
Singly typed actors in Agda
An approach to distributed programming with dependent types
Master’s thesis in Computer Science

PIERRE KRAFT

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2018

Master’s thesis 2018

Singly typed actors in Agda

An approach to distributed programming with dependent types

PIERRE KRAFT

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Singly typed actors in Agda
An approach to distributed programming with dependent types
PIERRE KRAFT

© PIERRE KRAFT, 2018.

Supervisor: Andreas Abel, Computer Science and Engineering
Examiner: Mary Sheeran, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Singly typed actors in Agda
An approach to distributed programming with dependent types
PIERRE KRAFT
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

By requiring communication to take place using explicit message passing, the actor
model has been shown to be an effective tool for building distributed systems.
However, communication in the actor model has traditionally been untyped, i. e.
any message can be sent to an actor, even though it most probably only handles
specific ones. Singly typed actors have a single static type assigned to each actor,
limiting messages to those that can be handled by the actor.

We present Mact, a formal model of singly typed actors, implemented as a shallow
embedding in Agda. The shallow embedding allows for a minimal calculus that does
not sacrifice usability, since programs are expressed using the full power of Agda—
a deep embedding would not have allowed for the same experimental investigation
without significantly more effort. We use this advantage to demonstrate how several
common communication patterns can be expressed as abstractions inside the model.

We implement and compare implementation strategies for out of order
communication—the foundation of the abstractions we build. With out of order
communication we are able to emulate local channels, which we use to implement
synchronous calls and active objects.

Like He (2014), we find that subtyping solves the problem of wide actor types when
sending messages. However, the use of a single inbox per actor remains problematic
when receiving messages, especially in the context of call-response patterns. Our
emulation of local channels alleviates the problem of wide actor types, but we still
propose extending the model with native support for multiple inboxes per actor as
a better solution.

Keywords: Distributed programming, Actors, Dependent types, Agda, Selective
receive

v

Acknowledgements

I would like to express my gratitude to my supervisor, Andreas Abel, for his
support and advice—your expertise has been very valuable and I have cherished our
meetings. I want to thank Mary Sheeran and Simon Fowler for your encouragement
and feedback—your words have meant a lot. My earnest thanks also go to my friends
and family for their help and care during the period of writing the thesis. I would
finally like to thank everyone that has shown interest in the results of my work—it
has motivated me tremendously.

Pierre Kraft, Gothenburg, June 2018

vii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Structure of the thesis . 3

2 Background 4
2.1 Dependent types and Agda . 4
2.2 Coinduction and sized types . 6
2.3 Monads . 9
2.4 Parameterized monads . 10
2.5 Subtyping . 13
2.6 The actor model . 14
2.7 Our conventions . 15

3 Related work 18
3.1 Singly typed actors . 18
3.2 Active object based actor systems . 19
3.3 Session types . 20
3.4 Similar formal models . 21

3.4.1 Process calculi . 21
3.4.2 Formally verified distributed systems 21

4 Mact 23
4.1 Syntax . 23
4.2 A monad for actors . 25
4.3 Typing rules . 27

4.3.1 Typing inboxes . 27
4.3.2 Inbox Subtyping . 29
4.3.3 References . 30

4.4 Messages . 32
4.5 ActorM revisited . 34
4.6 A simple actor program . 36
4.7 Representing references . 37
4.8 Semantics . 38

4.8.1 Environment of Mact . 38
4.8.2 Reductions . 43

ix

Contents

5 Selective receive 47
5.1 Theory of selective receive . 48
5.2 Selective receive as a primitive operation 49

5.2.1 Semantics . 50
5.3 Selective receive as a library . 53
5.4 Building on selective receive . 55
5.5 Channels . 55
5.6 Initiating channels . 57
5.7 Synchronous call . 58
5.8 Active objects . 58
5.9 Guide to examples . 64

6 Discussion 67
6.1 Serialization . 68
6.2 Evolving interfaces . 69
6.3 Frame rule . 70
6.4 Time, failures, and delays . 71

7 Conclusion 72

Bibliography 73

A Examples of monadic computation I

B Actor helper functions III

C Full implementation of selective receive as a library V

D Definition of initiate-channel X

x

1
Introduction

Distributed systems are darn difficult to build and even more difficult to build
correctly. Distributed systems use components that are spread across a network,
which brings several challenges: communication latency, temporary and permanent
failures, limited bandwidth, and the need for explicit synchronization. Neverthe-
less, distributed systems are ubiquitous: network applications, telecommunication
networks, and aircraft control systems are all physically distributed.

The computational models used for sequential and parallel programming can not
handle the challenges of distributed systems. Researchers must thus make the choice
of either adapting their models, if possible, or develop new models that are designed
for distribution. In the former camp we primarily find the adaptation of various
process calculi and in the latter we find variations of the actor model.

The computational model considered in this thesis is a process-based actor
model. Process-based actors are defined as computations which run from start to
completion, where processes send messages to one another, and where every process
has an inbox which contains messages that they have received. Communication in
the actor model is done solely via asynchronous message passing, reflecting the fact
that sending bits over a wire is the physical communication mode in a distributed
setting.

The nature of actors makes it difficult to give them a static type. Actors may fail
temporarily or completely, may require that intricate protocols are followed, and
the asynchronous nature of distributed systems means that no actor can guarantee
the current state of another actor. This has resulted in a tradition of dynamically
typed actors and runtime supervision.

An important reason to type actors is to make communication play well with
statically typed sequential code. This need can largely be captured by assigning
a single static type to each actor, a model we call singly typed actors. The singly
typed actor model has seen several adoptions by the industry (see section 3.1), but
is not well studied in a formal setting. This thesis aims to put practice into theory
by mechanizing singly typed actors as a formal model in Agda.

1

1. Introduction

Fowler, Lindley and Wadler (2017) develop a formal account of singly typed actors as
an extension to the simply typed λ-calculus. The simply typed λ-calculus (STLC) is
a tiny core calculus embodying the key concepts of functional programming. STLC’s
simplicity has made it the canonical choice when studying extensions to functional
programming, but it is not much of a programming language. This is reflected in
the extensions they make to their core languages when translating between their
λ-calculus for actors and their λ-calculus for channels—which they develop in the
same paper.

The extensions made by Fowler, Lindley and Wadler (2017) show that a fully
featured programming language is needed to write interesting actor programs. This
sparked the idea that we could implement their model as an embedded domain-
specific language (EDSL). An EDSL is a domain-specific language that is defined
in terms of a more powerful host language. The advantage of an EDSL is that it
inherits the infrastructure and abstractions of the language it is embedded in. This
makes for a powerful programming model, without the need to build a completely
new programming language.

We have chosen Agda as the host language for our actor DSL. The motivation behind
this decision lies in our desire to both mechanize a formal model of the singly typed
actor model and to make it easy to write interesting programs in it. Agda is both
a functional programming language and a theorem prover, conveniently answering
both desires.

Fowler, Lindley and Wadler (2017) develop an extension to their actor λ-calculus
that enables out-of-order processing of messages via a selective receive construct.
Selective receive is a construct that sees practical use in Erlang as a means to
enable synchronization, for example when implementing synchronous call-response.
Our intuition says that selective receive can be used to emulate many communication
patterns, such as local channels, synchronous calls, active objects, and distributed
state machines. This intuition is in fact what sparked the idea of this thesis and we
dedicate a significant effort to investigate this idea.

1.1 Contributions
This thesis makes the following contributions:

• It presents Mact, a domain-specific language for the singly typed actor model,
embedded in Agda.

• It presents a mechanized formalization of the singly typed actor model,
implemented in Agda.

• It compares two methods of implementing selective receive, both as an
extension to the language and as a library.

2

1. Introduction

• It shows how selective receive can emulate local channels, which we use to
implement synchronous calls and active objects.

1.2 Structure of the thesis
The rest of the thesis is organized as follows.

We begin chapter 2 with a short introduction to Agda, which leads up to an
explanation of coinduction and its use in modelling infinite processes. We follow
with an introduction to monads and parameterized monads, which will serve as
the base of Mact. We provide a short introduction to subtyping, followed by an
explanation of the actor model and a recital of standard actor-related vocabulary.
We end the chapter with a note on the notational conventions we use in this thesis.

In chapter 3 we review related work in regards to typing distributed systems and
formal models similar to the singly typed actor model.

Chapter 4 presents the syntax, typing rules, and semantics of Mact. This chapter
also reviews the λ-calculus that Mact is based on and details several design decisions
that we made.

The details of Mact lead up to chapter 5, where we compare two methods of
implementing selective receive and we show how selective receive can be used to
implement important abstractions.

Our findings are discussed in chapter 6, where we also make suggestions for further
improvements and future work.

Lastly, the work is concluded in chapter 7.

3

2
Background

This thesis mechanizes a type-theory for the actor model in the Agda language.
This chapter aims to explain important concepts when working in Agda, some type
theory, and the actor model. We try to assume as little knowledge as possible and
explain terminology as it appears, but we do expect prior experience in functional
programming and some understanding of type theory.

2.1 Dependent types and Agda
Agda is a theorem prover and a functional programming language (Bove, Dybjer
and Norell 2009). At the heart of Agda is its dependent type system, which is
an extension of Martin-Löf’s intuitionistic type theory (Bove, Dybjer and Norell
2009; Martin-Löf and Sambin 1984). The idea of dependent types is to let types
be calculated from some other values, allowing a developer to make types as precise
as required. Via the Curry–Howard correspondence, a type in Agda can also be
seen as a proposition in constructive logic, where propositions are proved by writing
a program inhabiting the corresponding type. This correspondence is what makes
Agda both a theorem prover and a functional programming language.

Agda’s main types are dependent function types, inductive data types, and
coinductive data types. In Agda, types can be manipulated just like any other
language construct. For example, they can be stored in variables, passed to
functions, or constructed by functions. The type of types is called Set.

Inductive data types in Agda can be seen as dependent versions of the algebraic data
types you might have seen in other functional programming languages. For example,
the set of Peano numbers and its ”less than or equal” relation can be defined like
this:

4

2. Background

data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ

data _≤_ : ℕ → ℕ → Set where
z≤n : {n : ℕ} → zero ≤ n
s≤s : {n m : ℕ} → n ≤ m → suc n ≤ suc m

The definition of ℕ should be read as there being two ways to construct a natural
number. Zero is a natural number, and if n is a natural number, then suc n (the
successor of n) is a natural number too. Similarly, the proposition ≤ also has two
constructors. The first constructor, z≤n, states that zero is less than or equal
to any natural number. The second constructor, s≤s, states that if n ≤ m, then
suc n ≤ suc m.

The type of ≤ is ℕ → ℕ → Set. This means that ≤ is a family of types indexed by
two natural numbers. So, for each natural number n and m, n ≤ m is a type. The
constructors are free to construct elements in an arbitrary type of the family, so
many or all of these types might be uninhabited. For example, suc zero ≤ zero
is impossible to construct.

Perhaps simpler than inductive data types are dependent function types. In Agda
we write (x : A) → B for the type of functions taking an argument x of type A and
returning a result of type B, where x may appear in B. A special case of when x
appears in B is when x itself is a type. For instance, we can define a polymorphic
identity function, which takes a type argument A and an element of A and just
returns the element:

identity : (A : Set) → A → A
identity A v = v

Surrounding an argument with {} makes it implicit. Implicit arguments can be
omitted, provided they can be inferred by the type checker. Using this syntax we
can define a new version of the identity function, where you do not have to
supply the type argument. The functions f and g showcase how to guide the type
checker, while h shows that we can apply the implicit argument manually.

identity' : {A : Set} → A → A
identity' v = v

f : ℕ → ℕ
f = identity'
g = identity' 2
h = identity' {Bool}

An important data type that uses most of the presented features is propositional
equality : x ≡ y (for x, y : A). By propositional equality we mean the standard
equality type as introduced by Martin-Löf—see e. g. Nordström, Petersson and

5

2. Background

Smith (1990, Sect. 8). ≡ has one constructor which says that ≡ is the least reflexive
relation (modulo definitional equality):1

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x

trivial : 4 ≡ 4
trivial = refl
definitional : (2 + 2) ≡ 4
definitional = refl

The proposition definitional showcases Agda’s built in definitional equality,
which can be seen as ‘equality after inlining all definitions and with normaliza-
tion’. Definitional (trivial) equality only takes us so far, e. g. it can not prove
(n : ℕ) → (n + 0) ≡ (0 + n), which is why propositional equality exists as well.
To prove this last equation we have to define a function that builds the propositional
equality proof inductively:

cong : ∀ {a} {A B : Set a} {m n : A} → (f : A → B) → m ≡ n → f m ≡ f n
cong f refl = refl

id-0 : (n : ℕ) → (n + 0) ≡ (0 + n)
id-0 zero = refl
id-0 (suc n) = cong suc (id-0 n)

2.2 Coinduction and sized types
A basic principle of Curry-Howard is that the consistency property of a logic
corresponds to checking that a program is total, i. e. it is not allowed to crash
or non-terminate. We can showcase this by turning off Agda’s termination checker
to create a function that can prove any property. Via the function anything, which
recurses on itself indefinitely, we are able to create a term of the clearly uninhabited
type ⊥

{-# NON_TERMINATING #-}
anything : ∀ {a} {A : Set a} → A
anything = anything

data ⊥ : Set where

can-prove-⊥ : ⊥
can-prove-⊥ = anything

Since Agda enforces program termination, a natural conclusion would be that
writing programs that run indefinitely, e. g. processes, servers, or infinite streams,

1The definition of ≡ uses type levels which we explain in section 2.7. You can safely think of
Set a as Set.

6

2. Background

is completely out of the picture. Using just the concepts we have seen so far,
inductive data and recursive functions, that conclusion would be correct. Even
though induction can model infinite structures, such as natural numbers, recursive
definitions are only well-founded if the result is built from smaller building blocks.

To model potentially infinite structures we have to turn to coinduction. Coinduction
describes how an object may be ‘observed’, or ‘destructed’ into simpler objects,
compared to induction which describes how an object may be ‘built up’ from simpler
objects. Similarly, just as recursive functions are well-formed if the result is built
from smaller objects, corecursive functions are well-formed if the result builds larger
objects.

Agda supports two flavours of coinduction; we will only use the most modern flavour,
which is defined using coinductive records and copatterns.2 Let us illustrate how
to program with these concepts using an example of generating an infinite stream
of all natural numbers. We define Stream to be a coinductive record with two
observations, head and tail:

record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A

Similar to how we would define a recursive function using pattern matching, we will
define the stream of natural numbers using copatterns. The copatterns .head and
.tail let us define the projections from the record nats n as separate cases. nats
does not reduce by itself; it only reduces if applied to one of the projections .head
or .tail. In a sense, this simulates what is achieved by lazy evaluation in Haskell
or Coq.

nats : ℕ → Stream ℕ
nats n .head = n
nats n .tail = nats (suc n)

all-nats = nats 0

third-tail : (all-nats .tail .tail .tail .head) ≡ 3
third-tail = refl

When reasoning about termination for coinductive data, one speaks of a definition as
being productive, rather than terminating (Coquand 1993). Productivity essentially
states that every finite approximation of a conceptually infinite value should
be computable in a finite number of steps. The approximation of productivity
developed by Coquand (1993) is called the principle of guarded recursion. The

2The old flavour of coinduction was not considered stable (Bove, Dybjer and Norell 2009) and
could be used to prove absurdity. The modern flavour can not be used to prove absurdity (Abel
and Pientka 2013) and is considered stable.

