.2 Application checking. 13
4.3 Context refinement . 15
4.4 Interlude: Pattern normalization . 16
4.5 Function argument checking . 17
4.6 Interlude: Intersection . 17
4.7 Pattern matching . 18
4.8 Function clause compatibility . 20
4.9 Unification . 20
4.10 Bound extraction . 22
4.11 Pair Split . 23
4.12 Pattern coverage . 23

5 Implementation notes 29
5.1 Parsing . 29
5.2 Global variables . 29
5.3 Evaluation . 30
5.4 Type checking . 30
5.5 Additional features . 31

5.5.1 Top-level definitions . 31
5.5.2 Integer arithmetic . 32
5.5.3 Read–eval–print loop . 33

vi

Contents

5.6 Conflict resolution . 33
5.6.1 Type and pattern split . 33
5.6.2 Compile-time versus run-time application 34

6 Related work 37
6.1 Pure subtype systems . 37
6.2 Soft typing . 37
6.3 Recursive union and intersection types 37
6.4 Polymorphic variants . 37

7 Conclusion and outlook 39

References 41

vii

Listings

2.1 Peano-natural numbers in Agda. 4
2.2 Peano-natural numbers in TypeCore. 4
2.3 Fixed-length vectors in Agda . 4
2.4 Fixed-length vectors in TypeCore . 5
2.5 first in TypeCore . 5
2.6 Length–vector pairs in Agda . 5
2.7 Length–vector pairs in TypeCore . 5
2.8 Non-empty length–vector pairs in TypeCore 6
2.9 Alternative first definition in TypeCore 6
5.1 SearchTree and Checker . 31
5.2 Identity on the natural numbers in TypeCore. 32
5.3 An ill-formed application. 32
5.4 “Unrounding” of a function. 32
5.5 Factorial in TypeCore . 33
5.6 Transcript of a REPL session. 36
6.1 OCaml not function, based on polymorphic variants. 38
6.2 OCaml not function, based on polymorphic variants. 38
6.3 OCaml not function, restricted to a ‘False argument by subtyping. . . 38
6.4 Recursive variants in OCaml. 38
7.1 Predicate logic in TypeCore. 39

viii

1 Introduction

In dependent type theory, originally developed by Martin-Löf [PM84], programmers
can do type-level calculation and have types depend on values. There is, however,
traditionally still a clear distinction between (compile-time, static) types and (run-
time, dynamic) values. In Agda [BDN09], for example, types cannot be the result of
a run-time expression. Neither can the input of a program be a type.

This strict separation between types and values is rooted in set theory. In
ZFC [Jec11], for example, the foundation axiom mandates that some kind of type
hierarchy needs to exist, with atomic values at the bottom and an arbitrarily large
tower of sets on top.

But set theory, while an extremely useful foundation of mathematics, is quite
limited as applied to the physical world. Sets are, after all, an abstract concept
with no physical counterpart. For is anything really a set of things, rather than an
arbitrary collection without any kind of hierarchy in between the components? One
would be hard-pressed to suggest, for instance, that the room I am located in while I
am writing this text has the chair I am sitting on as an element, whose elements, again,
include its legs, which are somehow not elements of the room directly. Indeed,
parthood is naturally transitive, and it would be quite elegant to be able to say that
every object is part of itself, which cannot be modeled adequately using the ε-relation
of set theory. Ancient philosophical wisdom notwithstanding, in the physical world,
the whole really is the sum of its parts!

Because of this impedance mismatch, axiomatic mereology [CV99] has been pro-
posed as an alternative to set theory, particularly in fields related to topology.

We suggest that mereology might not only be a good fit for physical and geomet-
rical modelling, but also for modelling computation. For one, database systems have
long relied on the relational algebra and relational calculus for their models. Both
formalisms are usually described as set-theoretical, but in fact, instead of elements,
operate purely on non-nested collections. Indeed, the join operator of the relational
algebra, arguably its most significant contribution above the use of set theory itself,
is precisely a non-nested cartesian product. All things considered, one cannot help
but wonder whether a mereological underpinnings would be more appropriate than
ZFC for relational models.

In addition, non-deterministic computation, as implemented in logic-oriented lan-
guages like Prolog [SS94], handles collections of both input and output values in
much the same way as the relational calculus, namely by way of joins, unions and
intersections. Here, too, mereology could prove to be an appropriate semantical
foundation.

In this work, we explore a slightly different angle, namely static typing of purely
functional, mereological programs. To this effect, we propose a variation on the
λ-calculus with a mereological semantics.

Our type system is loosely based on dependent types, but tailored towards the

1

1 Introduction

mereological case. Instead of the ε-relation, we base our type judgments on part-
hood, i. e., a value v is of type A if and only if it is a part of type A. One immediate
consequence is the absence of any distinction between types and their inhabitants:
Every value is a type containing itself and all of its parts; and conversely, every type
is a composite value consisting of its inhabitants.

2

2 Syntax

2.1 Grammar

The language grammar is deliberately minimal. There are two kinds of literals lit:
Apart from integers, we have Lisp-like symbols of the form ′ident that serve as a
replacement for type and data contructors. In addition to the pair constructor, there
is a second infix operator ⊕ that is used to denote a mereological fusion. Finally,
functions are composed of (pattern, expression) pairs where the pattern can include
bounds (p <: τ) that restrict argument types.

Exp 3 e, f , A, B ::= x Bound variable
| a Parameter
| c Literal
| e, e′ Pair
| f e Application
| fun

{−−−→p→ e
}

Function
| let σ in e Local bindings
| fix px → e Fixed-point (recursion)
| ⊕~e Fusion
| e <: A Restriction (type annotation)
| {p} Comprehension

Lit 3 c ::= ′alpha | 0 | 1 | 2 | . . .
Pat 3 p, q ::= x | c | p, q | p <: A Pattern
VarPat 3 px ::= x | x <: A Variable pattern
Env 3 σ ::= · | σ, x= e Substitution

We further define a number of abbreviations.

> := {x}
⊥ :=

⊕{} (i. e., the empty fusion)
fun {~p→ e} := fun {p1 → fun {p2 → · · · fun {pn → e} · · · }}
let x ~p = e := let x = fun {~p→ e}

2.2 Examples

2.2.1 Natural numbers

To illustrate the way the language works, consider Listing 2.1 in the dependently
typed language Agda.

3

2 Syntax

Listing 2.1 Peano-natural numbers in Agda.

data Nat : Set where
Zero : Nat

Succ : Nat → Nat

Here, we define an algebraic data type called Nat consisting of two constructors
Zero and Succ, the latter taking another value of type Nat as an argument. We use
this type to model the natural numbers in the usual Peano way.

In addition, we define a data type Vec, modelling a space of lists, which encodes
the length of its elements, the type of which is given as an argument to the type
constructor, using an argument of type Nat. Thus, Vec is a dependent type, relying
on a constructor Cons doing type-level computation.

In TypeCore, we can approximate the definition of Nat by the use of pair con-
struction, disjunction, and recursion (Listing 2.2).

Listing 2.2 Peano-natural numbers in TypeCore.

let nat = fix nat → ’zero ⊕ (’s, nat)

(In the following, we will be omitting the explicit fixed-point for implied recursion
in all example definitions.)

This expression evaluates to ′zero⊕ (′s, (′zero⊕ (′s, ′zero⊕ ...))), which is equiva-
lent to ′zero⊕ (′s, ′zero)⊕ (′s, (′s, ′zero))⊕ ..., as close to the set of naturals as we can
get using mereological sums. We now have ′zero <: nat, (′s, ′zero) <: nat, and so
on, as in the set-theoretical case. In addition, we also have ′zero⊕ (′s, ′zero) <: nat,
et cetera.

2.2.2 Vectors

One particularly traditional example of dependent typing is the type of vectors of
a specified length n containing elements of a given type a. An implementation in
Agda is given in Listing 2.3.

Listing 2.3 A type of fixed-length vectors in Agda.

data Vec (a : Set) : Nat → Set where
Nil : Vec a Zero

Cons : (n : Nat) → a → Vec a (Succ n)

A TypeCore translation is possible by defining a recursive function taking the
element type and length as arguments (Listing 2.4).

4

2 Syntax

Listing 2.4 A type of fixed-length vectors in TypeCore.

let vec = fun {a → fun {’zero → ’nil; (’s,n) → (a, vec a n)}}

Note that in the TypeCore version, we have omitted specifying the second argu-
ment to be of type nat, which we could have done by annotating both clauses of the
inner function by a pattern bound.

2.2.3 Destructuring

Vectors and natural numbers as defined above can be processed by pattern matching,
as usual (Listing 2.5).

Listing 2.5 A type-safe first function in TypeCore.

let first = fun {a n (x, xs) → x}

<: fun {a n (v <: vec a (’s, n)) → a}

If our system is to succeed in posing an alternative to dependent types, it must be
able to determine that first is indeed a function that maps non-empty vectors to their
element types.

2.2.4 Comprehensions and Σ-types

As a final example of the basic syntactic correspondence between TypeCore and set-
based, dependently typed programming languages, consider the Agda code frag-
ment given in Listing 2.6 defining an abstract type comprised of pairs of naturals n
and vectors of the corresponding length.

Listing 2.6 A type of vectors paired with their lengths in Agda.

data ArbVec (a : Set) : Set where
arbVec : (n : Nat) → Vec a n → ArbVec a

Since there are no dependent pairs in TypeCore, we use an object comprehension
instead. The corresponding code is given in Listing 2.7.

