
How to Represent It in Agda
On Proof-Relevant Relations and Evidence-Aware Programming

Andreas Abel1

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

29th Agda Implementors’ Meeting
Ochanomizu University, Tokyo, Japan

13 March 2019

Abel How to Represent It in Agda AIM XXIX, March 2019 1 / 15

Introduction

Proof-relevance and evidence manipulation

Curry-Howard-Isomorphism (CHI):

propsitions-as-types
proofs-as-programs

Dependently-typed programming languages implement the CHI: e.g.
Agda, Coq, Idris, Lean

Allows maintainance and processing of evidence.

For practical impact, we need a also programming culture; c.f. GoF,
Design Patterns: Elements of Reusable Object-Oriented Software.

Abel How to Represent It in Agda AIM XXIX, March 2019 2 / 15

Lists

List membership

Membership a ∈ as inductively definable:

zero
a ∈ (a :: as)

suc
a ∈ as

a ∈ (b :: as)

Proofs of a ∈ as are indices of a in as (unary natural numbers).

Two different derivations of 3 ∈ (3 :: 7 :: 3 :: []), correspond to the
occurrences of 3:

zero : 3 ∈ (3 :: 7 :: 3 :: [])
suc (suc zero) : 3 ∈ (3 :: 7 :: 3 :: [])

Abel How to Represent It in Agda AIM XXIX, March 2019 3 / 15

Lists

Sublists
Inductive sublist relation as ⊆ bs:

skip
as ⊆ bs

as ⊆ (b :: bs)
keep

as ⊆ bs

(a :: as) ⊆ (a :: bs)
done

[] ⊆ []

A proof of as ⊆ bs describes which elements of bs should be dropped
(skip) to arrive at as.

skip (keep done) : (a :: []) ⊆ (a :: a :: [])
keep (skip done) : (a :: []) ⊆ (a :: a :: [])

⊆ is a category.

id : as ⊆ as reflexivity
◦ : (as ⊆ bs)→ (bs ⊆ cs)→ (as ⊆ cs) transitivity

Single extension

sgw : as ⊆ (a :: as)

Abel How to Represent It in Agda AIM XXIX, March 2019 4 / 15

Lists

Membership in sublists

Membership is inherited from sublists:

reindex : (as ⊆ bs)→ (a ∈ as)→ (a ∈ bs)

adjusts the index of a in as to point to the corresponding a in bs.

Trivium: reindex is a functor from ⊆ to (a ∈)→ (a ∈).

In category speak: reindex is a presheaf on ⊆op.

Abel How to Represent It in Agda AIM XXIX, March 2019 5 / 15

Lists

Types, sets, propositions, singletons

Our meta-language is (Martin-Löf) type theory: a ∈ as and as ⊆ bs
are types, their proofs are inhabitants.

Following Vladimir Voewodsky†, types are stratified by their h-level
into singletons (0), propositions (1), sets (2), groupoids (3),

1 A type with a unique inhabitant is a singleton (“contractible”).
2 A type with at most one inhabitant is a proposition. In other words, a

type with contractible equality is a proposition.
3 A type with propositional equality is a set.
4 A type with a set equality is a groupoid.

A type is of h-level n + 1 if its equality is of h-level n.

as ⊆ as is a singleton; so is a ∈ (a :: []).

as ⊆ [] is a proposition; so is a ∈ (b :: []).

In general a ∈ as and as ⊆ bs are sets.

Abel How to Represent It in Agda AIM XXIX, March 2019 6 / 15

Simply-Typed Lambda-Calculus

Natural deduction

Inference rules of intuitionstic implicational logic Γ ` A:

var
A ∈ Γ

Γ ` A
app

Γ ` A⇒ B Γ ` A

Γ ` B
abs

(A :: Γ) ` B

Γ ` A⇒ B

Derivations of Γ ` A are simply-typed lambda-terms with variables
represented by de Bruijn indices x : (A ∈ Γ).

t := app (var zero) (var (suc zero)) : (A⇒ B :: A :: [] ` B)
abs (abs t) : ([] ` A⇒ (A⇒ B)⇒ B)
abs (abs (var (suc zero))) : A⇒ (A⇒ A)
abs (abs (var zero)) : A⇒ (A⇒ A)

Abel How to Represent It in Agda AIM XXIX, March 2019 7 / 15

Simply-Typed Lambda-Calculus

Weakening

Inferences stay valid under additional hypotheses (monotonicity):

weak : (Γ ⊆ ∆)→ (Γ ` A)→ (∆ ` A)

adjust indices of hypotheses (var)

weak is a functor from ⊆ to (` A)→ (` A).