7

2. Background

term guarded comes from the fact that self-referential calls have to be hidden under
a coinductive constructor, e. g. the constructor for Stream. Intuitively, guarded
recursion gives a guarantee that we can stop the recursion by choosing to not further
evaluate the recursive constructor argument.

Copatterns are an alternative way of defining record constructors and definitions—
they emulate guarded recursion. In the definition of nats it is the usage of
copatterns, combined with the coinductive nature of Stream, that enables nats
to recursively refer to itself while maintaining productivity.

Guarded recursion is a form of syntactic productivity check, meaning that if
we restructure the code, e. g. by extracting an auxiliary function, the compiler
might not be able to see that the definition is productive. In order to restore
function compositionality and abstraction, Abel and Pientka (2013) adapt type-
based termination to prove productivity of definitions by copatterns. The idea of
type-based termination is to annotate types with a size index, indicating recursion
depth. For recursive calls it is checked that the sizes decrease, which by well-
foundedness entails termination (Abel 2010).

In this paper we will use Agda’s built-in type Size which denotes a set of ordinals.
Size ∞ stands for the highest ordinal needed for recursion in Agda. From Size we
can access the size ∞, the successor operator ↑, and the type of smaller sizes Size<.

Abel and Pientka (2013) observe that when showing that a stream can safely handle
a observations, it is safe to assume that we can make b observations for any b < a.
E. g. if we are defining the third element of a stream, it is safe to observe the first or
second element of the stream. For our new definition of Stream below, the Size
can be understood as how many times the observation tail is at least defined for.
More precisely, observing a Stream i will result in a Stream j of strictly smaller
observation depth i < j.

record Stream (i : Size) (A : Set) : Set where
coinductive
field
head : A
tail : (j : Size< i) → Stream j A

Let us look at how type-based termination helps us define the stream of Fibonacci
numbers. Intuitively, what we want to define is a stream starting with the elements
0 and 1, followed by the sum of the two previous stream elements. Fibonacci can be
implemented according to this specification via zipWith, which pointwise applies
a binary function to the elements of two streams. The Size parameter in zipWith
guarantees that the function will produce an output stream of depth i if called with
input streams of at least that depth.

8

2. Background

zipWith : (i : Size) {A B C : Set} → (A → B → C) →
Stream i A → Stream i B → Stream i C

(zipWith i f xs ys) .head = f (xs .head) (ys .head)
(zipWith i f xs ys) .tail j = zipWith j f (xs .tail j) (ys .tail j)

fib : (i : Size) → Stream i ℕ
fib i .head = 0
fib i .tail j .head = 1
fib i .tail j .tail k = zipWith k _+_ (fib k) (fib j .tail k)

2.3 Monads
A monad, or computation builder, is a design pattern used in functional program-
ming to chain things together. Moggi (1991) was the first to apply monads to
computer science, but in the context of functional programming it was Wadler (1992)
that lead the way.

In essence, a monad lets you write execution steps and link them together using a
function called ‘bind’, written >>=. The bind function’s job is to take the output
from the previous step and feed it into the next step. The other function that every
monad has is called ‘return’. The return function’s job is to take a plain value and
put it in the monad.

The simplest monad is the identity monad3, which simply applies the bound function
to its input without modification:

data MonadID (B : Set) : Set₁ where
return : B → MonadID B
>>= : ∀ {A} → MonadID A →

(A → MonadID B) →
MonadID B

It is not an explicit or required part of the monad pattern, but it’s often useful to
provide a function that translates the value wrapped in the monad into something
else. For the identity monad, we can define this translation function as simply
applying the value to the bound function:

run-monadID : ∀ {A} → MonadID A → A
run-monadID (return x) = x
run-monadID (m >>= f) = run-monadID (f (run-monadID m))

3 We have defined the identity monad as an explicit data type, which is not the usual choice
in Agda. This is a choice that we have made to make the transition to the next section smoother.
A monad in Agda should preferably implement the RawIMonad interface as well, not just create
two free functions return and _>>=_.

9

2. Background

If we change the structure of our monad pattern we can define many different
kinds of computation chains. Common modifications of the pattern are to add
more constructors and to perform some more advanced plumbing code in the bind
function. E. g. in the Maybe monad, we add the constructor nothing and make
bind only apply a value to f if there exists a value to apply:

data Maybe (A : Set) : Set₁ where
nothing : Maybe A
just : A → Maybe A

return : ∀ {A} → A → Maybe A
return = just

>>= : ∀ {A B} → Maybe A → (A → Maybe B) → Maybe B
nothing >>= f = nothing
just x >>= f = f x

The identity monad and Maybe monad can be seen in the context of two examples
in appendix A.

All instances of the monad pattern should obey the three monad laws (Wadler 1992).
These laws are:

left-identity = ∀ {A B} → (x : A) → (f : A → Monad B) →
(return x >>= f) ≡ f x

right-identity = ∀ {A} → (m : Monad A) →
(m >>= return) ≡ m

associativity = ∀ {A B C} → (m : Monad A) →
(f : A → Monad B) → (g : B → Monad C) →

((m >>= f) >>= g) ≡ (m >>= (λ x → f x >>= g))

2.4 Parameterized monads
The monad pattern gives an elegant way to sequence computations and combine
compatible sub-computations. In the pattern that we have presented, sub-
computations are compatible if the first computations output is the input to the
second computation. Conditions on the internal state (or on the implicit external
state) are not captured in the type system, so sub-computations with incompatible
conditions can still be composed and compiled.

Parameterized monads is a generalization of the monad pattern that lets us verify
that all conditions are compatible, by making the conditions explicit in the type.
Compared to externally verifying the monadic computation, parameterized monads
can be made correct by construction. Parameterized monads should preferably have

10

2. Background

been called (type) indexed monads, but that name is already used for a slightly
different concept4.

The idea of a parameterized monad is to encode the invariants (preconditions and
postconditions) of the monad in its type. An easy way to do so is the parameterized
monad à la Atkey (2009). This pattern (which can be implemented without
dependent types) adds two indices to the monad type—one for the precondition,
and one for the postcondition:

data MonadParam' (B : Set) : {p q : Set} → p → q → Set₁ where
return : ∀ {p} → {pre : p} → B → MonadParam' B pre pre
>>= : ∀ {A X Y Z} → {pre : X} → {mid : Y} → {post : Z} →

MonadParam' A pre mid →
(A → MonadParam' B mid post) →
MonadParam' B pre post

We are guided by intuition and the monad laws when deciding how return and bind
should affect the invariants in MonadParam'. Bind connects the preconditions and
postconditions of two sub-computations via a midcondition, similar to composition
in Hoare logic (Hoare 1969). The result of binding two sub-computations is naturally
a joined computation with the precondition from the first and postcondition from
the second, that is:

{P } S {Q} , {Q} T {R}
{P } S;T {R}

Return on the other hand does not have any clear precondition, but we can see that
in order for return to be an identity element, the precondition and postcondition
have to be the same. Return can thus be likened to the empty statement rule of
Hoare logic, that is:

{P } skip {P }

The MonadParam' pattern can be used to model invariants that do not depend
on what happens during run-time. For example, we can create a monad carrying
implicit state for which the type of the state can change over time. Another typical
example would be a monad for file actions that can only write to a file that has been
opened and not yet closed. If there is a need to model invariants that depend on
run-time interactions, then we need to generalize the monad pattern a bit more.

In MonadParam below, we take advantage of the dependent type system by
changing the postcondition from a static value to a function on the answer of the
monad. This is an idea used by Nanevski et al. (2008) to model separation logic, and
by Brady (2015) to model effectful computations in Idris. What dependent types

4The slightly different concept is the indexed monads captured by Agda’s RawIMonad, which
is essentially the same as the MonadParam' we present below.

11

2. Background

brings is the ability for different branches (fail/success) to have different types. This
is possible since Agda allow types to depend on the value of a term.

data MonadParam (B : Set) : {p q : Set} → p → (B → q) → Set₁ where
return : {S : Set} → {post : B → S} →

(val : B) →
MonadParam B (post val) post

>>= : ∀ {A X Y Z} → {pre : X} →
{mid : A → Y} →
{post : B → Z} →
MonadParam A pre mid →
((x : A) → MonadParam B (mid x) post) →
MonadParam B pre post

The relation between the precondition and postcondition for return in MonadParam
might seem surprising. The precondition is (post val), so, somehow, the precondition
depends on the postcondition. The key thing to realize is that we must have that
pre = (post val) in order for return to be an identity element. Rather than putting a
constraint on the postcondition, return makes the relation hold trivially by setting
pre = post val. This style of reasoning is similar to how one can reason about Hoare
logic using Dijkstra’s (1975) weakest preconditions and is inspired by the STsep
monad of Nanevski et al. (2008).

We can use the same style of reasoning for the invariants of bind in MonadParam.
The midcondition should make the postcondition of the first sub-computation and
the precondition of the second sub-computation meet, which we trivially get by
setting midpost x = midpre.

The parameterized monad with dependent parameters is a powerful pattern that
captures run-time invariants at compile time. Below we showcase a simplified
monad for file handling that captures the notion that opening a file might fail. The
invariance tracking and dependent types makes sure that every code branch performs
the necessary run-time checks to ensure that the invariants hold. The relationship
between an operation’s invariant and return value might seem arbitrary, but they
are all constructed so that the invariants can be completely inferred from the return
value during run-time.

data FileState : Set where
Open : String → FileState
Closed : FileState

12

2. Background

data FileMonad : (A : Set) → FileState → (A → FileState) → Set₁ where
return : ∀ {A post} → (val : A) → FileMonad A (post val) post
>>= : ∀ {A B pre mid post} →

FileMonad A pre mid →
((x : A) → FileMonad B (mid x) post) →
FileMonad B pre post

OpenFile : String → FileMonad FileState Closed (λ x → x)
CloseFile : ∀ { s } → FileMonad ⊤ (Open s) (λ _ → Closed)
WriteFile : ∀ { s } → String → FileMonad ⊤ (Open s) (λ _ → Open s)

writeHello : FileMonad ⊤ Closed (λ _ → Closed)
writeHello = OpenFile "world.txt" >>= λ {
Closed → return _ ;
(Open _) → WriteFile "hello" >>= λ _ → CloseFile
}

2.5 Subtyping
Subtyping is a relation between two types in a type system. If S is a subtype of T,
written S <∶ T , then any term of type S can be safely used in a context where a
term of type T is expected. If we view types as denoting sets of values, then we can
view subtyping as a relation between types induced by the subset relation between
value sets. E. g. if S = {a, b} and T = {a, b, c}, then S <∶ T since S ⊆ T .

The semantics of subtyping depends on what ‘safely used in a context where’ means
in a given language, but Pierce (2002) stipulates that subtyping should be reflexive
and transitive:

S <∶ S
S <∶ T T <∶ U

S <∶ U

The subtyping relation does not need to be anti-symmetric, even though it often
is. Consider, for example, permutation subtyping; in a type system with records,
permutation subtyping is a relation between records with the same fields, but in a
different order. Pierce (2002) notes that such relation is not anti-symmetric, e. g.

A ∶ {x ∶ Bool, y ∶ Int}
B ∶ {y ∶ Int,x ∶ Bool}

A <∶ B

B <∶ A

A ≠ B

13

2. Background

The subtyping relation must also be defined for function types, that is, we should
specify under what circumstances it is safe to use a function of one type in a context
where a different function type is expected (Pierce 2002).

S <∶ A B <∶ T

A → B <∶ S → T

Here, the subtype relation is reversed (contravariant) for the function arguments,
while it runs in the same direction (covariant) for the result type. Intuitively, it is
safe to allow a function of type A → B to be used in context of another function
S → T , as long as none of the arguments that may be passed in this context will
surprise it (S <∶ A) and none of the results that it returns will surprise the context
(B <∶ T) (Pierce 2002).

2.6 The actor model
The actor model (Hewitt, Bishop and Steiger 1973) is a concurrency model based
on entities communicating via message passing. These entities, called actors, can
send messages, make local decisions, spawn new actors, and determine how to
respond to the next message they process. Communication in the actor model
is one-way, asynchronous, and the arrival order of messages is both arbitrary and
entirely unknown. These properties are required for the model to be realistically
implementable in a distributed environment (Agha 1990).

A big difference between the actor model and the more heavily studied process
algebra school is the choice of communication medium. CSP (Hoare 1978) and
the π-calculus (Milner, Parrow and Walker 1992) are based on message passing
over channels, in contrast to actors which communicate by sending messages to
the addresses of other actors. The difference might seem small, but we argue
that implementing distributed models based on channels pose difficult engineering
problems.

The main obstacle in implementing channels in distributed programming is that
a channel exists as an abstract transferable and shareable entity, and thus does
not have a physical location. In order to send a message on a channel that can
have multiple readers one has to solve a distributed consensus, since the readers on
the channel have to agree in order for one reader to take the message and prevent
the others from getting the same message (Vyšniauskas 2015). Vyšniauskas (2015)
instead argues for a condition they call full ownership, where channels are always
owned (only readable) by a particular process. This channel ownership model has
striking similarities with the addresses of actors, with the difference being that their
model allows a single actor to have multiple addresses.

Several variations of the actor model have been created over the years, each
employing its own terms to describe their concepts. Thankfully, De Koster, Van

14

2. Background

Cutsem and De Meuter (2016) have made an overview of the most prominent model
variations: Classic Actors, Active Objects, Processes and Communicating Event-
Loop. The variation considered in this thesis is actors based on processes, but we
show in section 5.8 how our model can emulate active objects.

De Koster, Van Cutsem and De Meuter (2016) also provide a unified vocabulary
which we will reiterate here and use throughout this paper.

message A message is the unit of communication between different
actors. A message is a combination of an identifier that defines the
type of message and a payload that contains additional information sent
with that message. If one actor sends a message to another actor, that
message is stored in the latter actor’s inbox, independent of the recipient
actor’s current processing state.

inbox The inbox of an actor stores an ordered set of messages received
by that actor. While the inbox defines the order in which the messages
were received, that does not necessarily imply that those messages are
processed by that actor in that order.

interface At any given point in time, an actor’s interface defines the
list and types of messages it understands. An actor can only process
incoming messages that fit this interface. For some actor systems this
interface is fixed while other actor systems allow an actor to change
its interface, thus allowing it to process different types of messages at
different points in time.

state At any given point in time, we define an actor’s state as all the
state that is synchronously accessible by that actor (i. e. state that can
be read or written without blocking its thread of control). Depending
on the implementation, that state can be mutable or immutable, and
isolated or shared between actors.

actor An actor can be defined as a four-tuple: an execution context, an
inbox, an interface and its state. An actor perpetually takes messages
from its inbox and processes them in a new execution context with
respect to that actor’s interface and state. This continues until the
inbox is empty after which the actor goes to an idle state until a new
message arrives in its inbox.