Listing 2.7 A type of vectors paired with their lengths in TypeCore. arbvec a =
{n <: nat, v <: vec n a} is taken to be the fusion

⊕
n≤nat,v≤(vec n a) (n, v).

let arbvec = fun {a → {(n <: nat, v <: vec n a)}}

5

2 Syntax

Now, note that (′s, nat) is the type of natural numbers ≥ 1. From this, it is easy
to see how to define a subtype of arbvec containing only non-empty vectors. See
Listing 2.8 for the implementation.

Listing 2.8 A type of non-empty vectors paired with theirs lengths in TypeCore

let arbvec1 = fun {a → {(n <: (’s, nat), v <: vec n a)}}

In Listing 2.9, we also rewrite f irst to take objects of type arbvec1 as arguments.

Listing 2.9 Another safe definition of first in TypeCore.

let first’ = fun {a ((’s, n), (x, xs)) → x}

Given these definitions, we expect our system to be able to prove that f irst′ <:
fun {a (v <: arbvec1 a)→ a}.

6

3 Evaluation

3.1 Definitions

Definition 1. Let FV(e) be the set of free variables of e, Par(e) the set of parameters
occurring in e.

A list Γ of the form

Ctx 3 Γ, ∆ ::= · empty context
| Γ, a <: A bound

is called a context iff for every initial slice (Γ′, a <: A) ⊂ Γ, we have FV(A) = ∅ and
Par(A) ⊂ dom(Γ′).

Definition 2. A list ρ of the form

Subst, Env 3 ρ ::= · empty substitution
| ρ, x = e value binding

is called a substitution. Moreover, it is called an environment iff for every pair
(x = e) ∈ ρ, FV(e) = ∅ (a notable special case being the parameter case x = a).

Convention 3. A substitution used in a let-expression need not be an environment. Substi-
tutions passed to judgment predicates, however, are generally assumed to be environments.

3.2 Syntactic Classes.

We introduce several syntactic classes for various kinds of expressions:

E ::= · | E e | w f S evaluation context
S ::= E | (S, e) | (let ρ in p, S) matching context
n ::= E[a] neutral value

w ::= n | c | let ρ in v closure
v ::= v f | e, e′ | {p} value

w f ::= let ρ in v f function closure
v f ::= fun

{−−−→p→ e
}
| fix px → e function value

wu ::= n | c | let ρ in vu non-recursive closure
vu ::= fun

{−−−→p→ e
}
| e, e′ | {p} non-recursive value

3.3 Evaluation.

Evaluation is given by two non-deterministic relations:

7

3 Evaluation

Γ ` LeMρ ↘ w Expression e can evaluate to w in environment ρ, rounding wrt. Γ

Γ ` LeMρ ↘! w
Expression e can evaluate to non-fixed-point value wu
in environment ρ, rounding wrt. Γ

Free variables are interpreted according to the environment ρ. The context Γ is
used to round parameters to their bounds whenever evaluation would get stuck
otherwise. Parameters are, however, kept as-is when there is no need for rounding.

In case a parameter in need of rounding to proceed is not present in Γ, evaluation
gets stuck, yielding a neutral value. Otherwise, the result is a value of the form v.

We introduce two abbreviations for evaluation of closures (or values):

Γ ` w↘ w′ ⇐⇒ Γ ` LwM · ↘ w′ Evaluation of closure w
Γ ` w↘! w′ ⇐⇒ Γ ` LwM · ↘! w′ Forcing of closure w

Evaluation is defined inductively by the following rules:

Γ ` ρ(x)↘ w
Γ ` LxMρ ↘ w Γ ` LaMρ ↘ a Γ ` LcMρ ↘ c Γ ` LvMρ ↘ let ρ in v

Γ ` L(e1, e2)Mρ ↘ let ρ in (e1, e2)

Γ ` LeiMρ ↘ w
Γ ` L⊕~eMρ ↘ w

Γ ` LeMρ,let ρ in σ ↘ w
Γ ` Llet σ in eMρ ↘ w

Γ ` LeMρ ↘ w
Γ ` Le <: AMρ ↘ w

Γ ` L f Mρ ↘! let ρ′ in fun
{−−−→p→ e

}
Γ ` LeMρ ! pi ↘ ρ′′ Γ ` LeiMρ′,ρ′′ ↘ w

Γ ` L f eMρ ↘! w

Stuck evaluation. Evaluation can get stuck whenever computation needs to be
done on neutral values such as parameters:

Γ ` L f Mρ ↘! n
Γ ` L f eMρ ↘ n (let ρ in e)

Γ ` L f Mρ ↘! w f w f = let ρ′ in fun
{−−−→p→ e

}
Γ ` LeMρ ! pi ↘ S[a]

Γ ` L f eMρ ↘ w f S[a]

8

3 Evaluation

Recursion unrolling. Finally, recursion-unrolling evaluation is defined in the
straight-forward way:

Γ ` LeMρ ↘ wu

Γ ` LeMρ ↘! wu

Γ ` LeMρ ↘ w f w f = let ρ′ in fix px → e′ Γ ` Le′Mρ′,x=w f
↘! wu

Γ ` LeMρ ↘! wu

Example 4.

` fix nat→ ′zero⊕ (′s, nat) ↘ fix nat→ (′zero⊕ (′s, nat))
` fix nat→ ′zero⊕ (′s, nat) ↘! let {nat = fix nat→ ...} in (′s, nat)
` fix nat→ ′zero⊕ (′s, nat) ↘! ′zero

3.4 Pattern matching.

Pattern matching consists of attempting to destructure an expression e such that
the given pattern p is matched. The result is either an environment σ binding the
pattern variables of p to the corresponding values arising from the pattern match, or
a stuck-match context.

Γ ` LeMρ ! p↘ σ Pattern matching e in ρ against p succeeds with substitution σ

Γ ` LeMρ ! p↘ S[a] Pattern matching e in ρ against p is stuck

Successful matches. Successful matches of an expression e against a pattern p
always yield an environment σ as their result. σ can be used to bind the variables of
p according to e.

Γ ` LeMρ ! x ↘ (x = let ρ in e)
Γ ` LeMρ ! p↘ σ

Γ ` LeMρ ! (p <: A)↘ σ

Γ ` LeMρ ↘! c
Γ ` LeMρ ! c↘ ·

Γ ` LeMρ ↘! let ρ′ in (e1, e2) Γ ` LeiMρ′ ! pi ↘ ρi for i = 1, 2
Γ ` LeMρ ! (p1, p2)↘ (ρ1, ρ2)

9

3 Evaluation

Stuck matches. Matches get stuck whenever a neutral value is matched against
a non-trivial pattern and there is no way of rounding the value such that pattern
matching can be guaranteed to either succeed or fail. In this case, the result is a
matching context, which is a specific form of neutral value.

Γ ` LeMρ ↘! n
Γ ` LeMρ ! c↘ n

Γ ` LeMρ ↘! n
Γ ` LeMρ ! (p1, p2)↘ n

Γ ` LeMρ ↘! let ρ′ in (e1, e2) Γ ` Le1Mρ′ ! p1 ↘ S[a]
Γ ` LeMρ ! (p1, p2)↘ (S[a], let ρ′ in e2)

Γ ` LeMρ ↘! let ρ′ in (e1, e2) Γ ` Le1Mρ′ ! p1 ↘ ρ1 Γ ` Le2Mρ′ ! p2 ↘ S[a]

Γ ` LeMρ ! (p1, p2)↘
(
(let ρ1 in p1) , S[a]

)

Rounding match. Whenever evaluation might get stuck because of a pattern match
against a neutral value, it can instead round the neutral value using the context Γ
and proceed.

Γ ` v↘! E[a] a ∈ dom(Γ) Γ ` LE[Γ(a)]Mσ ! p↘ ρ

Γ ` LvMσ ! p↘ ρ

Note 5. Matching cannot get stuck if Γ contains bounds for all parameters occurring in e.
In this case, the result will always be an environment.

Example 6.

· ` (′s, a) ! (x, y, z) ↘ ((let x = ′s in x) , a)
a <: nat ` (′s, a) ! (x, y, z) ↘ x = ′s, y = ′s, z = nat

3.5 Determinism

For each non-deterministic evaluation judgment↘, we define a deterministic coun-
terpart↘↘, which collects all possible evaluation results into a sum.

Γ ` LeMρ ↘↘
⊕{w | Γ ` LeMρ ↘ w}

Γ ` LeMρ ↘↘! ⊕{w | Γ ` LeMρ ↘! w}

Γ ` LeMρ ↘↘
⊕{(w, w′) | Γ ` LeMρ ↘ w, w′}

10

4 Type system

Note 7. In the following, we will often encounter rules that round information either upward
or downward. This is justified by transitivity of parthood, i. e.,

∀A, B, C (A <: B ∧ B <: C =⇒ A <: C)

from which arises the general rule that in order to stay sound, the formalism may only
round the left-hand side of a subtyping relation to be checked upward, while the right-hand
side may only be rounded downward.

In particular, the typing context Γ, which stores known bounds of expressions, is applicable
to the left-hand side of the subtype relationship only, while non-determinism may only be
applied on the right-hand side.

4.1 Basic checking rules

Γ ` LeMδ ⇔ B Parthood. The fundamental type-checking judgment Γ ` LeMδ ⇔ B
states that in the context Γ, e interpreted within the environment δ is guaranteed to
be a mereological part (i. e., a subtype) of B. B is assumed to be a closed expression.
The parameters occurring in e must have bounds provided by Γ. Parameters may
independently occur in B irrespective of the presence of a bound in Γ.

Basic rules. Bound checking generally proceeds according to structural induction
over the left-hand-side expression, as given by the following set of rules.