Abel How to Represent It in Agda AIM XXIX, March 2019 8 / 15

Simply-Typed Lambda-Calculus

List.All: true on every element

AllP as: Predicate P holds on all elements of list as.

[]
AllP []

(::)
P a AllP as

AllP (a :: as)

Proofs of AllP as are decorations of each list element a with further
data of type P a.

Soundness is retrieval of this data, completeness tabulation:

lookup : AllP as → a ∈ as → P a
tabulate : (∀a. a ∈ as → P a)→ AllP as

Universal truth is passed down to sublists:

select : as ⊆ bs → AllP bs → AllP as

Abel How to Represent It in Agda AIM XXIX, March 2019 9 / 15

Simply-Typed Lambda-Calculus

Substitution
Inhabitants of All (Γ `) ∆ are

proofs that all formulas in ∆ are derivable from hypotheses Γ
substitutions from ∆ to Γ

Parallel substitution

subst : All (Γ `) ∆→ ∆ ` A→ Γ ` A

replaces hypotheses A ∈ ∆ by derivations of Γ ` A.

Subst Γ ∆ := All (Γ `) ∆ is a category:

id : Subst Γ Γ
comp : Subst Γ ∆→ Subst ∆ Φ→ Subst Γ Φ

Singleton substitution

sg : Γ ` A→ Subst Γ (A :: Γ)

Abel How to Represent It in Agda AIM XXIX, March 2019 10 / 15

Simply-Typed Lambda-Calculus

Term equality and normal forms

For t, t ′ : (Γ ` A) define βη-equality t =βη t ′ as the least congruence
over

β
t : (A :: Γ ` B) u : Γ ` A

app (abs t) u =βη subst (sg u) t

η
t : (Γ ` A⇒ B)

t =βη abs (app (weak sgw t) (var zero))

βη-normality Nf t and neutrality Ne t (where o base formula):

var
x : A ∈ Γ

Ne (var x)
app

Ne t Nf u

Ne (app t u)

ne
Ne t

Nf t
t : (Γ ` o) abs

Nf t

Nf (abs t)

Abel How to Represent It in Agda AIM XXIX, March 2019 11 / 15

Simply-Typed Lambda-Calculus

Normalization
Having a normal/neutral form:

NF t = ∃t ′ =βη t. Nf t ′

NE t = ∃t ′ =βη t. Ne t ′

Interpretation of formulas as types:

[[A]]Γ : Γ ` A→ Type
[[o]]Γt = NE t
[[A⇒ B]]Γt = ∀∆ (w : Γ ⊆ ∆)(u : ∆ ` A)

→ [[A]]∆u
→ [[B]]∆(app (weakw t) u)

Soundness and completeness (combine to normalization):

sound : (t : Γ ` A)(σ : Subst ∆ Γ)→ [[Γ]]∆σ → [[A]]∆(substσ t)
complete : [[A]]Γt → NF t

Abel How to Represent It in Agda AIM XXIX, March 2019 12 / 15

Formal languages and Parsing

Formal languages

A context-free grammar (CFG) be given by

terminals a, b, c , . . . (words u, v ,w , . . .)
non-terminals X ,Y ,Z , . . .
sentential forms α, β, e.g. XabY
rules r given by a type family ::= . We write r : (X ::= α) if X → α
is a rule of the CFG.

Word membership w ∈ α:

red
X ::= α w ∈ α

w ∈ X

ε
ε ∈ ε

tm
w ∈ β
aw ∈ aβ

nt
u ∈ X v ∈ β

uv ∈ Xβ

Proofs of w ∈ α are parse trees.

Abel How to Represent It in Agda AIM XXIX, March 2019 13 / 15

Formal languages and Parsing

Earley parser

Judgement u.X v .β

init
ε.S ε.S

predict
u.X v .Y β Y ::= α

uv .Y ε.α

scan
u.X v .aβ

u.X va.β
combine

u.X v .Y β uv .Y w .ε

u.X vw .β

To parse w ∈ S derive ε.S w .ε.

Soundness: If u.X v .β and w ∈ β then vw ∈ X .

Completeness: If u.X v .αβ and w ∈ α then u.X vw .β.

Abel How to Represent It in Agda AIM XXIX, March 2019 14 / 15

Formal languages and Parsing

Conclusion

Many CHI design patterns to discover!

Current trend: revisit parsing theory from a type-theoretic perspective.

Edwin Brady: bootstrapping Blodwen in Idris.

Large project: bootstrap Agda.

Abel How to Represent It in Agda AIM XXIX, March 2019 15 / 15

	Introduction
	Lists
	Simply-Typed Lambda-Calculus
	Formal languages and Parsing