2.7 Our conventions
The remainder of this thesis uses notation that might be unfamiliar to some. These
notations are syntax for singleton lists, lifting of types, and do-notation.

15

2. Background

Singleton lists
When building lists we often come to a point where we want to add a single element
to the empty list, i. e. a singleton list. Agda does not come with syntax sugar for
building list literals, but we can create a special function for adding an element to
the empty list:

[a] = a ∷ []

We use three different list-like data structures in this thesis, meaning that we need
three different singleton functions. We have marked the functions with different
superscripts to indicate what type the list-like data structure has. For lists we
use ˡ, for subsets (membership relations) we use ᵐ, and for lists where all elements
satisfy a given property (All) we use ᵃ.

Lifting of types
Not every Agda type is a Set. For example, we have Bool : Set and
Nat : Set , but not Set : Set. However, we often have to work with these

‘types of types’. Agda lets us do that via the type that contains types, Set₁, where
Set is an element: Set : Set₁ . To work with Set₁ we have that Set₁ : Set₂ ,
and this tower of types continues indefinitely.

When we have an element of type Set but want an element of type Set₁ we can
Lift the element to the right type level. The record Lift takes an element in
some set and promotes it to the least upper bound of that set and another. For
example, Bool can be lifted to Set₁ like so:

record Lift {a ℓ} (A : Set a) : Set (a ⊔ ℓ) where
constructor lift
field lower : A

Bool₁ = Lift {lzero} {lsuc lzero} Bool

We will use the notation that a type has been lifted to a higher level is marked with
a subscript number, imitating the notation for Set, Set₁, … . For example Bool
lifted to Set₁ will be called Bool₁

do-notation
Agda provides a syntactic sugar for using monads, called do-notation. Monads are
useful for imitating imperative code, and do-notation makes it look like it actually
is imperative. A do-block consists of the keyword do, followed by a sequence of
do-statements, which gets translated into calls to >>= and >>. The syntactic sugars
and what they translate to is provided in table 2.1

16

2. Background

Statement Sugar Desugars to

Simple bind
do x ← m

m'

m >>= λ x →
m'

Pattern bind
do p ← m

where pi → mi

m'

m >>= λ where
p → m'
pi → mi

Non-binding statement
do m

m'

m >>
m'

Let
do let ds

m'

let ds in
m'

Table 2.1: Rules for desugaring do-notation

17

3
Related work

In this chapter, we review work relevant for adding types to distributed systems,
formally verified actor models, and ongoing industry developments. Much of the
terminology in distributed systems is overloaded, e. g. channels and actors are often
conflated (Fowler, Lindley and Wadler 2017), so organizing our thoughts before
getting into the meat of the thesis is important.

3.1 Singly typed actors
The main inspiration for the topic of this thesis is the recent developments, primarily
in industry, of actor models that have static non-behavioural type systems. These
are models where processes interact directly with their inboxes—in contrast to active
object based actor systems where message passing and reading is hidden—and where
inboxes have a type that does not evolve in relation to a protocol. The capability to
read from an inbox must furthermore be tied to a single actor in order to enable easy
distribution; this rules out Srinivasan and Mycroft’s (2008) otherwise interesting
Kilim framework.

The singly typed actor model can not automatically prove the absence of deadlocks
or that protocols are followed, but it has gained many followers by being relatively
simple. The common way to implement singly typed actors is as a library, which
we find many examples of, such as He’s (2014) TAkka, Akio1, Actix2, Charousset,
Hiesgen and Schmidt’s (2016) C++ Actor Framework, F#’s MailboxProcessor3,
Nact4, Theron5, and typed-actors6. Implementations where the singly typed actor
model is added as constructs in the base of a programming language are fewer, with
Alpaca7 and Fowler, Lindley and Wadler’s (2017) λact as the sole implementations
we know of.

1https://github.com/kphelps/akio
2https://github.com/actix/actix
3https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor
4https://nact.io/
5http://www.theron-library.com/
6https://github.com/knutwalker/typed-actors
7https://github.com/alpaca-lang/alpaca

18

https://github.com/kphelps/akio
https://github.com/actix/actix
https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor
https://nact.io/
http://www.theron-library.com/
https://github.com/knutwalker/typed-actors
https://github.com/alpaca-lang/alpaca

3. Related work

3.2 Active object based actor systems
The active object model is an actor model where explicit message passing is replaced
with asynchronous method invocation. The model has its roots in Yonezawa, Briot
and Shibayama’s (1986) object-oriented programming language ABCL/1. Active
objects have a fixed interface of messages that are understood (De Koster, Van
Cutsem and De Meuter 2016), similar to the static interfaces of many conventional
object-oriented programming languages.

Whereas messages sent to an actor are generally selected by pattern matching over
the message queue, asynchronous method invocations restrict the communication
between active objects to messages that trigger method activations (de Boer et al.
2017). This restriction adds important structure to the actor model, making it easy
to add static types.

With method invocations being asynchronous we mean that invoking a method
immediately gives back control to the caller. This means that method invocation
has to return a future value, rather than a value that is available now. The future
starts unresolved (without a value) but it will be resolved (have a value) when
the asynchronous method completes. If the caller attempts to retrieve the content
of a future that is unresolved, the caller suspends until the asynchronous method
completes and the future is resolved. In essence, futures are a specialization of local
channels, where a future corresponds to a channel that will only be used to deliver
a single message.

Active object models are typically language based, since method invocation is usually
intertwined with the core semantics of a language. We refer to de Boer et al. (2017)
for a detailed review of the differences between the different languages, but notable
examples include Rebeca (Sirjani et al. 2004), ABS (Johnsen, Hähnle et al. 2010),
Creol (Johnsen, Owe and Arnestad 2003), and Pony (Clebsch et al. 2015). It is
interesting to note that most active object languages have formal semantics, whereas
the singly typed actor models generally do not.

The method based communication model is both the key advantage and key disad-
vantage of the active object model. The added structure of methods corresponds
to what is probably the most common patterns used in actor programming, but
inherently adds coupling between messaging and execution. A potential problem
with coupling the processing of a type of message to a particular body of code is
that the behaviour of an actor is often dynamic, and that the order that messages
are sent does not always correspond to the order in which they should be processed.

Examples of dynamic behaviour can be seen in most protocols. Even actors as
simple as a remote light switch inhibit dynamic behaviour, i. e. switching on a light
that is already on should not turn on the electricity again. Active object based
systems assign a static behaviour for message types and thus dynamic behaviour
has to be implemented by manual branching on internal state. We believe that this

19

3. Related work

style of branching tends to be more difficult to understand, compared to the explicit
message reception of other actor models.

Deeply related to this dynamic behaviour is that message processing order should
be decidable by the actor. As an actor goes through different states, only some
types of messages or messages from specific actors makes sense to process at that
moment. We will see in chapter 5 that message reordering can simplify control
flow, and remove most need for branching, by letting you delay messages until they
become relevant.

We show in section 5.8 that the singly typed actor model can emulate active objects
by assigning a single method to each message type and by using a single receive-
send-loop per actor. If similar emulation can be used in the other direction is not
clear, indicating that singly typed actors might be more expressive, or at least less
strict, than active objects.

3.3 Session types
Session types (Honda 1993; Honda, Vasconcelos and Kubo 1998; Takeuchi, Honda
and Kubo 1994) are a group of type systems based on the observation that ‘a
communication-centred application often exhibits a highly structured sequence of
interactions involving, for example, branching and recursion, which as a whole form
a natural unit of conversation, or session’ (Honda, Yoshida and Carbone 2008).

Session types are generally studied in specialized process calculi resembling the
π-calculus; Dardha, Giachino and Sangiorgi (2017) show how session types can
be interpreted as standard π types—more precisely, into linear types and variant
types. Linear π types (Kobayashi, Pierce and Turner 1999) force a channel to be
used exactly once, making for channels that are easy to distribute. Unrestricted
channels, i. e. channels that are transferable between multiple readers, can also
be used, but they require some means of delegating channels. Hu, Yoshida and
Honda (2008) propose several methods for implementing channel delegation, but the
concept ultimately requires building an implicit distributed algorithm not directly
apparent in the protocol.

Session types can alternatively be added to the actor model. Mostrous and
Vasconcelos (2011) enrich a communication-centered fragment of Erlang with
sessions and session types. They link messages to sessions via unique references
and Erlang’s selective receive statement is used to receive messages from a specific
session. We use this technique in section 5.5 to emulate local channels.

The Scribble language is a platform-independent description language for the
specification of asynchronous, multiparty message passing protocols (Yoshida et al.
2013). The study of multiparty session types (Honda, Yoshida and Carbone 2008)
underpins the design of Scribble, but Scribble manages to avoid the distribution
issues of π-calculus by not supporting delegation.

20

3. Related work

Scribble does not prescribe a certain communication medium, and instead just states
that communication somehow takes place between the roles of a session, where a role
is an abstract description of a participant’s behaviour within a session. This freedom
has allowed for the application of multiparty session types to the actor model.
Research on applying Scribble to actors has so far focused on dynamic monitoring of
session types, e. g. Neykova and Yoshida (2017) add runtime protocol verification to
the Python framework Celery, and Fowler (2016) continues this research with a tool
for monitoring communication in Erlang applications. How, and to what extent,
static verification of session types can be applied to the actor model is still an open
question.

3.4 Similar formal models
Proofs that can be verified by a machine have to be written in a formal language
that the machine can understand. The process of writing these proofs is difficult,
because one usually has to add quite a lot of detail to a mathematical proof on
paper to make the proof assistant accept it (Geuvers 2009). Even though the proofs
are different, the techniques used when formalizing similar models should provide
transferable insight. The models we consider similar can be put in two groups:
process calculi and verified distributed models.

3.4.1 Process calculi

The family of process calculi is large and diverse, but shares a basic orientation
of focusing on interaction via communication over channels, on using a small set
of primitive operators, and on deriving useful algebraic laws for manipulating
expressions written using these operators (Pierce 1997). As noted by Vyšniauskas
(2015), the majority of process calculi build upon synchronous communication,
which is fitting in a concurrent setting, but complicates distribution.

There exists many formal encodings of process calculi, both in Agda and in other
proof assistants. Igried and Setzer’s (2016) model of the CSP calculus in Agda uses
several relevant techniques, such as a coinductive representation of processes and the
use of monadic composition to integrate Agda functions in the model. Maksimovic
and Schmitt (2015) formalizes higher-order process calculus in Coq and show that
their calculus is Turing-complete. Perera and Cheney (2016) encode π-calculus in
Agda and prove properties about the traces of concurrent transitions. Bengtson
and Parrow (2009) present a formalization of π-calculus that uses nominal logic to
reduce the need of proofs about bound names.

3.4.2 Formally verified distributed systems

Formally verified distributed systems is the application of formal proofs to the
verification of distributed protocols. A program is written as normal, using a core

21

3. Related work

model of distribution, but additionally has to be proven correct and in accordance
to the given protocol. Verified distributed systems provide strong static guarantees
which are unparalleled by other techniques so far.

The disadvantages of using formal proofs as the verification technique are the same
as the drawbacks of any formal method: accuracy depends on the accuracy of the
model, proof writing is very time consuming, and developing specifications requires a
familiarity with discrete mathematics and logic. To limit these disadvantages, work
on formally verifying distributed systems concentrates on finding models which have
a small core, reasonable performance, and a tolerable proof burden.

There are several different frameworks for formally verifying distributed systems.
Each of them uses widely different distributed models. IronFleet (Hawblitzel
et al. 2017), for example, proposes a methodology that relies on state machine
refinement and Hoare-logic verification. It aims at proving the safety and liveness of
a MultiPaxos server library, which the authors use to build both a replicated state
machine library and a sharded key-value store.

Another framework is Verdi (Wilcox et al. 2015). In this framework, the developer
writes and proves their system correct in a simplified environment (e. g. a system
with a perfectly reliable network). The developer then selects the target network
semantics that reflects their environment’s fault model and applies a verified system
transformer to transform their implementation into one that is correct in that fault
model.

Some verification frameworks use actors as their model of distribution. Musser and
Varela (2013), Yasutake and Watanabe (2015), and Summers and Müller (2016) all
propose formalized calculi for the actor model, which allows a user of these models
to verify desired properties. As with the other verified distributed systems it is up
to the developer to devise their own strategy for making verification easy. An in
this model does not have a static type; instead, formal proofs are used to guarantee
correctness.

22

4
Mact

In this chapter we introduce Mact, a language for the core of actor-based concurrency.
Depending on your point of view, Mact can be seen as a calculus that embeds the
meta-language Agda for convenience, or as a monadic domain-specific language
(DSL) in Agda. We will use both notions throughout, seeing Mact primarily as
a calculus when describing its syntax and semantics, while viewing it as a DSL
when writing examples and abstractions.

4.1 Syntax
We start the description of Mact by looking at the syntax and typing rules of the
calculus it extends, Fowler, Lindley and Wadler’s (2017) λact.

By the taxonomy of De Koster, Van Cutsem and De Meuter (2016), λact should be
classified as process-based, where actors are modelled as named processes associated
with an inbox. Following Erlang, actors are provided a receive operation that
optimistically retrieves a message from its inbox. The method receive takes no
arguments, so to give the operation a type, every actor is tagged with the type of
messages it can receive. This tag is a simple type-and-effect system à la D. K.
Gifford and Lucassen (1986).

Figure 4.1 shows the syntax and typing rules for λact. Letter α ranges over variables
x and references a. ActorRef(A) is the type of references to actors that accept
messages of type A. As for communication and concurrency primitives, spawn M
spawns a new actor to evaluate a computation M ; send V W sends a value V to an
actor referred to by reference W ; receive receives a value from the actor’s inbox,
waiting indefinitely if the inbox is empty; and self returns an actor’s own actor
reference.

Function arrows A →C B are annotated with a type C which denotes the type of the
inbox of the actor evaluating the term. This is captured in the typing rules, where
there are two typing judgements: the standard judgement on values Γ ⊢ V ∶ A ,
and a judgement Γ | B M : A which states that a term M has type A under typing
context Γ and can receive values of type B.