Γ ` Lδ(x)M· ⇔ A
Γ ` LxMδ ⇔ A

· ` C ↘! c
Γ ` LcMδ ⇔ C

· ` C ↘! a
Γ ` LaMδ ⇔ C

Γ ` LeMδ ⇔ > Γ ` Le′Mδ,x=(let δ in e) ⇔ A
Γ ` Llet x= e in e′Mδ ⇔ A

∀i. Γ ` LeiMδ ⇔ C
Γ ` L

⊕
~eMδ ⇔ C

∀i. Γ ` LpiMδ · ` A↘! let ρ in fun
{−−−→

q→ t
}

∀j. Γ ` LqjMρ C L~pMδ

∀i, j. Γ ` Lpi → eiMδ <: Lqj → tjMρ

Γ ` Lfun
{−−−→p→ e

}
Mδ ⇔ A

(⇔fun)

Γ, a <: (let δ in A) ` LeMδ,x=a ⇔ A Γ ` LAMδ ⇔ C
Γ ` Lfix (x <: A)→ eMδ ⇔ C

· ` C ↘! let ρ in (C1, C2) Γ ` Le1Mδ ⇔ let ρ in C1 Γ ` Le2Mδ ⇔ let ρ in C2

Γ ` L(e1, e2)Mδ ⇔ C

11

4 Type system

Γ ` LeMδ ⇔ (let δ in t) Γ ` LtMδ ⇔ C
Γ ` L(e <: t)Mδ ⇔ C

Γ ` L f eMδ@·⇔ C
Γ ` L f eMδ ⇔ C

(⇔app)
Γ ` LeMδ !! p

Γ ` LeMδ ⇔ {p} (⇔cmp)

Most rules should be self-explanatory. The rules (⇔ f un), (⇔app), and (⇔cmp),
however, do warrant an explanation.

(⇔cmp) In order to verify that a value v belongs to a comprehension {p}, we need
to prove that v matches the pattern p. Since we need to do this statically for an
expression e, a great deal of machinery is necessary to do case distinctions on
the known type (i. e., bound) of e. See Section 4.7 for details.

(⇔app) In a way, application checking is the heart of every type checker. Here,
too, the complexity of the task warrants its own judgment. See Section 4.2 for
details.

(⇔ f un) Function subtyping, finally, is refreshingly simple. To prove that
fun

{−−−→p→ e
}
<: fun

{−−−→
q→ t

}
, we need only check two things:

1. Argument contravariance: Any value matching some qj must also match
some pi. This is pattern coverage, which is described in Section 4.12.

2. Result type covariance: Under the assumption that pi and qj simultane-
ously match a value v, ei must be a subtype of tj after matching. This is
clause compatibility, covered in Section 4.8.

Rounding. As noted in the beginning of this section, left-hand-side expressions
may always be rounded toward their bounds as stored in the bound context Γ. We
introduce a straight-forward rule to this effect.

Γ ` LΓ(a)M· ⇔ C
Γ ` LaMδ ⇔ C

Well-formedness. While the top type > is technically a special case of a compre-
hension (> = {x}), special rules must still be provided for well-formedness checking
in order to avoid the need for circular reasoning.

12

4 Type system

∀i. Γ ` LpiMδ ∀i. Γ ` Lpi → eiMδ <: L_→ >Mρ

Γ ` Lfun
{−−−→p→ e

}
Mδ ⇔ >

Γ ` LcMδ ⇔ > Γ ` LaMδ ⇔ >
Γ ` Le1Mδ ⇔ > Γ ` Le2Mδ ⇔ >

Γ ` L(e1, e2)Mδ ⇔ >

Structural context checking. Finally, in order to be able to check general stuck
expressions, we can do a structural check instead of rounding.

· ` C ↘! E′[a] Γ ` E <: E′

Γ ` E[a] <: C

Example 8. Assuming the definitions of Section 2.2, we can prove the conjecture made
earlier:

⊢ L(′s, n), (x, xs)M ·
(1)

⊢ fun. . . ց!
let · in fun. . .

(2)

⊢ L. . .M · ⊳ L. . .M ·
(3)

⊢ L. . . → id a xM · <: L. . . → aM ·
(4)

⊢ Lfun {((′s, n), (x, xs)) → id a x}M · ⇔ fun {((m <: (′s, nat)), (v <: vec a m)) → a}

Subderivations will be given as the corresponding judgments are introduced. They have
been assigned reference numbers for this purpose.

Derivation (2), however, can be given immediately:

⊢ fun {((m . . .), (v . . .)) → id a x} ց!
let · in fun {((m . . .), (v . . .)) → id a x}

by axiom

4.2 Application checking.

Γ ` L f Mδ@~e⇔ C
Checking an application f ~e works by first collecting the arguments ~e from right

to left as long as the applicand f is not a fun form, rounding and unfolding the
applicand as necessary, and finally applying the collected arguments from left to
right by pattern matching.

The collection and base rules are as follows.

13

4 Type system

Γ ` LeMδ ⇔ C
Γ ` LeMδ@·⇔ C

Γ ` L f Mδ@
(
(let δ in e) ,~e

)
⇔ C

Γ ` L f eMδ@~e⇔ C
Γ ` LeMδ ⇔ > Γ ` Le′Mδ,x=(let δ in e)@~e⇔ C

Γ ` Llet x= e in e′Mδ@~e⇔ C

Γ, a <: (let δ in A) ` L f Mδ,x=a@~e⇔ A Γ ` LAMδ ⇔ >
Γ ` Lfix (x <: A)→ f Mδ@~e⇔ C

(@ f ix)

Γ ` Lδ(x)M·@~e⇔ C
Γ ` LxMδ@~e⇔ C

Γ ` LΓ(a)M·@~e⇔ C
Γ ` LaMδ@~e⇔ C

The actual application check can be performed by two competing rules.

Γ ` Le1M· ⇔ >
Γ ` e1 � ~e1 ↘ Γ′

∀i. ∃j. Γ′ ` Lei
1M· ⇔ L(pj → tj)Mδ ↘ D; Γ′′

Γ′′ ` LDM·@(e2, . . . , en)⇔ C

Γ ` Lfun
{−−−→

p→ t
}
Mδ@(e1, . . . , en)⇔ C

(@check)

Γ ` L(let δ in f) e1M · ⇔ >
Γ ` L(let δ in f) e1M · ↘↘~r
Γ ` L

⊕
~rM·@e2, . . . , en ⇔ C

Γ ` L f Mδ@e1, . . . , en ⇔ C
(@eval)

Explanation:

(@check) This is the traditional application checking rule. For the applicand f , we
enforce a function form fun

{−−−→
p→ t

}
. We first check that for all values that

might be produced by the argument e1, some pi will match. Finally, for each
matching case, we verify that the corresponding clause produces a subtype of
whatever type we are checking against. See Section 4.5 for details on how we
compute the type resulting from the match.

In order to be able to do the case distinction, we split e1 into subcases ~e1 and
check each subcase separately. Splitting is non-deterministic (see Section 4.12);
there are many possible outcomes. A heuristic that works well for match check-
ing is described in Section 5.6.1.

14

4 Type system

(@eval) Alternatively, we can simply check the application for well-formedness
(which is a lot easier than checking that it produces the correct result type)
and unfold it statically, at checking time.

Note 9. The (@eval) rule is in obvious competition with the (@check) rule. Note that the
(@check) rule actually suffices in the absence of polymorphic function types. In fact, (@eval)
is precisely the rule to use when a function is applied to a “type” argument. Since there is no
distinction between types and values in TypeCore, the ambiguity appears to be essential.

An actual implementation might want to introduce explicit annotations to resolve the
ambiguity between run-type and compile-time application. Our implementation does, in
fact, provide such a mechanism. See Section 5.6.2 for details.

Example 10.

nn <: nat ⊢ LaM · ⇔ ⊤
axiom

nn <: nat ⊢ L(′s, nn)M · ⇔ ⊤
(...)

nn <: nat ⊢ L(′s, nn)M · ⇔ L((k <: nat) → b)M · ց b; nn <: nat
(...)

nn <: nat ⊢ LbM · ⇔ ⊤
axiom

nn <: nat ⊢ LbM · @ ⇔ ⊤

nn <: nat ⊢ Lfun{(k <: nat) → b}M · @(′s, nn) ⇔ ⊤
(@check)

. . . ⊢ LaM · ⇔ L(b → fun{(k . . .) → b})M · ց fun{(k . . .) → a}; . . .
(...)

nn <: nat ⊢ Lfun{b → fun{(k <: nat) → b}}M · @a, (′s, nn) ⇔ ⊤
(@check)

nn <: nat ⊢ LvecM · @a, (′s, nn) ⇔ ⊤
(note)

nn <: nat ⊢ Lvec aM · @(′s, nn) ⇔ ⊤

nn <: nat ⊢ Lvec a (′s, nn)M · @ ⇔ ⊤

(7) ⇐⇒ nn <: nat ⊢ Lvec a (′s, nn)M · ⇔ ⊤

Note 11. In the example derivation, we round vec as if it were a parameter whose bound is
contained in Γ. In the actual implementation, global variables are handled specially so as to
make this possible. See Section 5.1.

4.3 Context refinement

For structural checking of normals, we define two judgments that check evaluation
and matching contexts for an inclusion relationship depending on their syntactic
class.

Γ ` LEMδ ⇔ E′ Evaluation context refinement.

15

4 Type system

Γ ` L · Mδ ⇔ ·

Γ ` LEMδ ⇔ E′ Γ ` LAMδ ⇔ A′

Γ ` LE AMδ ⇔ E′ A′
Γ ` Lw f Mδ ⇔ w′f Γ ` LSMδ ⇔ S′

Γ ` Lw f SMδ ⇔ w′f S′

Γ ` LSMδ ⇔ S′ Matching context refinement.