23

4. Mact

Syntax

Types A,B,C ∶∶= 1 | A →C B | ActorRef(A)
Variables and names α ∶∶= x | a
Values V ,W ∶∶= α | λx.M | ()
Computations L,M ,N ∶∶= V W

| let x ⇐ M in N | return V
| spawn M | send V W | receive | self

Value typing rules Γ ⊢ V ∶ A

Var
α ∶ A ∈ Γ
Γ ⊢ a ∶ A

Abs
Γ,x ∶ A | C ⊢ M ∶ B

Γ ⊢ λx.M ∶ A →C B

Unit

Γ ⊢ () ∶ 1

Computation typing rules Γ | B ⊢ M ∶ A

App
Γ ⊢ V ∶ A →C B

Γ ⊢ W ∶ A
Γ | C ⊢ V W ∶ B

EffLeft
Γ | C ⊢ M ∶ A

Γ,x ∶ A | C ⊢ N ∶ B
Γ | C ⊢ let x ⇐ M in N ∶ B

EffReturn
Γ ⊢ V ∶ A

Γ | C ⊢ return V ∶ A

Send
Γ ⊢ V ∶ A

Γ ⊢ W ∶ ActorRef(A)
Γ | C ⊢ send V W ∶ 1

Recv

Γ | A ⊢ receive ∶ A

Spawn
Γ | A ⊢ M ∶ 1

Γ | C ⊢ spawn M ∶ ActorRef(A)

Self

Γ | A ⊢ self ∶ ActorRef(A)

Figure 4.1: Syntax and typing rules for λact

Agda term v,x
Reference variable α ∶∶= a
Message msg
Subset 𝜑
Computations M ∶∶= Return v | M >>= f | Spawn M | Sendα msg

| Receive | Self | Strengthen 𝜑
Continuation f ∶∶= λx.M | …

Figure 4.2: Syntax of Mact

24

4. Mact

The λact calculus is based on fine-grain call-by-value (Levy, Power and Thielecke
2003): terms are partitioned into values and computations. Key to this formulation
are two constructs: return V represents a computation that has completed, whereas
let x ⇐ M in N evaluates M to return V , effectively substituting V for x in N .

Levy, Power and Thielecke’s (2003) call-by-value calculus is based on Moggi’s (1991)
monadic metalanguage. Turning λact into a monadic DSL can thus be done through
a fairly simple conversion: let x ⇐ M in N corresponds to M >>= λx.N , return
corresponds to the monad’s return, and the communication primitives are added
as operations in the monad.

The syntax after converting λact into Mact is seen in figure 4.2. We have added
an operation that is not in λact: Strengthen 𝜑; it is used to rearrange the actor’s
reference variable context (see section 4.3.3). Combined with >>=, Strengthen 𝜑
can be used to strengthen the precondition of a computation, where the precondition
is a variable typing context as described in section 4.2. This is an operation that
is quite administrative and it is only needed because we track variables in the type
system.

4.2 A monad for actors
The goal when translating λact to an Agda embedding was to make the actors correct
by construction, and to make it possible to type-check each actor separately. The
pattern we found suitable is a monad parameterized by the type of the actor’s inbox
(InboxShape) and indexed by a reference variable context. Following Fowler,
Lindley and Wadler (2017), the InboxShape of an actor is constant over its
lifetime and should be likened with the type-and-effect system of λact. Each actor
has their own reference variable context and the way it changes over time is kept
track of in the style of the parameterized monad pattern, capturing preconditions
and postconditions in the type.

Actors are potentially infinite processes, making it suitable to model Mact using
coinduction. Following the lead of Abel and Chapman (2014), we represent the
monad ActorM as a mutual definition of an inductive data type and a coinductive
record. The record ∞ActorM is a coalgebra that one interacts with by using its
single observation (copattern) force. force gives us an element of the ActorM
datatype on which we can pattern match to see which computation to perform next.

Both ActorM and ∞ActorM are indexed by a size i. The size is a lower bound on the
number of times we can iteratively force the computation, but should primarily be
seen as a means to establish productivity of recursive definitions. When we actually
simulate running actors, we only care for ActorM ∞ A of infinite depth.

The definition of ActorM is presented in figure 4.3. The next few sections will
break this definition down and explain the concepts in detail. In section 4.3 we
explain the typing rules of inboxes, references, and variables. Section 4.4 explains

25

4. Mact

data ActorM (i : Size) (IS : InboxShape) : (A : Set₁) →
(pre : TypingContext) →
(post : A → TypingContext) →
Set₂

record ∞ActorM (i : Size) (IS : InboxShape) (A : Set₁)
(pre : TypingContext)
(post : A → TypingContext) :
Set₂ where

coinductive
constructor delay_
field force : ∀ {j : Size< i} → ActorM j IS A pre post

data ActorM (i : Size) (IS : InboxShape) where

Return : ∀ {A post} →
(val : A) →
ActorM i IS A (post val) post

∞>>= : ∀ {A B pre mid post} →
(m : ∞ActorM i IS A pre mid) →
(f : (x : A) → ∞ActorM i IS B (mid x) (post)) →
ActorM i IS B pre post

Spawn : {NewIS : InboxShape} → {A : Set₁} → ∀ {pre postN} →
ActorM i NewIS A [] postN →
ActorM i IS ⊤₁ pre λ _ → NewIS ∷ pre

Send : ∀ {pre} → {ToIS : InboxShape} →
(canSendTo : pre ⊢ ToIS) →
(msg : SendMessage ToIS pre) →
ActorM i IS ⊤₁ pre (λ _ → pre)

Receive : ∀ {pre} →
ActorM i IS (Message IS) pre (add-references pre)

Self : ∀ {pre} →
ActorM i IS ⊤₁ pre (λ _ → IS ∷ pre)

Strengthen : ∀ {ys xs} →
(inc : ys ⊆ xs) →
ActorM i IS ⊤₁ xs (λ _ → ys)

Figure 4.3: Definition of ActorM

26

4. Mact

our representation of messages and we end the break down of ActorM by looking
at its definition in detail in section 4.5.

4.3 Typing rules
Type systems can serve many different purposes, provide different guarantees, and
have varying degrees of strictness. In Mact, types are used to ensure that all messages
contained in an actor’s inbox are well-typed with respect to the inbox’s type, i. e.
that an actor will only receive messages according to its interface.

We embed Mact into Agda by defining a data type of computations and an
interpretation function. Decisions and control flow in Mact are performed by Agda
functions, so the embedding leans towards the shallow side. To make Mact a deep
embedding one would have to replace the use of Agda functions with constructs that
can emulate their power. Deep embeddings typically lead to more code; however,
they have the advantage that programs written in the embedding are represented as
an AST and can therefore be compiled to other targets (Svenningsson and Axelsson
2012). Our focus is on creating a small and powerful calculus, making a shallow
embedding suitable. Future work, such as support for serialization, might have to
make other choices.

Being an embedding in Agda, Mact adheres to the same typing rules as any
Agda program. The program sections without side-effects thus support all of the
concepts we are used to in Agda, like dependent types, functions, and values in any
universe level. Unfortunately, in the sections that do communicate, we cannot be
as permissive.

4.3.1 Typing inboxes

The typing rules for communication in Mact are based on the idea that a very
important property of a message is that it can be understood by the receiver. The
type system will thus be used to limit what type a message sent to an inbox can
have. By limiting the types of messages sent to an inbox, we can make sure that
every message read from the inbox has a valid type. In terms of De Koster, Van
Cutsem and De Meuter (2016), this is the interface of the actor.

mutual
data MessageField : Set₁ where
ValueType : Set → MessageField
ReferenceType : InboxShape → MessageField

MessageType = List MessageField

InboxShape = List MessageType

27

4. Mact

We define the type of an actor’s inbox as an algebraic data-type with sums
(InboxShape) of products (MessageType). The InboxShape is a variant type
that details all the messages that can be received from an inbox. Every message sent
to an actor will have exactly one of the types that is listed, which we communicate as
a tag attached to the message (see section 4.4). We can think of the InboxShape
as a set of types, and every message coming paired with a proof that the message
is a type from that set. To know what type a message has you have to inspect the
proof, and the fields of the message will become accessible.

MessageType also uses a list as its underlying data structure, but for a rather
different purpose. MessageType is the type of a single message, and every element
in the list represents a single field in a record. MessageType should thus be seen
as a product type, similar to Haskell’s tuples.

The fields in MessageType are combinations of value types and reference types.
A value type is any type from Agda’s lowest set universe. Typical examples are
Bool, ℕ, String List ℕ, Bool × ℕ, and many user-defined types that are non-
polymorphic. We limit the types to the lowest set universe as a sort of approximation
of serializable values. It would be possible to further constrain the types to only
those that are serializable, but due to its insignificance to the calculus we have opted
not to. A future improvement would be to ensure that all communication can be
serialized, which most importantly involves developing a serialization solution for
Spawn.

A reference provides the capability to send messages to an actor’s inbox, where
receiving a message containing a reference is one of the few ways to increase an
actor’s capabilities. The type of a reference specifies what type a message sent via
the reference can have, and is used to uphold the guarantee that every message
in the receiver’s inbox is well-typed. By using typed actor references, the receiver
does not need to worry about unexpected messages, while senders can be sure that
messages will be understood. Typically, the reference type of a field should be the
smallest set of types that will be sent using that reference.

Below we have created an instance of an InboxShape, showcasing the important
concepts. TestInbox is an inbox that can receive two kinds of messages: messages
containing a single boolean value, and messages containing a special kind of reference
together with a natural number. The reference in the second kind of message can
be sent two kinds of messages as well: messages containing a single boolean value,
and messages containing a single string value.

BoolMessage = [ValueType Bool]ˡ
StringMessage = [ValueType String]ˡ

OtherInbox : InboxShape
OtherInbox = StringMessage ∷ [BoolMessage]ˡ

RefNatMessage : MessageType
RefNatMessage = ReferenceType OtherInbox ∷ [ValueType ℕ]ˡ

28

4. Mact

TestInbox : InboxShape
TestInbox = RefNatMessage ∷ [BoolMessage]ˡ

4.3.2 Inbox Subtyping

The Interface Segregation Principle (ISP) is a design principle that states that no
client should be forced to depend on methods it does not use; when clients depend
upon objects which contain methods used only by other clients, this can lead to
fragile code (Martin 2002). In particular, if a client depends on an interface that
contains methods that the client does not use but others do, that client will be
affected by changes that those other clients force on the interface. This idea has
also been addressed in the context of actor systems where He, Wadler and Trinder
(2014) uses the term type pollution problem to describe the issue of actor interfaces
being too fat.

Just as the advice of ISP is to break each class into granular interfaces, the advice
of He, Wadler and Trinder (2014) is to break the type of inboxes into granular
subtypes. Subtyping of inboxes means that given two inboxes A and B, if A <∶ B,
then every message in A is also a valid message in B. Since we model InboxShape
as a set, the subtype relation can be taken to just be the subset relation.

<: = _⊆_ {A = MessageType}

Our representation of subsets uses two data structures: ∈ and ⊆. ∈ is the list or set
membership relation, which we model as a Peano number that tells at what position
the element occurs in the list. An element that appears at the head of a list is at
index Z, and the index of an element that appears somewhere in the tail of the list
is the successor (S) of its index in the tail.

data _∈_ {a} {A : Set a} : A → (List A) → Set a where
Z : ∀ {x xs} → x ∈ (x ∷ xs)
S : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs)

The subset relation A ⊆ B holds if every member of A is also a member of B. This
can be modelled as a function from indices of A to indices of B, but this turned out
to be inconvenient for our purposes. An alternative approach is to build subsets as
a view (McBride and McKinna 2004; Norell 2008) of the lists in question. A view
is a data type that reveals something interesting about its indices, e. g. that a list
is a subset of another. To define ⊆ we state that the empty list ([]) is a subset of
all lists, an if you are able to prove that an element is a member of a set, we state
that you can add (∷) that element to a subset of the set.

data _⊆_ {a} {A : Set a} : List A → List A → Set a where
[] : ∀ {xs} → [] ⊆ xs
∷ : ∀ {x xs ys} → x ∈ ys → xs ⊆ ys → (x ∷ xs) ⊆ ys

29

4. Mact

The drawback of using subsets is that recursive subtypes are not captured, but
we deem it good enough for our purposes and simple to work with. Proving that
A <: B boils down to providing an index into B for every element in A. For example,
text-subtyping proves that an inbox that only accepts BoolMessage is a
subtype of the TestInbox from before.

TestInbox : InboxShape
TestInbox = RefNatMessage ∷ [BoolMessage]ˡ

Boolbox : InboxShape
Boolbox = [BoolMessage]ˡ

test-subtyping : Boolbox <: TestInbox
test-subtyping = [S Z]ᵐ

4.3.3 References

A reference to an actor is a name that is used to look up that actor’s inbox in
order to write or read from it. We assign types to references in order to statically
guarantee that we will only send messages to an inbox which the receiving actor
can understand. The property to maintain for this to hold is that the type of the
reference must be a subtype of the inbox it references. That is, given that an inbox
is globally referred to via name and has messages of type T , the type of a reference
to name must have a type S, such that S <∶ T :

S,T ∶ InboxShape S <∶ T inbox ∶ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗Message(T) name ↦ inbox
Reference(name) ∶ S

The desire to statically check that references are well-typed has affected the design
of Mact a lot. We first tried an encoding of references where a name is simply tagged
with a type:

record ActorRef (InboxType : Set) : Set where
constructor create-actor-ref
field
name : Name

This encoding is intuitive and simple, but it does not capture S <∶ T , nor does it
capture name ↦ inbox. Using this encoding thus requires finding a way to maintain
additional proofs.

To maintain the necessary proofs of references being valid requires that we encode
more things in the type system. The solution that seem to fit best in the setting of
Agda is to make a bigger distinction between references and values. Values are kept
as normal Agda terms, only restricted under Agda’s usual typing rules. References,
on the other hand, are treated as variables that are maintained explicitly in the

30

4. Mact

model, encoded in the type parameter of each actor. This technique makes it possible
to maintain type correctness of references, as long as the effect every actor operation
has on the reference variables is carefully designed.

We type check references in the standard way of maintaining a variable typing
context. A typing context associates variables to types, where variables are
commonly referred to by their name. Variable names makes expressions easy to
understand for humans, but pose two annoying problems: α-equivalence and α-
renaming.

α-equivalence is a form of equivalence that captures the intuition that the particular
choice of a bound variable name does not usually matter (Turbak, D. Gifford and
Sheldon 2008). Renaming the variables of an expression in a way that preserves
α-equivalence is called α-renaming (Turbak, D. Gifford and Sheldon 2008). α-
renaming is a part of the general concept of substitution, the operation of replacing
free occurrences of a variable with an expression. The role of α-renaming in
substitution is to avoid accidental variable name captures by renaming variables
so that substitution does not change the meaning of functions (Turbak, D. Gifford
and Sheldon 2008).

In order to avoid the problem of α-equivalence and α-renaming, a common
formalization technique is the use of de Bruijn indices to represent variable binders
(Berghofer and Urban 2007). A de Bruijn index is a natural number that represents
an occurrence of a variable in a λ-term, and denotes the number of binders that
are in scope between that occurrence and its corresponding binder. Table 4.1 shows
some examples comparing a λ-calculus with names to a λ-calculus using de Bruijn
indices.

Named de Bruijn
λ x → x λ 1
λ x → λ y → x λ λ 2
λ x → λ y → λ z → x z (y z) λ λ λ 3 1 (2 1)

Table 4.1: Comparison between λ-calculus with names and λ-calculus using de
Bruijn indices

What makes de Bruijn indices easy to work with in Agda is that it lets us manage
the variable typing context as a list of types, with variables as (de Bruijn) indices
into that list. We choose to represent the indices as the membership proposition in
order to make the de Bruijn indices correct by construction. This lets us define the
type judgement Γ ⊢ T as:

ReferenceTypes = List InboxShape
TypingContext = ReferenceTypes

⊢ : TypingContext → InboxShape → Set₁
Γ ⊢ T = T ∈ Γ

31

4. Mact

For inboxes, the subtype relation A <∶ B says that every message in A is also a valid
message in B. It should therefore be possible to downcast a reference of type B to a
reference of type A, since every message sent to a reference of type A will be a valid
message in B. We can see that the subtype relation for references is reversed, and
is thus contravariant in its argument (He, Wadler and Trinder 2014). We capture
this property in a special version of the reference typing judgement, where Γ ⊢>∶ T
says that T is a subtype of some type in Γ.

record _⊢>:_ (Γ : TypingContext)
(requested : InboxShape) : Set₁ where

constructor [_]>:_
field
{actual} : InboxShape
actual-is-sendable : Γ ⊢ actual
actual-handles-requested : requested <: actual

The notion of a subtype for references is important to implement the pattern of
sending a command together with what reference to reply to, since different actors
receiving the reply will have a different InboxShape. This pattern, together with
a selective receive construct, can be used to implement synchronous calls, which we
explore in chapter 5.

4.4 Messages
Messages in Mact are made up of a tag, indicating the type of the message, and
instantiations of the fields in that message type. We have made the unusual decision
to give outgoing and incoming messages slightly different shapes. This choice is
purely for ease of implementation and does not affect the power of the model.

An outgoing message is made of two parts: the tag that indicates which type of
message it is and instantiations of every field of the type selected by the tag. We
index the type of a message by the type of inbox it is being sent to and incidentally
by the variable typing context. Selecting which type variant this message has is done
by indexing into the InboxShape, using the ∈ property. The rest of the message
is made up of instantiations of the fields from the selected MessageType. For
values, the instantiation of a field is simply an Agda term of the type specified by
the field. For references, the instantiation is not a simple Agda term, but rather a
variable in the reference context. The type of the selected reference variable must be
compatible with the type that the receiver expects, i. e. they must have the correct
subtype relation.

send-field-content : TypingContext → MessageField → Set₁
send-field-content Γ (ValueType A) = Lift A
send-field-content Γ (ReferenceType requested) = Γ ⊢>: requested

32

4. Mact

record SendMessage (To : InboxShape)
(Γ : TypingContext) : Set₁ where

constructor SendM
field
{MT} : MessageType
selected-message-type : MT ∈ To
send-fields : All (send-field-content Γ) MT

Incoming messages differ from outgoing messages in the instantiation of reference
fields. Looking at receive-field-content below, one would expect the content
of a reference field to be some representation of a reference, e. g. an index into
the variable context. Instead we find the unit type ⊤, which has no computational
content at all. The answer to this puzzle lies in that receiving a message will have the
side-effect of adding the references from every reference field to the variable context.
We saw in figure 4.3 that the shape of the variable typing context is maintained in
the type of the monad, making it easy to create indices into the variable context
without making them a part of the message. It would be possible to make the
reference field content be an index into the variable context, but it would make the
model slightly more complicated without making it more powerful; the programmer
can already create indices when they are needed and, since the typing context is
constantly changing, a specific index is often not valid for long.

receive-field-content : MessageField → Set
receive-field-content (ValueType A) = A
receive-field-content (ReferenceType Fw) = ⊤

record Message (To : InboxShape) : Set₁ where
constructor Msg
field
{MT} : MessageType
received-message-type : MT ∈ To
received-fields : All receive-field-content MT

extract-references : MessageType → ReferenceTypes
extract-references [] = []
extract-references (ValueType x ∷ mt) = extract-references mt
extract-references (ReferenceType T ∷ mt) = T ∷ extract-references mt

add-references : ∀ {To} → TypingContext → Message To → TypingContext
add-references Γ (Msg {MT} x x₁) = extract-references MT ++ Γ

33

4. Mact

4.5 ActorM revisited
We are now ready to break down the definition from figure 4.3. Starting with the
type signature of ActorM, we see that actors have a static interface IS. We also see
that a TypingContext is managed as an invariant of the parameterized monad.

data ActorM (i : Size) (IS : InboxShape) : (A : Set₁) →
(pre : TypingContext) →
(post : A → TypingContext) →
Set₂

record ∞ActorM (i : Size) (IS : InboxShape) (A : Set₁)
(pre : TypingContext)
(post : A → TypingContext) :
Set₂ where

coinductive
constructor delay_
field force : ∀ {j : Size< i} → ActorM j IS A pre post

data ActorM (i : Size) (IS : InboxShape) where

Return and bind of the actor monad use the invariants that are expected from
any parameterized monad, which is explained in section 2.4. Bind chains together
potentially infinite sub-computations, and we can see that bind preserves the size
(observation depth) i. Agda implements subtyping for sizes, so computations of
different sizes can still be composed via bind.

We don’t give the constructors Return and ∞>>= the names return and >>= since
we want return and >>= to refer to the type ∞ActorM. Instead, return and >>=
are defined as a separate functions that wrap Return and ∞>>=. A similar choice
is made for the other constructors, which can be seen in the auxiliary function
definitions presented in appendix B.

Return : ∀ {A post} →
(val : A) →
ActorM i IS A (post val) post

∞>>= : ∀ {A B pre mid post} →
(m : ∞ActorM i IS A pre mid) →
(f : (x : A) → ∞ActorM i IS B (mid x) (post)) →
ActorM i IS B pre post

Spawn creates a new actor and adds a reference to the spawned actor to the
spawning actor’s variable context. The spawned actor starts with both an empty
inbox and an empty variable context.

Spawn : {NewIS : InboxShape} → {A : Set₁} → ∀ {pre postN} →
ActorM i NewIS A [] postN →
ActorM i IS ⊤₁ pre λ _ → NewIS ∷ pre

34

4. Mact

An actor can send messages to any actor it has a reference to. It is not explicit in
the monad what happens to a sent message, but we see in section 4.8 that evaluating
Send will append the message to the actor being referenced. The reference variable
might be a subtype to the underlying actor it references, but this fact is completely
opaque to the Send construct. The content of the message is detailed in section 4.4.
Sending a message does of course not affect the variable context, which is captured
in the postcondition being the same as the precondition.

Send : ∀ {pre} → {ToIS : InboxShape} →
(canSendTo : pre ⊢ ToIS) →
(msg : SendMessage ToIS pre) →
ActorM i IS ⊤₁ pre (λ _ → pre)

The Receive construct is an operation that optimistically tries to retrieve a
message from the actor’s inbox. Messages are retrieved in the order they are added
to the inbox, and in the case of an empty inbox the actor is paused indefinitely. As
discussed in section 4.4, every reference in the received message will be added to the
actor’s variable context. Receive is the only construct that has a postcondition
that depends on run-time behaviour, so a model where references are handled
differently could allow for actors to be implemented as non-parameterized monads.

Receive : ∀ {pre} →
ActorM i IS (Message IS) pre (add-references pre)

A key concept in Erlang-style actors is that actors can easily get a reference to
themselves. For example, in order to implement callbacks the initiating actor must
include a reference to itself for the corresponding actor to reply to. In ActorM, this
need is fulfilled by the Self construct, which adds a reference to the actor itself to
the variable context.

Self : ∀ {pre} →
ActorM i IS ⊤₁ pre (λ _ → IS ∷ pre)

The postconditions and preconditions that we get from our Hoare-style reasoning
are sometimes not quite what we want. The invariants might be logically equivalent
but have a different syntactic form. For example, the variable context might be in
the wrong order or knows about more references than is expected. We thus need a
construct for reordering or forgetting about variables to make subsequent invariants
compatible. What we chose to implement is similar to the strengthening rule in
Hoare logic, which affects the precondition of a statement. The operation that
Strengthen performs is a re-ordering of the variables in the variable context. It
does so by relating the precondition to the postcondition via a subset relation. The
subset relation supports re-ordering, duplication, and to forget variables, making it
powerful without sacrificing correctness.

35

4. Mact

Strengthen : ∀ {ys xs} →
(inc : ys ⊆ xs) →
ActorM i IS ⊤₁ xs (λ _ → ys)

4.6 A simple actor program

TickTock : MessageType
TickTock = [ValueType Bool]ˡ

TickTocker : InboxShape
TickTocker = [TickTock]ˡ

tick-tocker : ∀ {i} → ∞ActorM (↑ i) TickTocker ⊤₁ [] (λ _ → [])
tick-tocker .force = (do
self
Msg Z (b ∷ []) ← receive
where Msg (S ()) _

let
Γ = [TickTocker]ˡ
to : Γ ⊢ TickTocker
to = Z
tag : TickTock ∈ TickTocker
tag = Z
fields : All (send-field-content Γ) TickTock
fields = lift (not b) ∷ []

to ![t: tag] fields
strengthen []) ∞>>=
λ _ → tick-tocker

spawner : ∀ {i} → ∞ActorM i [] ℕ₁ [] (λ _ → [TickTocker]ˡ)
spawner = do
spawn∞ tick-tocker
let
Γ = [TickTocker]ˡ
to : Γ ⊢ TickTocker
to = Z
tag : TickTock ∈ TickTocker
tag = Z
fields : All (send-field-content Γ) TickTock
fields = lift true ∷ []

to ![t: tag] fields
return 42

Figure 4.4: A simple actor program

We can now write our first program in Mact! Figure 4.4 defines two actors.

The actor spawner

36

4. Mact

1. spawns the other actor

2. sends it a message containing the value true

3. returns 42

The actor tick-tocker

1. calls self, adding a reference to itself to its variable context

2. receives a boolean value

3. sends the inverse of that boolean to itself

4. empties its variable context

5. repeats this procedure forever

Unfortunately there is no simple way make the definitions of tick-tocker and
spawner less noisy. Our definitions of tags and variables rely completely on
elements’ position in a list, so to tell Agda which tag or variable we want to refer
to we must provide its index. Brady (2015) show how effects in Idris—which use a
type of parameterized monads—can be given labels. Via the automation facilities
of Idris, a programmer can simply provide the label they want to access and the
compiler will automatically find its index. Implementing labels and a similar proof
automation for ∈ in Agda should be possible, but it is out of scope for this thesis.

4.7 Representing references
We described in section 4.3.3 how each actor is provided a variable context that
contains the references that the actor has access to. A reference is in its turn also
a kind of variable or address that leads to the actual inbox. It would make sense
to represent references as de Bruijn indices, since they can be seen as variables, but
the constraints imposed on us by modelling a distributed system make this a poor
choice.

When a variable is added to to a variable context that uses de Bruijn indices, every
previous index into the variable context is invalidated. The other indices are no
longer valid since the variable that their index points to has been shifted by one.
To avoid invalidating indices, each index has to be incremented by one, through a
substitution process called lifting.

In the context of inboxes and references, lifting needs to occur whenever a new inbox
is added, i. e. whenever an actor is spawned. References are prevalent throughout
the whole model, so these lifting substitutions would have to be performed both
for every reference available to an actor and for every message stored in any inbox.
Substituting message terms whenever an actor is spawned works in the setting of

37

4. Mact

an abstract machine, but also suggests that the model requires synchronization
whenever an actor is spawned. We wanted our model to have a simple translation
to a distributed setting outside the context of an abstract machine, making de Bruijn
subpar for the task.

References need to be given a representation that is persistent and that can uniquely
identify an inbox in order to avoid unnecessary substitutions. In section 4.3.3
variable names were ruled out due to the problems of α-renaming and α-equivalence,
but these are problems that mainly exist when variable names can be chosen freely.
The representation of references is not visible to the programmer in Mact, so the
problems with clashing names can be completely avoided as long as the system
generates a unique name for every actor. This is a property that is very easy
to maintain, e. g. in our model names are natural numbers and uniqueness is
maintained by increasing a counter.

4.8 Semantics
Before describing the semantics of Mact we will once again look at Fowler, Lindley
and Wadler’s (2017) λact. Figure 4.5 shows evaluation contexts and configurations,
as well as reductions on terms and configurations.

The concurrent behaviour of λact is given by a non-deterministic relation on
configurations, consisting of parallel composition 𝒞 ‖𝒟, name restrictions (𝜈a)𝒞, and
actor configurations ⟨a,M , ⃖⃖⃗V ⟩. An actor configuration ⟨a,M , ⃖⃖⃗V ⟩ models an actor
with name a, evaluating the term M , with an inbox consisting of values ⃖⃖⃗V .

Reduction is defined in terms of evaluation contexts E. The syntax of evaluation
contexts is defined to make it simple to define reductions that follow the precise
evaluation order specified by fine-grain call-by-value. Reduction on terms (⟶M)
is defined to be deterministic, whereas configurations (⟶) use a non-deterministic
reduction relation.

The rule under ‘Additional structural congruence’ is not present in the original
work by Fowler, Lindley and Wadler (2017); Fowler notes that it was left out by
accident (personal communication, May 29, 2018). As with the other structural
congruence rules, it is an equivalence relation and therefore reflexive, symmetric,
and transitive. Reduction on configurations is done modulo these equivalences, i. e.
the rule in figure 4.6 is implicit.