Γ ` LSMδ ⇔ S′ Γ ` LAMδ ⇔ A′

Γ ` L(S, A)Mδ ⇔ (S′, A′)
Γ ` LAMδ ⇔ A′ Γ ` LSMδ ⇔ S′

Γ ` L(A, S)Mδ ⇔ (A′, S′)

Note 12 (Promotion vs. structural subtyping). When checking a stuck application, we
need to choose between rounding the head towards its bound or doing a structural check. As
the following example adapted from [Ste98, Ex. 5.93] demonstrates, structural checking is
not always the right choice.

Γ ` (fun y→ y 1) (fun x → a (minus x))↘! a (minus 1)
. . . ` a (minus 1) <: a (minus 1)

a <: fun (y <: Nat→ Nat)→ y 1 ` a (fun (x <: Nat)→ a (minus x)) <: a (minus 1)

4.4 Interlude: Pattern normalization

LpMδ ↘P p′ Pattern normalization. Pattern normalization pushes an enviroment δ

into the bounds of a pattern p, thereby closing p with regard to δ.
This is mainly a convenience predicate. We will often use it in the following

inductive definitions of predicates to avoid having to explicitly pass environments
along with every pattern.

LxMδ ↘P x LcMδ ↘P c
Lp1Mδ ↘P p′1 Lp2Mδ ↘P p′2

Lp1, p2Mδ ↘P (p′1, p′2)

LpMδ ↘P p′

Lp <: BMδ ↘P (p′ <: let δ in B)

16

4 Type system

4.5 Function argument checking

Γ ` LeMδ ⇔ L(p→ t)Mρ ↘ C Function argument check. We define a simple judg-
ment that:

• verifies an argument e as a valid argument to a function clause p → t as inter-
preted in their respective environments, and

• yields the result of applying the environment resulting from the pattern match
of e against p to the right hand side of the clause.

Both of these goals are easily implemented by resorting to the generic pattern
match judgment, which is described in Section 4.7.

LpMρ ↘P p′ Γ ` LeMδ ⇔ p′ <: > ↘ Γ′; ρ′

Γ ` LeMδ ⇔ L(p→ t)Mρ ↘ let ρ′ in t; Γ′

4.6 Interlude: Intersection

Some of the following rules require the computation of type intersections. We define
two kinds of intersection, one rounding upward when in doubt, the other rounding
downward.

For notational simplicity, we will assume that both arguments contain no let-
expressions. (Generalizing the definition to let-expressions is an easy exercise.) In
addition, we will assume that the implementation unfolds its arguments as neces-
sary to distinguish the defining cases (after checking them for well-formedness, if
necessary). The common core is:

lit1 ∩e lit2 := lit1 if lit1 = lit2
lit1 ∩e lit2 := ⊥ if lit1 6= lit2
lit ∩e (_, _) := ⊥

(_, _) ∩e lit := ⊥
A ∩e {x} := A
{x} ∩e B := B

(s1, s2) ∩e (t1, t2) := (s1 ∩e t1, s2 ∩e t2)
A ∩e (B <: _) := A ∩e B

(A <: _) ∩e B := A ∩e B(
n⊕

i=1
Ai

)
∩e B :=

n⊕
i=1

(Ai ∩e B)

A ∩e

(
n⊕

i=1
Bi

)
:=

n⊕
i=1

(A ∩e Bi)

A ∩e B := e if no other clause matches

17

4 Type system

This common core is then used for both upward- and downward-rounding inter-
section:

∩ := ∩>
∩ := ∩⊥

4.7 Pattern matching

Γ ` LeMδ ⇔ p <: B↘ Γ′; ρ Static pattern match. The judgment defined below
tries to match an expression e against a pattern p. If successful, the result is an envi-
ronment ρ assigning the pattern variables of p to the corresponding subexpressions
of e.

The bound B is used to refute matches that do not satisfy the bound conditions
asserted by the pattern p.

Note that the bound needs to be split into a left and right part in the pair case. This
is done by the use of a special predicate designed for this purpose. See Section 4.11
for details.

Note 13. Since pair splitting is imprecise, it can lose useful information. This can prevent
the refutation of matches that would otherwise be refutable.

Γ ` LeMδ ⇔ B
Γ ` LeMδ ⇔ x <: B↘ Γ; (x = let δ in e)

Γ ` LeMδ ⇔ c ∩ B
Γ ` LeMδ ⇔ c <: B↘ Γ; ·

Γ ` LeMδ ⇔ p <: A ∩ B↘ Γ′; ρ

Γ ` LeMδ ⇔ (p <: A) <: B↘ Γ′; ρ

Γ ` B ≺ B1, B2 ↘ Γ1
Γ1 ` Le1Mδ ⇔ p1 <: B1 ↘ Γ2; ρ1

Lp2Mρ1 ↘P p′2
Γ2 ` Le2Mδ ⇔ p′2 <: B2 ↘ Γ3; ρ2

Γ ` Le1, e2Mδ ⇔ (p1, p2) <: B↘ Γ3; (ρ1, ρ2)

Γ ` LeMδ ⇔ B Γ ` LeMδ ↘ v Γ ` LvM· ! p↘ ρ

Γ ` LeMδ ⇔ p <: B↘ Γ; ρ
p = (p1, p2)

The pattern matching rules are relatively straight-forward. One thing to notice is
the need for computing intersections as defined in Section 4.6.

18

4 Type system

Γ ` LeMδ !! p Pattern match with case distinction. While the static pattern match
judgment directly matches an expression e with a pattern p, we often need to split
e into more basic cases in order for the pattern match to succeed. In particular, this
can be necessary when p contains dependent pair patterns that need more precise
information for the unfolding of type bounds than provided by e in the general case.

To fulfil this need, we define a pattern match judgment with built-in type splitting
(Section 4.12) as follows.

Γ ` LeMδ ⇔ > Γ ` (let δ in e)�~e↘ Γ′ ∀i. Γ′ ` LeiM · !! p
Γ ` LeMδ !! p

(EMsplit)

Γ ` LeMδ ⇔ p <: > ↘ _; _
Γ ` LeMδ !! p

(EMprim)

Example 14.

nn <: nat ⊢ Lvec a (′s, nn)M · ⇔ ⊤
(7)

nn <: nat ⊢ Lvec a (′s, nn)M · ց (a, vec a nn)
(...)

nn <: nat ⊢ L(a, vec a nn)M · ! (x, xs) ց _
(...)

nn <: nat ⊢ Lvec a (′s, nn)M · ⇔ (x, xs) <: ⊤ ց _; _

(5) ⇐⇒ nn <: nat ⊢ Lvec a (′s, nn)M · !! (x, xs)

Example 15.

⊢ ⊤ ≺ ⊤, ⊤ ց ·
(...)

⊢ L′sM · ⇔
′
s

axiom

⊢ L′sM · ⇔
′

s <: ⊤ ց ·; ·
′
s∩⊤=′

s
⊢ LnatM · ⇔ ⊤

axiom

⊢ LnatM · ⇔ n <: ⊤ ց _; _

⊢ L(′s, nat)M · ⇔ (′s, n) <: ⊤ ց _; _

(6) ⇐⇒ ⊢ L(′s, nat)M · !! (′s, n)

Γ ` LpMδ Pattern well-formedness. A pattern p is well-formed if it is linear and
all its bounds are well-formed. The latter is defined in terms of the bound-extraction
judgment (see Section 4.10).

Γ ` LpMδ ⇐⇒ p linear and ∃Γ′, ρ. Γ ` p <: > ↘ Γ′; ρ

Example 16.

19

4 Type system

⊢′
s <: ⊤ ց ·; · ⊢ n <: ⊤ ց nn <: ⊤; n = nn

⊢ (′s, n) <: ⊤ ց nn <: ⊤; n = nn

nn <: ⊤ ⊢ x <: ⊤ ց nn <: ⊤, xx <: ⊤; n = nn, x = xx nn <: ⊤, xx <: ⊤ ⊢ xs <: ⊤ ց _; _

nn <: ⊤ ⊢ (x, xs) <: ⊤ ց _; _

⊢ (′s, n), (x, xs) <: ⊤ ց _; _

(1) ⇐⇒ ⊢ L(′s, n), (x, xs)M ·
(′s,n),(x,xs) linear

4.8 Function clause compatibility

Γ ` Lp→ eMδ <: Lq→ tMρ Clause compatibility. We consider a function clause
p → e to be compatible with the clause q → t iff for all values that simultaneously
match both p and q, e is a subtype of t after the corresponding pattern match.

In particular, if p and q are disjoint, i. e., no value can ever simultaneously match
both p and q, the clauses are considered compatible.

Whether simultaneous matching of patterns p and q is possible, and if so, what
the outcome is, is determined by unification. See Section 4.9 for details.

Formally:

LpMδ ↘P pδ

LqMρ ↘P qρ

∀Γ′, δ′, ρ′
(
Γ ` pδ

.
= qρ <: > ↘ Γ′, δ′, ρ′ =⇒ Γ′ ` LeMδ,δ′ ⇔ let ρ, ρ′ in t

)
Γ ` Lp→ eMδ <: Lq→ tMρ

Example 17.

⊢ ((′s, n), (x, xs))
.
= ((m <: (′s, nat)), (v <: vec a m)) <: ⊤ ց . . . ; . . . ; . . .

(8)

xx <: a, nn <: nat, . . . ⊢ LxMx=xx ⇔ a
(...)

(4) ⇐⇒ ⊢ L((′s, n), (x, xs)) → xM · <: L((m <: (′s, nat)), (v <: vec a m)) → aM ·

4.9 Unification

Γ ` p .
= q <: B↘ Γ′; δ; ρ Pattern unification. The following set of rules defines

unification of patterns p and q for values bounded by B. The result is a pair (δ; ρ)
of environments that bind all pattern variables of p and q, respectively, possibly
establishing dependencies between the LHS and RHS by binding the same set of
parameters to variables on either side.