4.8.1 Environment of Mact

The semantics of Mact is defined in terms of reductions of a global environment.
Reduction on environments corresponds to λact’s reduction on configurations, but the
definition of environments differs significantly from λact’s definition of configurations.
The difference primarily stems from our goal of making it easy to create an

38

4. Mact

Syntax of evaluation contexts and configurations

Evaluation contexts E ∶∶= [] | let x ⇐ E in N

Configurations 𝒞,𝒟, ℰ ∶∶= 𝒞 ‖ 𝒟 | (𝜈a)𝒞 | ⟨a,M , ⃖⃖⃗V ⟩
Configuration contexts G ∶∶= [] | G ‖ 𝒞 | (𝜈a)G

Typing rules for configurations Γ; Δ ⊢ 𝒞

Par
Γ; Δ1 ⊢ 𝒞1 Γ; Δ2 ⊢ 𝒞2

Γ; Δ1, Δ2 ⊢ 𝒞1 ‖ 𝒞2

Pid
Γ, a ∶ ActorRef(A); Δ, a ∶ A ⊢ 𝒞

Γ; Δ ⊢ (𝜈a)𝒞
Actor

Γ, a ∶ ActorRef(A) | M ∶ 1
(Γ, a ∶ ActorRef(A) ⊢ Vi ∶ A)i

Γ, a ∶ ActorRef(A); a ∶ A ⊢ ⟨a,M , ⃖⃖⃗V ⟩
Reduction on terms

(λx.M) V ⟶M M {V /x} let x ⇐ return V in M ⟶M M {V /x}

E[M] ⟶M E[M ′]
(if M ⟶M M ′)

Structural congruence

𝒞 ‖ 𝒟 ≡ 𝒟 ‖ 𝒞 𝒞 ‖ (𝒟 ‖ ℰ) ≡ (𝒞 ‖ 𝒟) ‖ ℰ

𝒞 ‖ (𝜈a)𝒟 ≡ (𝜈a)(𝒞 ‖ 𝒟) if a ∉ fv(𝒞) G[𝒞] ≡ G[𝒟] if 𝒞 ≡ 𝒟

Additional structural congruence

(𝜈a)(𝜈b)𝒞 ≡ (𝜈b)(𝜈a)𝒞

Reduction on configurations

Spawn ⟨a,E[spawn M], ⃖⃖⃗V ⟩ ⟶ (𝜈b)(⟨a,E[return b], ⃖⃖⃗V ⟩ ‖ ⟨b,M , 𝜖⟩)
(b is fresh)

Send ⟨a,E[send V ′ b], ⃖⃖⃗V ⟩ ‖ ⟨b,M , ⃖⃖⃖⃗W ⟩ ⟶ ⟨a,E[return()], ⃖⃖⃗V ⟩ ‖ ⟨b,M , ⃖⃖⃖⃗W ⋅ V ′⟩
SendSelf ⟨a,E[send V ′ a], ⃖⃖⃗V ⟩ ⟶ ⟨a,E[return()], ⃖⃖⃗V ⋅ V ′⟩

Self ⟨a,E[self], ⃖⃖⃗V ⟩ ⟶ ⟨a,E[return a], ⃖⃖⃗V ⟩
Receive ⟨a,E[receive],W ⋅ ⃖⃖⃗V ⟩ ⟶ ⟨a,E[return W], ⃖⃖⃗V ⟩

Lift G[𝒞1] ⟶ G[𝒞1] (if 𝒞1 ⟶ 𝒞2)
LiftM ⟨a,M1, ⃖⃖⃗V ⟩ ⟶ ⟨a,M2, ⃖⃖⃗V ⟩ (if M1 ⟶M M2)

Figure 4.5: λact evaluation contexts, configurations, and reductions

39

4. Mact

𝒞 ≡ 𝒟 𝒟 ⟶ 𝒟′ 𝒟′ ≡ ℰ
𝒞 ⟶ ℰ

Figure 4.6: Reduction on equivalences of configurations

interpreter for Mact. A mechanization that focuses on the mathematical properties
of singly typed actors would likely end up with a representation more similar to
Fowler, Lindley and Wadler’s (2017) representation.

Environments in Mact are made up of four kinds of data: a typing context for
inboxes, raw data, coherence proofs, and a proof of weak progress. The raw data
constitutes the computational content in the environment, such as the actors and
their inboxes; the coherence proofs are used to ensure that the raw data is well typed
in the inbox typing context; and the proof of weak progress is used to constrain
the situations where an actor can be considered blocked. Preservation is captured
automatically by ActorM (together with reductions not changing the return type
of computations), and we can therefore say that our system is well-typed, modulo
system liveness, according to the standard definition of type safety as proposed by
Wright and Felleisen (1994).

Inbox typing contexts.
The inbox typing context associates actor names to inbox types. Actor names are
represented by natural numbers, as mentioned in section 4.7, and inbox types are the
InboxShape’s of section 4.3.1. The typing context is represented as an association
list. This is a representation that has the advantage of it being simple to prove that
adding a new element with an unused key will not shadow any existing entries.

Name = ℕ

record NamedInbox : Set₁ where
constructor inbox#_[_]
field
name : Name
shape : InboxShape

Store = List NamedInbox

Raw data.
An inbox is a list of messages delivered to an actor that have not yet been processed.
We use the convention of reading messages from the top and appending them at the
back, creating a FIFO queue. Inboxes are parameterized by the inbox typing context
to ensure that inboxes are well-typed in the environment.

40

4. Mact

Inbox : InboxShape → Set₁
Inbox is = List (NamedMessage is)

data Inboxes : (store : Store) → Set₁ where
[] : Inboxes []
∷ : ∀ {store name inbox-shape} →

Inbox inbox-shape →
(inboxes : Inboxes store) →
Inboxes (inbox# name [inbox-shape] ∷ store)

We saw in section 4.2 that messages have a different representation when sent and
received. Messages in transit have yet a different representation: NamedMessage.
The differentiating factor of NamedMessage is that reference fields store the actual
name of the actor it references. This makes NamedMessage a representation that
allows for immutability of messages in transit—an important property in distributed
systems.

named-field-content : MessageField → Set
named-field-content (ValueType A) = A
named-field-content (ReferenceType Fw) = Name

record NamedMessage (To : InboxShape): Set₁ where
constructor NamedM
field
{MT} : MessageType
named-message-type : MT ∈ To
named-fields : All named-field-content MT

Actors in the environment are separated into actors that can be reduced and actors
that can not. By making this separation we make it simpler to implement an
interpreter and the proof of weak progress comes almost for free.

An actor consists of a name, the references it knows of, and a computation. The
computation consists of a term ActorM and a stack of continuations. The stack
of continuations serves the same purpose as λact’s evaluation context: it enables
reducing actors one step at a time. To reduce a term M >>= f we must first
reduce the term M , which might require multiple reductions. We can postpone
the reduction waiting for the value from M by adding the function f to the stack.
Actors can thus be reduced one step at a time by repeating this procedure until
we reach a term that is not of the form M >>= f—the only form that requires of
multiple steps.

The environment also contains an infinite supply of fresh names. Freshness is ensured
by using a monotonically increasing counter and by maintaining a proof stating that
the next name is strictly larger than every name used so far.

41

4. Mact

Coherence proofs
The names of actors and references are not constrained in the raw data. To ensure
that environments are well-typed we must thus maintain additional proofs of names
being associated to the right type in the inbox typing context.

We maintain two types of coherence proofs for actors: a coherence proof for the
actor’s name and coherence proofs for the references known by the actor. The
coherence proof for actor names states that the name of an actor should be associated
to the actor’s InboxShape, that is:

actor .name ↦ actor .inbox-shape ∈e store

The coherence proof for references states that every reference should be associated
to a compatible InboxShape, that is:

(reference .name ↦ B ∈e store)×(reference .shape <: B)

Coherence proofs for NamedMessage’s follow in a similar fashion: value-fields are
always coherent, while reference-fields are coherent if the stored name is associated
to a compatible InboxShape.

Weak progress
The calculus of λact, and in consequence Mact, allows for configurations that
are deadlocked, i. e. where every running actor is waiting to receive a message.
Nevertheless, Fowler, Lindley and Wadler (2017) develop a notion of weak progress,
stating that the only situation in which a well-typed closed configuration cannot
reduce further is when each actor is either of the form ⟨a, return W , ⃖⃖⃗V ⟩, for some
value W , or of the form ⟨a, receive, 𝜖⟩.

The environments in Mact store the actors that can reduce separately from those
that can not. To show a that Mact has weak progress we must therefore show that
we have a reduction for every actor in the first list, which we will do in section 4.8.2.
To show that every actor in the second list is of the form ⟨a, return W , ⃖⃖⃗V ⟩ or
⟨a, receive, 𝜖⟩ we require that those actors inhabit the view IsBlocked. The

constructors of IsBlocked only match actors of the mentioned forms, thereby
encoding the desired notion of weak progress.

42

4. Mact

data IsBlocked (store : Store)
(inboxes : Inboxes store)
(actor : Actor) : Set₂ where

BlockedReturn :
ActorAtConstructor Return actor →
ActorHasNoContinuation actor →
IsBlocked store inboxes actor

BlockedReceive :
ActorAtConstructor Receive actor →
(p : has-inbox store actor) →
InboxForPointer [] store inboxes p →
IsBlocked store inboxes actor

4.8.2 Reductions

Reductions on environments are in Mact defined in terms of a reduce function.
The function is used by the interpreter, which calls it repeatedly until there are no
more actors that can reduce. The interpreter selects an actor in the environment to
focus on and reduce performs the appropriate reduction.

reduce : {actor : Actor} → (env : Env) → Focus actor env → Env

We define reductions as separate functions that pose different constraints on the
focused actor. The constraint is in general that the computation of the focused
actor is in the form of a specific constructor, but the functions for Return and
Receive use additional constraints to branch on whether the actor can reduce or
not.

Bind and return
The reduction functions for bind and return can be seen as antagonists. Reduction
of bind matches a focused computation of the form

m ∞>>= f ⟶ continuation

which it reduces to a computation where f is added to the continuation stack:

m .force ⟶ f ∷ continuation

Reduction of return matches a focused computation of the form

Return v ⟶ f ∷ continuation

which it reduces to a computation where v is applied to f:

f v .force ⟶ continuation

43

4. Mact

The focused actor can also be in a form that can not reduce

Return v ⟶ []

However, this matches the constructor BlockedReturn from IsBlocked. We
can thus move the focused actor to the list of actors that can not reduce.

Spawn
Reduction of spawn matches a focused computation of the form

Spawn actor ⟶ continuation

To reduce this computation we must create a fresh actor name, add a new entry to
the inbox typing context, create a matching empty inbox, add a reference of the new
inbox to the focused actor, update the coherence proofs, and add the spawned actor
to the list of running actors. That is a mouthful, but they are each just a simple
application of ∷ in the case of adding to a list and applications of suc in the case
of updating a coherence proof. The focused computation reduces to return of unit

Return (lift tt) ⟶ continuation

and the spawned actor is given an empty continuation stack

actor ⟶ []

Send
Reduction of send matches a focused computation of the form

Send Γ⊢ToIS (SendM tag fields) ⟶ continuation

which reduces to return of unit

Return (lift tt) ⟶ continuation

Converting the message (SendM tag fields) to a valid NamedMessage requires
more finesse. Via the reference pointed to by Γ⊢ToIS and the reference’s coherence
proof we get a name associated to an inbox of type B and a subtype relation between
ToIS and B:

(name ↦ B ∈e store)×(ToIS <: B)

The subtype relation is used to make tag a tag in B, via

ToIS <: B = ToIS ⊆ B
tag = MT ∈ ToIS

ToIS ⊆ B → MT ∈ ToIS → MT ∈ B

44

4. Mact

Reference fields in SendMessage have a subtype relation between the type of the
forwarded reference and the type of the reference variable. Reference variables in
turn have a subtype relation to their associated inboxes. To create the coherence
proof for the new NamedMessage we must thus apply transitivity of subtyping:

actual-is-sendable = Γ ⊢ actual
actual-handles-requested = requested <: actual

actual <: B
requested ⊆ actual → actual ⊆ B → requested ⊆ B

Finally, sending a message will unblock the actor that receives the message. We have
structured the function that updates an inbox in a way that enables us to prove that
other inboxes are unaffected. This means that the only actor that has its proof of
IsBlocked invalidated, and consequently is moved to the actors that can reduce,
is the affected actor.

Receive
To reduce receive when there exists a message to be received involves removing the
next message from its inbox, converting it into a Message, and adding the received
references to the actor. These operations all follow from the raw data of the received
message and its coherence proof. For example, to extract the references from the
NamedMessage we traverse its fields and extract the stored names

extract-inboxes : ∀ {MT} → All named-field-content MT → List NamedInbox
extract-inboxes [] = []
extract-inboxes (_∷_ {ValueType _} _ ps) =
let rec = extract-inboxes ps
in rec

extract-inboxes (_∷_ {ReferenceType x} name ps) =
let rec = extract-inboxes ps
in inbox# name [x] ∷ rec

named-inboxes : ∀ {S} → (nm : NamedMessage S) → List NamedInbox
named-inboxes (NamedM tag fields) = extract-inboxes fields

and in the case of converting the NamedMessage to a Message, via the function
unname-message, we replace the stored names with instances of ⊤₁. The actor is
then reduced to a computation that returns the converted message:

Return (unname-message named-message) ⟶ continuation

We also have to handle the case when there is no message to receive. This is the
second and final case of when an actor can be considered blocked, and it matches the
constructor BlockedReceive from IsBlocked. We can thus move the focused
actor to the list of actors that can not reduce.

45

4. Mact

Self
The raw data of an actor contains both its name and InboxShape. Creating the
reference needed when reducing self is thus easy:

inbox# (actor .name) [actor .inbox-shape]

To produce a coherence proof for the added reference we use the coherence proof for
actor names and reflexivity of subtyping:

(actor .name ↦ actor .inbox-shape ∈e store)
×

(actor .inbox-shape <: actor .inbox-shape)

The computation reduces to return of unit

Return (lift tt) ⟶ continuation

Strengthen
Reduction of strengthen matches a focused computation of the form

Strengthen Δ⊆Γ ⟶ continuation

The computation reduces to return of unit and the actor’s known reference variables
are changed from Γ to Δ. We get the references and coherence proofs we need by
following each ∈-relation of the subset Δ⊆Γ.

Return (lift tt) ⟶ continuation

46

5
Selective receive

In the previous chapter we defined the syntax, typing rules, and semantics of
Mact. With it, we can define actors and see them interact by running them in
our interpretation function. As defined, however, it has one particularly annoying
property: messages have to be processed in the order they are received.

One of the key properties of the actor model is how actors are encapsulated from
each other. In contrast to method-based object oriented programming, actors can
decide to handle messages at a later time or even discard messages. By allowing for
out-of-order processing, actors are given control over their own state and behaviour.
We can say that we gain increased encapsulation by decoupling execution from
signaling.

The Receive construct of ActorM does not provide actors with the means to
process messages out-of-order; actors can only read messages in the order they were
received. An actor that is waiting for a specific message, e. g. the response from a
method invocation or the next sequence of a protocol, can not simply wait for that
message—it is forced to first process any message that happens to come in-between.
This risks leading to actors having control flow where multiple separate tasks are
performed at the same time, making for confusing code.

The inboxes of Erlang are also first-in, first-out. However, Erlang additionally
provides a selective receive construct, where messages are matched against multiple
patterns, allowing for out of order processing of messages. Messages that do not
match the patterns are not lost, they are instead put aside for later processing.
We can understand how selective receive is used in practice by looking at how
Erlang/OTP1 implements synchronous calls. The code below is a modification of
their code, simplified to extract its essence.

Identifier = erlang:make_ref(),
Process ! {{self(), Identifier}, Request},
receive

{Identifier, Reply} -> {ok, Reply}
end

1https://github.com/erlang/otp/blob/f59026a57ccdfe4e462cbab9b97e9cd377dd5bdb/
lib/stdlib/src/gen.erl#L172-L186

47

https://github.com/erlang/otp/blob/f59026a57ccdfe4e462cbab9b97e9cd377dd5bdb/lib/stdlib/src/gen.erl#L172-L186
https://github.com/erlang/otp/blob/f59026a57ccdfe4e462cbab9b97e9cd377dd5bdb/lib/stdlib/src/gen.erl#L172-L186

5. Selective receive

The call starts by sending a message that includes a unique identifier. Selective
receive is then used to wait for a message containing that identifier—the reply to
the call. Erlang uses a powerful type of pattern matching which is used in the
pattern of the receive clause. First is the pattern on Identifier, which is a pattern
bound to a value. This case will only match if the expression evaluates to the
same value. Second is the pattern on Reply, which is an unbound variable. When
the pattern match succeeds, the variable is bound to the value of the expression,
which can then be used in the following statement. We see that the code that
implements synchronous calls is able to use selective receive to ignore messages that
are currently irrelevant, and thus allows the control-flow to be straight forward and
without interleaved processing of other messages.