20

4 Type system

Pattern bounds contained in p and q are used to augment the context Γ′ with
bound information about newly generated parameters. Bounds are rounded up-
wards if necessary.

In the base case, unification relies on bound extraction (see Section 4.10) to deter-
mine variable bounds to be stored in Γ′.

Unification fails iff it can prove that no value can ever satisfy all of p, q, and B
simultaneously.

Note 18. In the worst case, unification can determine neither incompability between p and
q nor any useful type bounds. In this case, Γ′ will contain > as the bound for every variable
in p and q.

It is never the case that unification fails because of limited knowledge. Failure can only
occur if p and q can be proven incompatible.

c ∩ B 6= {}
Γ ` c .

= c <: B↘ Γ; · ; ·

Γ ` q <: B↘ Γ′; ρ′

Γ ` x .
= q <: B↘ Γ′; (x = let ρ′ in q); ρ′

Γ ` p <: B↘ Γ′; δ′

Γ ` p .
= y <: B↘ Γ′; δ′; (y = let δ′ in p)

Γ ` p .
= q <: A ∩ B↘ Γ′; δ′; ρ′

Γ ` p <: A .
= q <: B↘ Γ′; δ′; ρ′

Γ ` p .
= q <: A ∩ B↘ Γ′; δ′; ρ′

Γ ` p .
= q <: A <: B↘ Γ′; δ′; ρ′

· ` LBM· ↘↘! ~B ~B′ = {Bi|Bi 6= s ∧ Bi 6= let ρ in fun{...}}
Γ ` p1, p2

.
= q1, q2 <:

⊕ ~B′ ↘ Γ′; δ; ρ

Γ ` p1, p2
.
= q1, q2 <: B↘ Γ′; δ; ρ

Γ ` p1
.
= q1 <: (let β in B1)↘ Γ1; δ1; ρ1

Lp2Mδ1 ↘P p′2 Lq2Mρ1 ↘P q′2
Γ1 ` p′2

.
= q′2 <: (let β in B2)↘ Γ2; δ2; ρ2

Γ ` p1, p2
.
= q1, q2 <:

(
let β in (B1, B2)

)
↘ Γ2; (δ1, δ2); (ρ1, ρ2)

Γ ` p .
= q <: >,> ↘ Γ′; δ′

Γ ` p .
= q <: B↘ Γ′; δ′

21

4 Type system

Example 19.

⊢ (′s, n) <: (′s, nat) ց nn <: nat, n = nn

(...)

⊢ (′s, n)
.
= m <: (′s, nat) ց nn <: nat; n = nn; m = (′s, nn)

⊢ (′s, n)
.
= (m <: (′s, nat)) <: ⊤ ց nn <: nat; n = nn; m = (′s, nn)

⊢ Lvec a (′s, nn)M · ցց! (a, vec a nn)
(...)

nn <: nat ⊢ (x, xs) <: (a, vec a nn) ց nn <: nat, xx <: a, xsxs <: vec a nn; v = (xx, xsxs)
(...)

nn <: nat ⊢ (x, xs) <: vec a (′s, nn) ց . . .

nn <: nat ⊢ (x, xs)
.
= v <: vec a (′s, nn) ց . . .

nn <: nat ⊢ (x, xs)
.
= (v <: vec a (′s, nn)) <: ⊤ ց . . .

⊢ ((′s, n), (x, xs))
.
= ((m <: (′s, nat)), (v <: vec a m)) <: (⊤,⊤) ց . . .

(8) ⇐⇒ ⊢ ((′s, n), (x, xs))
.
= ((m <: (′s, nat)), (v <: vec a m)) <: ⊤ ց xx <: a, . . . ; x = xx, . . . ; . . .

4.10 Bound extraction

Γ ` p <: B↘ Γ′; δ Bound extraction. The bound-extraction relation computes an
environment binding all variables of the pattern p to newly generated parameters,
whose bounds are determined by the type B. Bound computation rounds upwards,
possibly losing information along the way, but may fail if it can prove that the pattern
and bound are irreconciliable.

Γ ` x <: B↘ (Γ, a <: B); (x = a)
c ∩ B 6= {}

Γ ` c <: B↘ Γ; ·

Γ ` p <: A ∩ B↘ Γ′; δ

Γ ` p <: A <: B↘ Γ′; δ

· ` LBM· ↘↘! ~B ~B′ = {Bi|Bi 6= s ∧ Bi 6= let ρ in fun{...}}
Γ ` p1, p2 <:

⊕ ~B′ ↘ Γ2; (δ1, δ2)

Γ ` p1, p2 <: B↘ Γ2; (δ1, δ2)
(extrpair f orget)

Γ ` p1 <: let ρ in B1 ↘ Γ1; δ1 Lp2Mδ1 ↘P p′2 Γ1 ` p′2 <: let ρ in B2 ↘ Γ2; δ2

Γ ` p1, p2 <: let ρ in (B1, B2)↘ Γ2; (δ1, δ2)

LqMρ ↘P q′ q′′ = renameVars(q′) Γ ` p .
= q′′ <: > ↘ Γ′; (δ1; δ2)

Γ ` p1, p2 <: let ρ in {q} ↘ Γ′; (δ1, δ2)

22

4 Type system

Γ ` p1, p2 <: >,> ↘ Γ′; δ

Γ ` p1, p2 <: B↘ Γ′; δ

Note 20. Notice the peculiar base rule for pair patterns, (extrpair f orget). Since it throws
away some information from B, it is not clear at first glance that it is sound (if you do not
immediately see the danger in this, consider that we are now rounding a bound downward!).
But note that the only information it throws away is about types that cannot possibly match
a pair pattern and so cannot contribute to any bindings resulting from a pattern match. To
see why this is useful, consider the case (x, y) <: nat. Without selectively discarding “bad”
information, we cannot infer that in case the pattern matches, x will be ′s, and y will be some
value of type nat. Hence, a proposition as seemingly simple as fun { ′zero → ′zero; (′s, n)→
(′s, n)} <: fun {(x <: nat) → nat} would not be provable because the bound for n would
be inferred as being just >.

4.11 Pair Split

Γ ` v ≺ v1, v2 ↘ Γ′ Pair split. The pair-split relation splits a closed expression v
into a pair of closed expressions by case distinction across the structure of v. Pair
splitting is a best-effort process that may round upwards (but not downwards); if an
appropriate split is not possible, pair splitting returns >,>.

Γ `
(

let ρ in (e1, e2)
)
≺ (let ρ in w1), (let ρ in w2)↘ Γ

Lp1Mρ ↘P p′1 Γ ` p′1 <: > ↘ Γ1; ρ1

Γ `
(

let ρ in {(p1, p2)}
)
≺ (let ρ in {p1}), (let ρ, ρ1 in {p2})↘ Γ1

Γ ` B ≺ B1, B2 ↘ Γ′

Γ ` {p <: B} ≺ B1, B2 ↘ Γ′
Γ ` A↘! _

Γ ` A ≺ >, > ↘ Γ

Note 21. Pair-splitting a comprehension destroys dependencies between the two components.

4.12 Pattern coverage

Γ ` LpMδ C L~qMρ Open pattern coverage. The pattern coverage judgment deter-
mines whether a pattern p with bounds closed by an environment δ is covered by a
set ~q of patterns with bounds closed by an environment ρ.

This is a convenience predicate; the actual coverage check is done by the closed
pattern coverage predicate, which is defined below.

23

4 Type system

LpMδ ↘P p′ ∀i. LqiMρ ↘P q′i Γ ` p′ C~q′

Γ ` LpMδ C L~qMρ

Γ ` pC~q Closed pattern coverage. The closed pattern coverage judgment deter-
mines whether a pattern p is covered by a set ~q of patterns. All bounds occurring in
p or ~q are assumed to be closed expressions.

Γ ` p� ~p↘ Γ′ ∀i. Γ′ ` pi C~q
Γ ` pC~q

(PCsplit)

Γ ` p <: > −→x/o p′ ↘ Γ′ Γ′ ` p′ C~q
Γ ` pC~q

(PCprop)

∃i. Γ ` pC qi ↘ _; _; _
Γ ` pC~q

(PCprim)

Explanation:

(PCsplit) This rule splits the pattern p into a set of patterns ~p that represent an
exhaustive set of more primitive cases that p can be split into. See Section 4.12
for details on how patterns are split into subcases.

Example 22.
` (x <: nat)�

(
x <: (′s, nat)

)
, (x <: 0)↘ ·

(PCprop) This rule lifts simple pattern bounds into patterns. This can be necessary
after an application of the (PCsplit) rule in order to further process the pattern
effectively.

Example 23.(
x <: (′s, nat)

)
−→x/((x1 <: ′s),(x2 <: nat))

(
(x1 <: ′s) , (x2 <: nat)

)
−→x1/′s

(′s, (x2 <: nat)
)

(PCprim) This rule is singleton coverage, defined below.

24

4 Type system

Γ ` pC q↘ Γ′; δ; ρ Singleton coverage. Singleton coverage ensures that a pat-
tern p is covered by a pattern q. The result is a pair δ; ρ of environments establishing
bindings of the variables of the patterns p and q, respectively, to newly parameters
bounded by the explicit bounds occurring in the patterns.

p is assumed to be of the form p ::= c | (x <: A) | (p1, p2), i. e., bounds appear
only around variables. This is ensured by sufficiently many iterations of pattern
splitting (see Section 4.12), which is thereby assumed to have taken place sometime
before this predicate is called upon.

Γ ` cC c↘ Γ; · ; ·
Γ ` LAM · !! q Γ ` q <: A↘ Γ′; ρ

Γ ` (x <: A)C q↘ Γ′; (x = let ρ in q); ρ

Γ ` p <: > ↘ Γ′; δ

Γ ` pC y↘ Γ′; δ; (y = let δ in p)

Γ ` pC A↘ _ Γ ` pC q↘ Γ′; δ; ρ

Γ ` pC (q <: A)↘ Γ′; δ; ρ

Γ1 ` p1C q1 ↘ Γ2; δ1; ρ1 Lp2Mδ1 ↘P p′2 Lq2Mρ1 ↘P q′2
Γ2 ` p′2C q′2 ↘ Γ3; δ2; ρ2

Γ ` (p1, p2)C (q1, q2)↘ Γ3; (δ1, δ2); (ρ1, ρ2)

Γ ` pC C ↘ Γ′ Pattern coverage by type. Pattern coverage by type ensures that
all values matching a pattern p are included in a given type C.

Γ ` LsM · ⇔ C
Γ ` sC C ↘ Γ

Γ ` L>M · ⇔ C
Γ ` xC C ↘ Γ

Γ ` LAM · ⇔ C
Γ ` (p <: A)C C ↘ Γ

` LCM · ↘↘ (let ρ in {q}) LpMρ ↘P p′ Γ ` p′ C q↘ Γ′; _; _
Γ ` pC C ↘ Γ′

Γ ` {p} ≺ A1, A2 ↘ Γ′ Γ′ ` L(A1, A2)M · ⇔ C
Γ ` pC C ↘ Γ′

Note 24. Pattern coverage by type and pattern coverage by pattern call upon each other:
Pattern coverage calls upon type coverage when it encounters a type bound on the right-hand
side; type coverage, in turn, calls upon pattern coverage when it encounters a comprehension.
Care needs to be taken to ensure that no infinite loops occur between the two predicates.

25

4 Type system

Example 25.

⊢ L(′s, nat)M · !! (′s, n)
(6)

⊢ (′s, n) <: (′s, nat) ց nn <: nat; n = nn
(...)

⊢ m <: (′s, nat)⊳ (′s, n) ց nn <: nat; m = (′s, nn); n = nn

nn <: nat ⊢ Lvec a (′s, nn)M · !! (x, xs)
(5)

nn <: nat ⊢ (x, xs) <: vec a (′s, nn) ց _; _
(...)

nn <: nat ⊢ (v <: vec a (′s, nn))⊳ (x, xs) ց _; _; _

⊢ ((m <: (′s, nat)), (v <: vec a m))⊳ ((′s, n), (x, xs)) ց _; _; _

⊢ ((m <: (′s, nat)), (v <: vec a m))⊳ ((′s, n), (x, xs))

(3) ⇐⇒ ⊢ L((m <: (′s, nat)), (v <: vec a m))M · ⊳ L((′s, n), (x, xs))M ·

Γ ` p� ~p↘ Γ′ Pattern split. The pattern-split relation splits a pattern p into
more primitive subcases ~p that cover the original pattern. This is necessary for
coverage and matching checks that require case distinctions.

Γ ` c� c↘ Γ Γ ` x� x ↘ Γ
Γ ` p� ~p↘ Γ′ Γ′ ` A� ~A↘ Γ′′

Γ ` (p <: A)� {(pi <: Aj)}i,j ↘ Γ′′

Γ ` p� p1, . . . , pn ↘ Γ′

Γ ` (p, q)� (p1, q), . . . , (pn, q)↘ Γ′

Γ ` p <: > ↘ Γ1; δ LqMδ ↘P q′ Γ1 ` q′ � q1, . . . , qn ↘ Γ2 ∀i. LqiMδ−1 ↘P q′i
Γ ` (p, q)� (p, q′1), . . . , (p, q′n)↘ Γ2

Γ ` B� ~B↘ Γ′ Type split. The type-split relation splits a type B into a set ~B of
more primitive types. As with pattern splitting, this enables case distinctions where
necessary.

Γ ` e� e↘ Γ

Γ0 ` B↘↘! B1 ⊕ · · · ⊕ Bn ∀i.
(
Γi−1 ` Bi � B1

i , . . . , Bmi
i ↘ Γi

)
Γ0 ` B�

n⋃
i=1

mi⋃
k=1

{
Bk

i
}
↘ Γn

26

4 Type system

Γ ` B↘↘! let ρ in {p} LpMρ ↘P q Γ ` q� q1, . . . , qn ↘ Γ′

Γ ` B� {q1}, . . . , {qn} ↘ Γ′

Γ ` e1 � ~e1 ↘ Γ′ Γ′ ` e2 � ~e2 ↘ Γ′′

Γ ` (e1, e2)�
⋃

i

⋃
k

{
(ei

1, ek
2)
}
↘ Γ′

Note 26. Both pattern split and pair split are (clearly) highly non-deterministic. If imple-
mented naively, neither will terminate when confronted with a fixed-point expression. There-
fore, an actual implementation needs a good heuristic to determine when to stop splitting an
expression. See Section 5.6.1 for one approach that works in many cases.

B↘{} p Comprehension forcing. Comprehension forcing tries to create a pattern
p out of a closed bound B. The attempt may fail; in this case, computation needs to
backtrack.

Γ ` B↘! c
B↘{} c

Γ ` B↘! let ρ in {p} LpMρ ↘P p′

B↘{} p′

Γ ` B↘! let ρ in (B1, B2)

B↘{} (x1 <: let ρ in B1, x2 <: let ρ in B2)
x1, x2 fresh

Γ ` p <: B −→x/q p′ ↘ Γ′ Bound propagation. Bound propagation replaces a
variable x in a pattern p by its bound. In order to do this, it tries to force the
bound into comprehension form.

The bound parameter B is used to propagate bound information inwards. It is not
logically an input to the relation.

Logically, Γ, p, and x are inputs; q, p′, and Γ′ are outputs.

B↘{} q
Γ ` x <: B −→x/q q↘ Γ

Γ ` p <: (B ∩ A) −→x/q p′ ↘ Γ′

Γ ` (p <: A) <: B −→x/q (p′ <: A)↘ Γ′

Γ ` B ≺ B1, B2 ↘ Γ1 Γ1 ` p1 <: B1 −→x/q p′1 ↘ Γ2 Lp2Mx={q} ↘P p′2
Γ ` (p1, p2) <: B −→x/q (p′1, p′2)↘ Γ2

Γ ` B ≺ B1, B2 ↘ Γ1 Γ1 ` p2 <: B2 −→x/q p′2 ↘ Γ2

Γ ` (p1, p2) <: B −→x/q (p1, p′2)↘ Γ2

27

4 Type system

Note 27. Bound propagation rounds bounds upwards, possibly losing information.

Note 28. Bound propagation fails if it is unable to make any significant changes to the
pattern p. In particular, this is true when trying to propagate a bound that contains very
little information (or, equivalently, too many subcases).

28

5 Implementation notes

5.1 Parsing

The parser is implemented in Parser.hs. It is an ordinary backtracking parser im-
plemented using the Parsec library [LM12].

There are some differences between the syntax used in these notes and the one
actually read by the parser:

• The arrows used in fixed-point and function definitions are rendered as their
usual ASCII equivalent, ->.

• Fusions do not use the ⊕ operator, which is also not present in ASCII. Instead,
the vertical bar, |, is used instead, in analogy to a logical “or”.

• There is additional syntax for top-level declarations read from files, introduced
by the val keyword. Declarations support an optional bound annotation. In
addition, they support specifying arguments as in our abbreviated let-syntax
(Section 2) that are in scope both in the declared value and in the specified
bound.

• By prefixing an expression or pattern with an exclamation mark (!), it becomes
strictness-annotated. The meaning of a strictness annotation depends on the
context. Strictness-annotated patterns, for instance, force weak-head reduction
of the matched-against value during pattern matching. See Section 5.3 and
Section 5.6.2 for more use cases for strictness annotations.

• There is an infix operator |> that provides a syntax for reverse application, i. e.,
a |> b is equivalent to b a. This is useful for matching an expression against
a pattern. See Listing 5.5 for a use case.

• There is an abbreviated form of function type syntax. In an expression con-
text, a -> b is defined as being equivalent to fun {(x <: a) -> b} where x is a
newly generated variable.

5.2 Global variables

Global declarations are stored in signatures, which store both values and the cor-
responding user-supplied type bounds. See Signature.hs for the implementation.
In addition to the Sig type itself, the module provides a monad transformer SigT,
which provides an implementation of State semantics with a signature as the state
value. A version restricted to reading, SigReaderT, is provided as well.

29

5 Implementation notes

5.3 Evaluation

The evaluator provides two primary procedures:

eval is the function representing the evaluator itself. It implements the rules spec-
ified in Section 3. The implementation differs from the formal system insofar
as it distinguishes between two “modes”, one of which rounds according to
the supplied bound context, the other refraining from doing so. This is useful
for debugging the type checker, since the context can be checked for missing
parameters. The formal rules we specified above make the distinction on the
fly instead; calling the eval function in non-rounding mode being equivalent
to calling upon the evaluation predicate with an empty context.

Backtracking is implemented by the explicit use of the ListT monad trans-
former [Gil12].

evalToplevel takes a list of top-level declarations and processes them in order,
calling into the type checker for verification of user-supplied type bounds,
or, in the absence of such, initiating well-formedness checks. In the process,
evalTopLevel stores the processed declarations in the signature, and outputs
the result of evaluating the right-hand-side of the declaration.

evalTopLevel supports strictness annotations on the declared variable (see
Section 5.1). Whenever it encounters a strictness annotation, it will call into
eval instead of storing the supplied right-hand side expression as-is. This
makes it possible to have the top-level loop compute more meaningful output
than would otherwise be produced.