5.1 Theory of selective receive
There are primarily two possible alternatives for implementing selective receive: by
extending ActorM with an additional constructor for selective receive, or as a user-
space library. Both options are intriguing in their own way, so we have investigated
them both in order to make a fair comparison.

By studying Erlang’s selective receive we can see that it serves two main purposes:
to select what kind of messages can be received and to provide alternative code
paths based on which pattern it was that actually matched. Agda does not provide
the facilities to implement the same kind of pattern matching that Erlang uses, but
we can devise an alternative mechanism to serve its purpose.

The first feature needed in the replacement mechanism is the ability to filter out
what messages to accept. We need to know for each message: does this message
match the constraints we have set up? In its essence, this is just a function from
Message to Bool.

MessageFilter : (IS : InboxShape) → Set₁
MessageFilter IS = Message IS → Bool

In the example from Erlang/OTP there is a single pattern and thus a single code
path. It is important to note that there are no code paths for the messages that do
not match a pattern, those messages are implicitly stored for later processing. Agda
does not allow that we omit cases in a pattern—incomplete patterns are rejected
by the coverage checker. Selective receive would be fairly useless if the code still
handles every case, so working around this problem is crucial.

When we omit cases in a pattern we create a function that is only partially defined—
a partial function. This is a function that is not defined for some part of its domain.
We might also think of it as being a total function for the parts that we did define,
but that the domain is stretched. We would be left with the core that is total if we
shrink the domain to the parts that are defined—a function we can implement in
Agda.

48

5. Selective receive

Shrinking the domain of a function in Agda is surprisingly easy. By adding
propositions on the arguments of the function it is possible to limit the values of a
domain to just the desired subset. Below we have defined a function over natural
numbers, which we, by adding the constraint that n = 2, only have to define for
exactly that case.

partial : (n : ℕ) → (n ≡ 2) → Bool
partial 0 ()
partial 1 ()
partial 2 p = false
partial (suc (suc (suc n))) ()

Using partial functions to implement selective receive is not new. Haller and Odersky
(2009) use Scala’s PartialFunction to empower the Scala Actors library with
a receive statement similar to Erlang’s. Scala is not a total language, so their
partial functions can be implemented as a function apply(x ∶ a) ∶ b paired with an
independent function isDefinedAt(x ∶ a) ∶ Boolean. This definition is very similar
to ours, with the only difference being that our partial functions need to supply an
additional proof that the element is in the domain.

5.2 Selective receive as a primitive operation
We apply the knowledge that shrinking the domain lets us define ‘partial functions’
and define a data-type where messages are limited to those that match the filter.

record SelectedMessage {IS : InboxShape}
(f : MessageFilter IS) : Set₁ where

constructor sm:_[_]
field
msg : Message IS
msg-ok : f msg ≡ true

MessageFilter and SelectedMessage together is enough to implement our
first version of selective receive. It is implemented by adding a new constructor
to ActorM, so we will call this version SRprim, from primitive operation. The
constructor that we add is SelectiveReceive, which behaves exactly the same as
the Receive construct, except that messages have to pass the filter to be accepted.

49

5. Selective receive

selected-type : ∀ {IS} {filter : MessageFilter IS} →
SelectedMessage filter →
MessageType

selected-type sm: msg [msg-ok] = msg .MT

add-selected-references : TypingContext → ∀ {IS}
{filter : MessageFilter IS} →
SelectedMessage filter →
TypingContext

add-selected-references Γ m =
add-references-static Γ (selected-type m)

SelectiveReceive : ∀ {pre} →
(filter : MessageFilter IS) →
ActorM i IS
(SelectedMessage filter)
pre
(add-selected-references pre)

In figure 5.1, we have defined an actor computation—receive-42-with-
references—that uses selective receive. The example defines the filter
receive-42 which accepts message of the type WithReference where the
first field is the natural number 42. The first message that passes this filter will
be passed to after-receive. Pattern matching is used in after-receive
to handle only those messages that can pass the filter. Take special note of the
invariants of after-receive which have a precondition that depends on the
message type and a postcondition that does not. Thanks to receive-42, which
selects messages of a certain type, are we able to guarantee the type of the reference
that will be added to the typing context.

5.2.1 Semantics

The semantics of selective receive follow from the semantics of receive. The only
difference is that selective receive has a different definition of what message is next
and that we have to define a new way for an actor to be blocked. Core to the new
semantics are two data-structures: SplitList and FoundInList. SplitList
lets us focus on a specific element in a list and FoundInList lets us assert that
the focused element matches the filter, or that none of the elements do.

record SplitList {a : Level} {A : Set a} (ls : List A) : Set (lsuc a) where
field
heads : List A
el : A
tails : List A
is-ls : (heads) ++ (el ∷ tails) ≡ ls

50

5. Selective receive

WithReference : MessageType
WithReference = ValueType ℕ ∷ [ReferenceType OtherInbox]ˡ

SR-inbox : InboxShape
SR-inbox = SomeMessage ∷ [WithReference]ˡ

receive-42 : MessageFilter SR-inbox
receive-42 (Msg Z _) = false
receive-42 (Msg (S Z) (n ∷ _ ∷ [])) = ⌊ n ≟ 42 ⌋
receive-42 (Msg (S (S ())) _)

after-receive : ∀ {i Γ} →
(msg : SelectedMessage receive-42) →
∞ActorM i SR-inbox
⊤₁
(add-selected-references Γ msg)
(λ _ → OtherInbox ∷ Γ)

after-receive sm: Msg Z _ [()]
after-receive sm: Msg (S Z) (n ∷ _ ∷ []) [msg-ok] = return tt
after-receive sm: Msg (S (S ())) _ [_]

receive-42-with-reference : ∀ {i Γ} →
ActorM i SR-inbox
⊤₁
Γ
(λ _ → OtherInbox ∷ Γ)

receive-42-with-reference =
selective-receive receive-42 ∞>>=
after-receive

Figure 5.1: A small program that uses selective receive

51

5. Selective receive

matches-filter : ∀{a} {A : Set a} → (f : A → Bool) → A → Set
matches-filter f v = f v ≡ true

misses-filter : ∀{a} {A : Set a} → (f : A → Bool) → A → Set
misses-filter f v = f v ≡ false

data FoundInList {a : Level} {A : Set a}
(ls : List A)
(f : A → Bool) :
Set (lsuc a) where

Found : (split : SplitList ls) →
(matches-filter f (SplitList.el split)) →
FoundInList ls f

Nothing : All (misses-filter f) ls →
FoundInList ls f

We create an element of FoundInList for the actor’s inbox and the message that
is Found is the message that the actor receives. When reducing selective receive,
Found provides the proof of f msg ≡ true that is needed in SelectedMessage.
Reducing the computation of selective receive is thus a matter of pairing the message
with the proof from Found:

split : SplitList inbox
ok : filter (split .el) ≡ true

received-message = unname-message (split .el)
Return sm: received-message [ok] ⟶ continuation

We can not reduce selective receive when none of the messages in the inbox matches
the filter. To model this in our notion of weak progress, IsBlocked has to be
extended with a new constructor: BlockedSelective. The new constructor
matches actors of the form ⟨a, receiveselective f , ⃖⃖⃗V ⟩ | ∀v ∈ V ∶ fv ≡ false

BlockedSelective :
(aac : ActorAtConstructor Selective actor) →
(point : has-inbox store actor) →
∀ inbox →
{ps : All

(misses-filter (filter-named (selected-filter actor aac)))
inbox} →

InboxForPointer inbox store inbs point →
InboxInFilterState inbox (Nothing ps) →
IsBlocked store inbs actor

52

5. Selective receive

5.3 Selective receive as a library
Fowler, Lindley and Wadler (2017) show that selective receive can be emulated
without adding any new primitive operations, provided actors are written in a
language with support for lists and algebraic data types. This is an idea that
Haller (2012) explore in the context of actors in Scala, where a save queue is used to
emulate selective receive in Akka. These insights tells us that we should be able to
write some Agda function selective-receive that emulates the functionality
of SRprim. In that vein we develop a small Agda library that emulates selective
receive, which we call SRlib.

SRlib uses the same MessageFilter as SRprim, and messages returned from the
selective receive construct still come with a proof of having passed the filter.
However, SRlib additionally has to store received messages that do not pass the
filter, so that they can be processed later. The simple solution is to pair the returned
message with a ‘save queue’, i. e. a list of messages that have been received but not
yet matched.

record SelRec (IS : InboxShape) (f : MessageFilter IS) : Set₁ where
constructor sm:_[_]-stash:_
field
msg : Message IS
msg-ok : f msg ≡ true
waiting : List (Message IS)

Recalling the definition of Receive, when a reference is received it gets added to the
variable context. Our emulation of selective receive can not change the order that
messages are read from the inbox, but that does not mean that SRlib is forced to let
the variables of received, but not yet matched, messages shadow the other variables.
By using the Strengthen operation, SRlib can reorder the variable context into
two segments: variables we want to have access to and variables that belong to
unmatched messages.

Both the precondition and postcondition of selective-receive split the
variable context into two segments. The precondition is split into accessible variables
Γ and unmatched messages (waiting-refs q). The postcondition is split the
same way, with the references in the matched message added to Γ and the references
of the new list of unmatched messages at the end2. We only show the type
signature of selective-receive here, but the interested reader finds its full
implementation in appendix C.

2 Associativity of ++ dictate that
add-references Γ (msg m) ++ waiting-refs (waiting m) ≡
add-references (Γ ++ waiting-refs (waiting m)) (msg m).
The sole reason for explicitly adding the references to Γ is to have the types line up better for
future use, e. g. subsequent calls to selective-receive or when accessing variables in Γ

53

5. Selective receive

selective-receive : ∀ {i IS Γ} →
(q : List (Message IS)) →
(f : MessageFilter IS) →
∞ActorM i IS
(SelRec IS f)
(Γ ++ (waiting-refs q))
(λ m → add-references Γ (msg m) ++

waiting-refs (waiting m))

Below we have adapted the example from section 5.2 to SRlib. It has the same
functionality as there, but now a save-queue has to be passed around manually. The
save-queue is also prevalent in the invariants of the actor, making for less elegant
types.

WithReference : MessageType
WithReference = ValueType ℕ ∷ [ReferenceType OtherInbox]ˡ

SR-inbox : InboxShape
SR-inbox = SomeMessage ∷ [WithReference]ˡ

receive-42 : MessageFilter SR-inbox
receive-42 (Msg Z _) = false
receive-42 (Msg (S Z) (n ∷ _ ∷ [])) = ⌊ n ≟ 42 ⌋
receive-42 (Msg (S (S ())) _)

after-receive : ∀ {i Γ} →
(m : SelRec SR-inbox receive-42) →
∞ActorM i SR-inbox
(List (Message SR-inbox))
(add-references Γ (msg m) ++ waiting-refs (waiting m))
(λ q' → OtherInbox ∷ Γ ++ (waiting-refs q'))

after-receive (sm: Msg Z _ [()]-stash: _)
after-receive (sm: Msg (S Z) (n ∷ _ ∷ [])

[msg-ok]-stash: waiting) =
return₁ waiting

after-receive (sm: Msg (S (S ())) _ [_]-stash: _)

receive-42-with-reference : ∀ {i Γ} →
(q : List (Message SR-inbox)) →
ActorM i SR-inbox
(List (Message SR-inbox))
(Γ ++ (waiting-refs q))
(λ q' → OtherInbox ∷ Γ ++

(waiting-refs q'))
receive-42-with-reference q =
selective-receive q receive-42 ∞>>=
after-receive

54

5. Selective receive

5.4 Building on selective receive
Because of time constraints, we had to select one implementation of selective receive
to focus our research on. SRprim and SRlib are equally expressive, but other properties
make the choice important.

SRlib has the advantage that it keeps the calculus small, but in doing so it sacrifices
some simplicity. In particular, the invariants of selective receive are more complex
in SRlib than in SRprim. The complexity of the invariants in SRlib stem from it having
to capture variables from messages that are received but not yet matched. Those
messages are completely hidden from the invariants in SRprim, naturally making for
simpler invariants.

If our goal was to prove properties about the calculus, focusing on a minimal calculus
would make a lot of sense. We choose instead to focus on what abstractions can be
built using selective receive, making ease of use a much higher priority than a small
calculus. The abstractions we present are thus built using SRprim. Translating the
abstractions into SRlib is possible, although time consuming.

In the following sections we will show how selective receive can capture some
important communication patterns. We will start with an emulation of local
channels, which forms the basis for our implementations of synchronous calls and
active objects.

5.5 Channels
Using selective receive, we can create an abstraction that emulates local channels.
A local channel is a message queue with multiple writers and a single reader, much
like an inbox. The difference between a local channel and an inbox is that an actor
can have multiple local channels, each with their own type. The difference between
a local channel and the channels of π-calculus is that the channels of π-calculus can
be read by multiple processes.

The importance of having channels that are local is reflected in the implementation
of typed channels in Cloud Haskell (Epstein, Black and Jones 2011). In Cloud
Haskell, the motivation for local channels is that they expect channels to be used
to communicate across a network and that moving the receive port of a channel is
difficult in a distributed setting, especially when one of the prime reasons for moving
a service to a new server is that the old server has crashed.

We choose to reuse the types for inboxes in the types for channels. The messages that
can be received over a channel are thus modelled as an InboxShape. New channels
can be created at run-time. This means that multiple channels can share the same
type and that a channel-identifier must be included in every message to decide what
channel the message was sent to. We model this by restricting the message types of
a channel to those that includes a channel-identifier as their first value. The channel-

55

5. Selective receive

identifier must be unique, but we want to avoid further extensions to ActorM and
have therefore left identifiers as natural numbers. We assume that the programmer
has some means of creating unique tags, for example via UUID’s3.

UniqueTag = ℕ
TagField = ValueType UniqueTag

data IsChannelMessage : MessageType → Set₁ where
HasTag : ∀ MT → IsChannelMessage (TagField ∷ MT)

record ChannelType : Set₁ where
field
channel-shape : InboxShape
all-tagged : All IsChannelMessage channel-shape

When an actor reads from a channel it is actually reading from its inbox using
selective receive. We capture this property by requiring that an instance of a channel
comes with a proof of the messages types of the channel being a subset of the message
types of the receiving actors inbox. Channel instances must furthermore know their
identifier, but nothing more.