5.4 Type checking

Type checking, too, is largely a direct translation of the formal system developed in
this work. The implementation is monadic, based on a TypeChecker monad, which
for convenience is an instance of StateT carrying along a state variable containing
the following components:

context represents the bound context Γ, which stores the known bounds of pa-
rameters. Instead of explicitly passing and returning contexts Γ, the code im-
plementing the type-checking rules modifies this state variable (see function
remember).

sig contains the signature, which is not present in the formal system.

idsupply is a value of type Data.Supply.Supply Integer, which is provided by
the value-supply library [Dia11]. It is used for the generation of unique pa-
rameters and variables.

30

5 Implementation notes

The underlying monad is effectively an implementation of the free MonadPlus
structure, supplied by the TreeChecker module. Its declaration is given in List-
ing 5.1.

Listing 5.1 The SearchTree and Checker data structures used by the type checker.

data SearchTree a
= None

| Result a

| ChoiceNode (SearchTree a) (SearchTree a)

| forall b. Step (b -> SearchTree a, SearchTree b)

data Checker err a = Checker (SearchTree (Either err a))

The TreeChecker module provides a number of implementations of comput-
ing the result of a Checker expression; the user can thus decide to use either
depth-first (runSearchDFS) or breadth-first search (runSearchBFS), iterative deep-
ening (runSearchIterDFS), or a parallel tree traversal based on the unamb-custom
library [Pal08] (runSearchUnamb). The type checking module uses depth-first search
by default.

The primary entry point to the type checker is the check function, which imple-
ments the basic type-checking rules described in Section 4.1. Since it is monadic, it
must be called from external code by way of one of the type-checking trampolines,
runTypeChecker and runTypeCheckerND:

runTypeCheckerND runs a function whose result lives in the TypeChecker monad,
returning all possible results or, in the case of failure, a set of all error messages
collected from all failed branches of the computation.

runTypeChecker is like runTypeCheckerND, but in the case of success, returns a sin-
gle result only. This is usually sufficient, since the primary type-checking entry
point, check, does not return a useful result in the case of success.

5.5 Additional features

In order to be practical, the code provides some features above and beyond what the
formal system specifies.

5.5.1 Top-level definitions

Top-level definitions are introduced by the val keyword and may contain an optional
bound annotation as in Listing 5.2.

31

5 Implementation notes

Listing 5.2 Identity on the natural numbers in TypeCore.

val nat = 0 | (’s, nat)

val id_nat <: nat -> nat = fun
{ 0 -> 0

; (’s,m) -> (’s,m) }

Note the use of the abbreviated bound expression (nat -> nat ≡
fun {(n<:nat) -> nat}) as described in Section 5.1.

As described above, the interpreter will process the top-level definitions given in
an input file one by one, initiating type checks as appropriate. Since unannotated
values are still checked for well-formedness, an ill-formed application such as the
one depicted in Listing 5.3 will result in an error raised by the type checker.

Listing 5.3 An ill-formed application.

val g = ’g
val f = g ’arg

Type annotations are not usually required except in recursive function definitions
where they are necessary to check recursive calls. The following file will type-check
just fine, for example, since id, though initially stored as being of type >, will be
“unrounded” to itself (i. e., fun {x → x}) during the application check after the failed
attempt to do the check using its bound (Listing 5.4).

Listing 5.4 “Unrounding” of a function.

val id = fun {x -> x}
val zero = id ’zero

5.5.2 Integer arithmetic

In addition to symbols, the system features integers as another type of literal. A
couple of built-in functions are provided:

plus, minus, times, div are the usual arithmetic primitives. They are curried, and
declared to be of type int→ int→ int.

pred, succ are the predecessor and successor functions. Though technically redun-
dant in the presence of plus and minus, they are sufficiently useful for the
definition of recursive functions that they warrant their own built-ins.

32

5 Implementation notes

zerop is an operator of type int→ (′true⊕ ′false) that returns the symbol ′true if the
supplied argument is the number 0, and the symbol ′false otherwise.

Note that there is no built-in boolean type, so ′true and ′false are regular liter-
als. Instead of an if primitive, which is not supplied by our system, the ′true and
′false cases can be distinguished by way of pattern matching. See Listing 5.5 for an
example. Note the use of the reverse-application syntax introduced in Section 5.1.

Listing 5.5 Factorial in TypeCore

val factorial (n <: int) <: int =
zerop n |> fun { ’true -> 1

; ’false -> times n (factorial (pred n)) }

5.5.3 Read–eval–print loop

Module Repl implements a read–eval–print loop (or REPL) that can be accessed by
running the typecore program with no arguments. It supports top-level definitions
using the val syntax, including type-annotated definitions.

An example interaction is given in Listing 5.6 (slightly reformatted for improved
readability and to account for minor deficiencies in the printer).

5.6 Conflict resolution

As noted before, certain predicates, notably type splitting (Section 4.12) and appli-
cation checking (Section 4.2) contain ambiguous cases in which more than one rule
is applicable. In the case of type splitting, the resulting non-algorithmicity appears
particularly egregious, for while application checking can at least do meaningful
backtracking across the two possible branches, type splitting as implemented naively
inevitably recurs indefinitely.

5.6.1 Type and pattern split

As defined in our formalism, type and pattern splits are highly non-deterministic.
In the general case, there is no good way of knowing when to stop unfolding an
expression into ever more subcases. In the cases we actually need type splitting in,
however, there is a very effective and straight-forward heuristic.

All cases we use type splitting in have in common that the split occurs so that
matching against a pattern does not require destroying dependencies between com-
ponents of a dependent pair. Therefore, there is an obvious stopping condition
for the splitting process: Stop as soon as another split cannot possibly change the
outcome of a pattern match. This means that we need to simply step through the

33

5 Implementation notes

expression to be split and the patterns to be matched against in tandem. We need to
proceed splitting as long as the patterns contains a choice point, i. e., a literal, pair, or
bound. As soon as the pattern cases we need to match are all trivial (i. e., variables),
we can stop the splitting process.

A complication arises when we encounter a bound that itself is a pattern (in the
form of a comprehension). In this case, since the pattern can include dependent
pairs, we need to play it safe and integrate the pattern into the set of patterns we use
to determine the stopping condition.

In addition, in case we split a pair pattern, we need to temporarily sever the
link between the left and right components of the pattern (by generating bounded
parameters and substituting them for the pattern variables occurring in the bounds)
in order to be able to close the bounds of the right component; but immediately after
the return of the recursive splitting call, we can undo this separation by reversing
the original substitution. We might still lose some information this way, but in case
the recursive call did not actually need to split the affected parameters, there is no
information loss at all.

The algorithm is thus a relatively straight-forward recursion. See the definitions
of structuralPatternSplit and structuralSplit in the TypeChecker module for
the gritty details.

5.6.2 Compile-time versus run-time application

In Section 4.2, we noted that when confronted with an expression f e, the system
needs to decide whether to do a limited form of compile-time type inference, or
simply evaluate the expression.

Unfortunately, neither approach works all of the time. Clearly, evaluation is much
too strong in general; unfolding even a very simple function call destructuring an
argument of a recursive type like nat will immediately result in non-termination of
the type checker.

Therefore, in the usual case, the limited form of inference described by the
(@check) rule is the right choice.

In some cases, on the other hand, the (@check) rule is simply too weak. In partic-
ular, this is the case in the presence of “type” arguments, the reason being that the
pattern matching rules have no way of distinguishing between an argument that is
known to be a subtype of some parameter a, and an argument that is actually equiva-
lent to a. Moreover, even if pattern matching were able to distinguish the two cases,
it would not have a way of storing that information in the typing context Γ, which
only stores bounds, not equivalences.

Because of this, we need some way of identifying the cases in which compile-time
evaluation needs to happen. We have decided not to try to propose an appropriate
heuristic in this work. Instead, our system takes a dual approach:

34

5 Implementation notes

1. The type checker tries the (@check) rule by default. If this leads to backtracking,
the (@eval) rule is tried instead.

2. In the cases where the default leads to non-termination, the system enables
the user to annotate applications using strictness syntax (see Section 5.1). For
esthetic reasons, we have decided to place the annotation on the argument
(i. e., an annotated application is of the form f !e). This is an arbitrary choice.
The annotation could, of course, also have been placed on the applicand (! f e)
or around the application itself (!(f e)); but placing it on the argument has
the advantage of not requiring any bracketing when more than one argument
is supplied (e. g., a polymorphic map function, as present in most functional
programming languages, can be called as map !a !b some_function some_list,
where a and b are the input and output type parameters, respectively).

As far as we can tell, this approach works well in practice; at least, the number of
annotations required is small enough not to have bothered us in writing our set of
test cases.

35

5 Implementation notes

Listing 5.6 Transcript of a REPL session.

TypeCore (C) LMU Munich

> 1

1

> plus 1 2

3

> plus 1 2 3

The following exception occurred:

user error (["Attempted application of int type"])

> val if
<: fun {(b <: (’true | ’false)) x y -> x | y}
= fun {b x y -> b |> fun {’true -> x; ’false -> y}}

val if
<: fun {(b <: (’true | ’false)) -> fun {x -> fun {y ->

(x | y)}}}

= fun {b -> fun {x -> fun {y ->
fun {’true -> x; ’false -> y} b}}}

> val expt <: int -> int -> int =

fun {(x<:int) (n<:int) ->
if (zerop n) 1 (times x (expt x (pred n)))}

val expt <: (int -> (int -> int)) =
fun {(x <: int) -> fun {(n <: int) ->
if (zerop n) 1 (times x (expt x (pred n)))}}

> expt 2 16

65536

> val pow2 <: int -> int = expt 2
val pow2 <: (int -> int) =
let {x = 2} in
fun {(n <: int) -> if (zerop n) 1 (times x (expt x (pred n)))}

> pow2 16

65536

36

6 Related work

6.1 Pure subtype systems

Pure subtype systems [Hut10] have been proposed as a way of unifying types and
values by replacing type-checking with subtyping. In contrast to TypeCore, the
proposed system in its basic form lacks type disjunctions and recursion. The system
is explored more fully in [Hut09], which investigates subtype-based typing in the
context of object class hierarchies.

6.2 Soft typing

Soft typing [CF91][WC94] is a generalization of Hindley–Milner type inference for
dynamically typed programming languages such as Scheme. It supports type recur-
sion and union types, which it is able to infer from the use of constructors similarly
to TypeCore. One of the major innovations of soft typing, as exemplified by the
Typed Racket language [THF10], is occurrence typing: dynamic type predicates (such
as pair?) are used to refine known union types at compile-time. For example, an
expression such as (if (number? x) (cons x x) ’()) will be inferred to be of type
null ∪ (cons number number). Occurrence typing poses an interesting alternative to
our pattern-matching-based approach in the presence of abstract types.

6.3 Recursive union and intersection types

F. Damm [Dam94] has proposed a representation of types based on sets of trees
satisfying a regularity condition in order to ensure decidability of subtyping. The
proposed family of type systems supports type recursion as well as union and in-
tersection, but lacks polymorphic function types as well as any kind of dependent
types.

6.4 Polymorphic variants

The OCaml language [INR11], based on a Hindley–Milner-style type sys-
tem [GMM+78], sports a feature called polymorphic variants [Gar98][Gar04], which
permit the use of data constructor tags without prior declaration. To this effect,
OCaml provides a kind of “ad-hoc” type inference for variants quite similar to the
handling of pairs and literals in TypeCore. Just as in TypeCore, a not function can
be defined by using undeclared tags (see Listing 6.2). Variant types can be sub-
typed (see Listing 6.3). Type recursion is also supported, including type inference,
enabling the use of polymorphic variants to build inductive data types (Listing 6.4).
In contrast to TypeCore, however, polymorphic variants are not dependently typed
and do not permit the use of arbitrary values as variant cases.

37

6 Related work

Listing 6.1 OCaml not function, based on polymorphic variants.

let not = function ‘True -> ‘False
| ‘False -> ‘True;;

val not : [< ‘False | ‘True] -> [> ‘False | ‘True]

Listing 6.2 OCaml not function, based on polymorphic variants.

let not = function ‘True -> ‘False
| ‘False -> ‘True;;

val not : [< ‘False | ‘True] -> [> ‘False | ‘True]

Listing 6.3 OCaml not function, restricted to a ‘False argument by subtyping.

let notFalse : [< ‘False] -> [> ‘False | ‘True] = not;;
val notFalse : [< ‘False] -> [> ‘False | ‘True]

Listing 6.4 Recursive variants in OCaml.

let rec id_nat =
function ‘zero -> ‘zero

| ‘succ x -> ‘succ (id_nat x);;

val id_nat :

([< ‘succ of ’a | ‘zero] as ’a) ->
([> ‘succ of ’b | ‘zero] as ’b)

38

7 Conclusion and outlook

As our calculus and implementation demonstrate, a type system based on the mere-
ological parthood relation rather than set-theoretic elementhood is both feasible and
can be made easy to understand and use by programmers.

The system raises interesting questions regarding type systems in general, as well
as their connection to partial evaluation (see Section 4.2) and relational calculi. In
particular, it might be interesting to investigate a statically typed relational calculus
using a mereological type system; indeed, any logic-based or database system that
wants to integrate a functional language is a good fit for mereological typing.

All that said, the system does have some shortcomings and unsolved problems.

Listing 7.1 Predicate logic in TypeCore.

val T
<: fun {(n <: nat) → ’trivial}

= fun { 0 → ’trivial

; (’s, (x <: nat)) → T x }

val allT
<: fun {(n <: nat) → T n}

= fun { 0 → ’trivial

; (’s, (x <: nat)) → allT x }

Lack of an algebraic simplifier. The system as of now lacks an algebraic simplifier,
which is a standard feature of dependently-typed programming languages. This
makes it impossible to use the system as a theorem prover, among other things. In
particular, the system cannot type-check even a simple program emulating predicate
logic such as the one given in listing 7.1.

Fortunately, though out of the scope of this work, we do not see a major obstacle
to implementing an algebraic simplifier for TypeCore.

Lack of a good application-check heuristic. As discussed in Section 4.2, the sys-
tem needs to non-deterministically decide whether to unfold an application or recur
during a type check. It is not clear how the system should be able to tell, without
human intervention, which of the two paths it ought to take.

In fact, this may or may not be a computationally soluble problem. Existing sys-
tems solve it by separating strictly between types and run-time expressions; but this
would be an obvious detractor in the case of a system like TypeCore, whose most
significant distinguishing factor is the absence of such separation.

39

7 Conclusion and outlook

For now, explicit annotations forcing compile-time unfolding seem to be an ade-
quate workaround. In the future, heuristics might be discovered that significanlty
lift the (in our experience, already rather light) burden from the programmer as far
as feasible.

We are confident that future efforts can overcome these shortcomings, resulting in
an elegant and reasonably complete system able to pose an alternative to existing
dependent type systems.

40

References

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a
functional language with dependent types. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of
Lecture Notes in Computer Science, pages 73–78. Springer-Verlag, 2009.

[CF91] Robert Cartwright and Mike Fagan. Soft typing. In David S. Wise,
editor, Proceedings of the ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation (PLDI), Toronto, Ontario, Canada,
June 26-28, 1991, pages 278–292. ACM, 1991.

[CV99] Roberto Casati and Achille C. Varzi. Parts and Places: The Structures of
Spatial Representation. MIT Press, Cambridge, MA, 1999.

[Dam94] Flemming M. Damm. Subtyping with union types, intersection types
and recursive types. In Hagiya and Mitchell [HM94], pages 687–706.

[Dia11] Iavor S. Diatchki. value-supply-0.6.
http://hackage.haskell.org/package/value-supply, 2011.

[Gar98] Jacques Garrigue. Programming with polymorphic variants. In ML
Workshop, 1998.

[Gar04] Jacques Garrigue. Typing deep pattern-matching in presence of
polymorphic variants. In JSSST Workshop on Programming and
Programming Languages, Gamagori, Japan, March 2004.

[Gil12] Andy Gill. mtl-2.1.2. http://hackage.haskell.org/package/mtl,
2012.

[GMM+78] Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C. Newey, and
Christopher P. Wadsworth. A metalanguage for interactive proof in
LCF. In Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski,
editors, Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, Tucson, Arizona, USA, January 1978,
pages 119–130. ACM Press, 1978.

[HM94] Masami Hagiya and John C. Mitchell, editors. volume 789 of Lecture
Notes in Computer Science. Springer, 1994.

[Hut09] DeLesley. S. Hutchins. Pure subtype systems: A type theory for extensible
software. PhD thesis, University of Edinburgh, 2009.

41

http://hackage.haskell.org/package/value-supply
http://hackage.haskell.org/package/mtl

References

[Hut10] DeLesley S. Hutchins. Pure subtype systems. In Manuel V.
Hermenegildo and Jens Palsberg, editors, Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pages 287–298. ACM,
2010.

[INR11] INRIA. The OCaml system.
http://caml.inria.fr/ocaml/index.en.html, 2011.

[Jec11] Thomas Jech. Set theory. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. The Metaphysics Research Lab, Center for
the Study of Language and Information, Stanford University, Stanford,
CA 94305-4115, Winter 2011 edition, 2011.

[LM12] Daan Leijen and Paolo Martini. parsec-3.1.3.
http://hackage.haskell.org/package/parsec, 2012.

[Pal08] Luke Palmer. unamb-custom-0.13.
http://hackage.haskell.org/package/unamb-custom, 2008.

[PM84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[SS94] Leon Shapiro and Ehud Y. Sterling. The Art of Prolog: Advanced
Programming Techniques. The MIT Press, April 1994.

[Ste98] Martin Steffen. Polarized Higher-Order Subtyping. PhD thesis,
Technische Fakultät, Universität Erlangen, 1998.

[THF10] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for
untyped languages. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’10, pages
117–128, New York, NY, USA, 2010. ACM.

[WC94] Andrew K. Wright and Robert Cartwright. A practical soft type system
for Scheme. In Lisp and Functional Programming, pages 250–262, 1994.

42

http://caml.inria.fr/ocaml/index.en.html
http://hackage.haskell.org/package/parsec
http://hackage.haskell.org/package/unamb-custom

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit
selbständig verfaßt und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe.

München, den 24.11.2012. .

	Introduction
	Syntax
	Grammar
	Examples
	Natural numbers
	Vectors
	Destructuring
	Comprehensions and -types

	Evaluation
	Definitions
	Syntactic Classes.
	Evaluation.
	Pattern matching.
	Determinism

	Type system
	Basic checking rules
	Application checking.
	Context refinement
	Interlude: Pattern normalization
	Function argument checking
	Interlude: Intersection
	Pattern matching
	Function clause compatibility
	Unification
	Bound extraction
	Pair Split
	Pattern coverage

	Implementation notes
	Parsing
	Global variables
	Evaluation
	Type checking
	Additional features
	Top-level definitions
	Integer arithmetic
	Read–eval–print loop

	Conflict resolution
	Type and pattern split
	Compile-time versus run-time application

	Related work
	Pure subtype systems
	Soft typing
	Recursive union and intersection types
	Polymorphic variants

	Conclusion and outlook
	References