The subset of message types paired with a channel-identifier forms an instance of
a channel, which we call ChannelSession. An actor receives messages from a
channel via the function from-channel, which from the ChannelSession can
create a MessageFilter and perform a selective receive. The received message is
then converted from the actor’s InboxShape to the channel’s InboxShape.

record ChannelSession
(channel : ChannelType)
(receiver : InboxShape): Set₁ where

field
can-receive : (channel .channel-shape) <: receiver
tag : UniqueTag

from-channel : ∀ {Γ i receiver} →
∀ ct →
ChannelSession ct receiver →
∞ActorM i
receiver
(Message (ct .channel-shape))
Γ
(add-references Γ)

3An Agda program targeting the Haskell backend could create bindings to the Haskell library
https://hackage.haskell.org/package/uuid

56

https://hackage.haskell.org/package/uuid

5. Selective receive

5.6 Initiating channels
For a channel to be useful other actors must know about it. The general pattern
when an actor initiates a channel is thus that it sends a message, that contains a
channel-identifier together with a reference, to another actor. We capture this idea
in ChannelInitiation, which specifies the interface for setting up a channel
from one actor to another.

data IsRequestMessage (IS : InboxShape) : MessageType → Set₁ where
HasTag+Ref :
∀ MT →
IsRequestMessage IS (TagField ∷ ReferenceType IS ∷ MT)

record ChannelInitiation : Set₁ where
field
request : InboxShape
response : ChannelType
request-tagged : All

(IsRequestMessage (response .channel-shape))
request

A ChannelInitiation is split into the interface for requests and the interface
for the channel that will be responded to. A request is a message that has a channel-
identifier as its first field and a reference to the channel as its second field. Similarly
to the channel-shape of ChannelType, the type of messages in a request are
constrained to those that have a channel-identifier as its first field and a reference
of the channel type as its second field.

To apply the interface specified by a ChannelInitiation we must show that
the calling actor can open the channel and that the callee can receive the request.
Opening a channel is already covered by ChannelSession and the second
obligation is just a subtype relation between the request interface and the callee.

record ChannelInitiationSession
(ci : ChannelInitiation)
(caller callee : InboxShape): Set₁ where

field
can-request : (ci .request) <: callee
response-session : ChannelSession (ci .response) caller

The most common scenario for initiating a channel is when the caller is the current
actor. We have captured this scenario in the function initiate-channel, which
sends a message containing the channel-identifier, a reference to itself, and any extra
fields, to the caller. Its definition is placed in appendix D.

57

5. Selective receive

5.7 Synchronous call
In the beginning of this chapter we showed how Erlang/OTP uses selective receive
to implement synchronous calls. After having translated that pattern into Mact, we
noticed that synchronous calls and local channels had very similar implementations.
Since singly typed actors does not capture protocols, the types for synchronous calls
and local channels that can be captured by the type-system for . A synchronous
call is in fact a local channel that is used to receive a single message.

We highlight in figure 5.2 how the protocol of Erlang/OTP’s call corresponds to our
functions for local channels. Figure 5.3 shows a straightforward translation of the
pattern into Agda.

call : ∀ {Γ i caller} →
(protocol : ChannelInitiation) →
Request Γ caller protocol →
∞ActorM
i
caller
(Message (protocol .response .channel-shape))
Γ
(add-references Γ)

call protocol request =
let
open ChannelInitiationSession
open Request
open ChannelSession

in do
initiate-channel _ request
let rs = request .session .response-session
from-channel (protocol .response) rs

Figure 5.2: Annotated version of Erlang/OTP’ call

5.8 Active objects
The active object model, see section 3.2, replaces message passing with asynchronous
method invocation. Messages are still sent and received in active objects, but it
happens under the hood. To emulate active objects we must take control over the
request-reply-loop and invoke the right method for each message. This is similar to
the behaviour of Erlang/OTP’s gen_server4 which also takes control of the request-
reply-loop, but uses a single method to handle every call.

Following the paradigm of object-oriented programming, an active object is an
instantiation of a class. A class is a template that specifies the internal state and

4http://erlang.org/doc/man/gen_server.html

58

http://erlang.org/doc/man/gen_server.html

5. Selective receive

call : ∀ {Γ i caller} →
(protocol : ChannelInitiation) →
Request Γ caller protocol →
∞ActorM
i
caller
(Message (protocol .response .channel-shape))
Γ
(add-references Γ)

call protocol request =
let
open ChannelInitiationSession
open Request
open ChannelSession

in do
initiate-channel _ request
let rs = request .session .response-session
from-channel (protocol .response) rs

Figure 5.3: Full implementation of call using the channel abstraction

behaviour of its instances. To emulate active objects we must create a similar
specification that captures both the state of the object and its methods.

The methods of a class are essentially named fields that point to a function. These
functions receive an implicit variable that is used to access the state of the object
and to call the other methods of the object. Of these features, only named fields
are inconvenient to emulate. We therefore choose to ignore names and instead place
methods in an ordinary list.

A method consists of an interface, or method header, and a function body. It is
common that a method returns a value, which corresponds to sending a reply in our
model, but it can optionally return nothing. The request-response pattern is already
captured by the ChannelInitiation from section 5.6 and a method that returns
nothing poses no special constraints on the received message. A method head can
thus be specified in terms of a ChannelInitiation when it returns a value and
in terms of a sum of message types when it returns nothing.

data ActiveMethod : Set₁ where
VoidMethod : InboxShape → ActiveMethod
ResponseMethod : ChannelInitiation → ActiveMethod

We are required to construct a type for the inbox of the active object that captures
every message type handled by its methods. Since an InboxShape is a list, we
can do so by concatenating the interfaces of each method. We additionally want to
give active objects the ability to call other actors, which will often have replies that
do not match the message types of the calling actor’s methods. This is captured by

59

5. Selective receive

including a set of additional message types in the specification of an active object.
The interface for an actor that emulates an active object thus becomes

methods : List ActiveMethod
extra-messages : InboxShape

methods-shape methods ++ extra-messages

where the function methods-shape is defined as follows

active-method-request : ActiveMethod → InboxShape
active-method-request (VoidMethod x) = x
active-method-request (ResponseMethod x) = x .request

methods-shape : List ActiveMethod → InboxShape
methods-shape [] = []
methods-shape (am ∷ lci) =
let rec = methods-shape lci

am-shape = active-method-request am
in am-shape ++ rec

We have captured method interfaces, but must also capture the notion of updateable
state, and eventually method bodies. Wadler (1992) explains that state may be
mimicked by a function that receives an initial state and returns its computed value
paired with the final state: State → (a, State). This idea is essential to our definition
of method bodies.

The state of an active object must be able to capture references to other actors. In
Mact, that means that we should be able to infer the actor’s TypingContext
from its state. And lo, our active objects include a function vars of type
state-type → TypingContext. We use this function to encode the invariants of
the method bodies, i. e. the precondition of a method is (vars initial-state)
and the postcondition is λ (a , new-state) → vars new-state .

Having defined method interfaces, the interface for an active object actor, its state,
and its invariants, the only remaining concept to define is method bodies. The details
are different between the body for a ResponseMethod and a VoidMethod, but
the handlers are in both cases functions of the following type:

(i : Size) →
(input : input-type) →
(state : state-type) →
∞ActorM i IS
(return-type input)
(precondition input state)
(postcondition input)

The definitions of input-type, return-type, precondition, and postcondition all
depend on whether the method is a ResponseMethod or a VoidMethod. Both

60

5. Selective receive

cases have computations that return state, but ResponseMethod additionally
returns the message that should be sent as a response. Both cases have inputs that
stem from the request message, but the input to a ResponseMethod is slightly
modified in order to guarantee that it can not send additional response messages.
With both input and output differing between the cases, invariants must also be
defined in different ways. We will show how the definitions are derived by explaining
the request-response-loop used in our active objects.

The overarching request-response-loop starts when a message targeted to one of the
methods is received. We can locate which method has been targeted by looking at
the message type tag. With the method located we can translate the message type
from being expressed in terms of the actor’s inbox to being expressed in terms of the
method’s interface. The message with its type translated, together with the current
state, is applied to the method body. Eventually, the method returns an updated
state and, in the case of it being a ResponseMethod, a message that is sent as
reply.

Specializing the request-response-loop to VoidMethods is simple. Since we
know nothing about the request message and there is no response to send, the
specialization has to deliver the request message unaltered and the method has to
return nothing but the new state. For a VoidMethod IS' we thus have that:

input-type = Message IS'

return-type : input-type → Set₁
return-type _ = state-type

precondition : input-type → state-type → TypingContext
precondition input state = state-vars var-f input state

postcondition : (input : input-type) →
return-type input → TypingContext

postcondition input state = state-vars var-f input state

where state-vars is defined as follows:

state-vars : ∀ {IS} {state-type : Set₁} →
(state-type → TypingContext) →
Message IS → state-type →
TypingContext

state-vars vars input state = add-references (vars state) input

The specialization for ResponseMethod is a bit more involved. There are two
factors that contribute to making it so: the method needs to return the new state
paired with a response and we want to prevent the method from sending extra
replies.

To prevent the method from sending extra replies we must hide the response
reference from it. We must at the same time have the reference available when

61

5. Selective receive

the method returns, so that we can send the response. To solve this conundrum we
can make it so the response reference is still threaded through the invariants of the
method, but with the reference temporarily rendered unusable.

To make a reference temporarily unusable we can apply the idea of parametricity.
Wadler (1989) famously describe how some behaviours of a polymorphic function
can be inferred by its type alone, without inspecting the function body. Their insight
is that the operations a function can perform are limited when it has to work for
any type. In the same vein, a reference is unusable if its type can be anything.5

To turn the response reference into a parameter we must detach it from
the request message. Using the request-tagged field from the method’s
ChannelInitiation, the function active-request-type strips the first two
fields from every message type, removing the channel identifier and the reference.
To make the invariants computable we include the type of the reference in the input,
but this does not give back any power to the method.

record ResponseInput (ci : ChannelInitiation) : Set₁ where
constructor _sent_
field
caller : InboxShape
msg : Message (active-request-type ci)

We perform a similar transformation of the message types for responses, where
active-reply-type strips the channel identifier from each message type. This
transformed message type is used in the return value of the method, which pairs a
SendMessage with the new state:

record ActiveReply (ci : ChannelInitiation)
(state-type : Set₁)
(vars : state-type → TypingContext)
(input : ResponseInput ci) : Set₁ where

field
new-state : state-type
reply : SendMessage

(active-reply-type (ci .response))
(reply-state-vars vars input new-state)

The typing context used in reply is the same the as those we saw in the
specialization for VoidMethod. The only difference between reply-state-vars
and state-vars is the representation of the input. The same is true in the
definitions below, where reply-vars just extracts the state field from the

5It is key to parametricity that the type of the polymorphic parameters can not be inferred by
some other means. It is possible to pattern match on an InboxShape to learn how many message
types it supports and whether the fields of the message are values or references. However, the
types of value fields are polymorphic, so when a polymorphic InboxShape is broken down there
is still no way to infer what values it supports.

62

5. Selective receive

ActiveReply. This lets us finally define the specialization for the bodies of
ResponseMethod

input-type = ResponseInput ci

return-type : input-type → Set₁
return-type input = ActiveReply ci state-type var-f input

precondition : input-type → state-type → TypingContext
precondition input state = reply-state-vars var-f input state

postcondition : (input : input-type) →
return-type input → TypingContext

postcondition input = reply-vars var-f input

Putting this all together we get our definition of an active object. An actor can
at any time become an active object, provided its interface and invariants are
correct, by invoking run-active-object. The behaviour that is captured by this
implementation is one that arises naturally when writing actor programs and we were
able to replace several implementations where control flow was earlier implemented
manually. Furthermore, other actors can interact with the active object using the
abstractions they feel fit, whether that is synchronous call, channels, or manual
(selective) receive.

record ActiveObject : Set₂ where
field
state-type : Set₁
vars : state-type → TypingContext
methods : List ActiveMethod
extra-messages : InboxShape
handlers : All

(active-method
(methods-shape methods ++ extra-messages)
state-type
vars

)
methods

63

5. Selective receive

run-active-object : {i : Size} →
(ac : ActiveObject) →
(state : ac .state-type) →
∞ActorM (↑ i)

(active-inbox-shape ac)
(ac .state-type)
((ac .vars) state)
(ac .vars)

run-active-object ac state .force =
receive-active-method ac ∞>>= λ { m .force →
handle-active-method ac m state ∞>>= λ state' →
run-active-object ac state'
}

5.9 Guide to examples
We have written several programs to exercise the capabilities of Mact and the
abstractions built on it. The code is available on GitHub6 and contains information
for setting up a local environment. We recommend that you explore the code
interactively, using Emacs in agda2-mode7, by introducing goals (write {!term!}
around any term) and using commands like ‘goal type and context’ to see what
types the terms in the surrounding context have.

Examples/PingPong ‘Ping Pong’, an actor 101 example, implemented without
use of any abstractions. Messages that are received when an actor is in the wrong
state are discarded.

Examples/SimpleActor The example from section 4.2. Designed to use every
feature of ActorM, while still being simple.

Libraries/SelectiveReceive The implementation of SRlib. Also available in
appendix C.

Libraries/Call An implementation of synchronous calls in SRlib. It is implemented
as a stand-alone, without using a channel abstraction. There exists a similar
implementation for SRprim.

Selective/Examples/PingPong ‘Ping Pong’, now implemented using SRprim.
With selective receive in place, the actors do not have to throw away messages
that arrive at an inconvenient moment.

6https://github.com/Zalastax/singly-typed-actors with the canonical commit
hash being d7ed5ab556eb6d2a7921ea38aa91a5b8e2e236f1

7 http://agda.readthedocs.io/en/v2.5.3/tools/emacs-mode.html

64

https://github.com/Zalastax/singly-typed-actors
http://agda.readthedocs.io/en/v2.5.3/tools/emacs-mode.html

5. Selective receive

Selective/Examples/Fibonacci: The Fibonacci sequence implemented via two
collaborating actors. The protocol8 comes from the ABCD group’s list of session
types use cases9, from which we also implement their bookstore and chat protocols.

Selective/Examples/Bookstore: A fairly faithful implementation of the ‘Book-
store’ protocol10. As we know, the type system for singly typed actors can not
guarantee the absence of deadlocks, but it can still encode advanced protocols.
Selective receive lets us write code where messages arriving in the wrong order is
not a problem. The implementation was made before other abstractions were in
place and therefore uses SRprim without any further abstractions.

Selective/Examples/Chat: A fairly faithful implementation of the ‘Chat’ pro-
tocol11. This version was also made before other abstractions were in place. A
reimplementation of the protocol, using active objects, also exists.

Selective/Libraries/Call: Synchronous call implemented without the channel
abstraction. The synchronous call of SRlib is a direct translation from this code.

Selective/Libraries/Channel: The implementation of channels that we have
presented here.

Selective/Libraries/Call2: The implementation of synchronous call that we have
presented here.

Selective/Libraries/ActiveObjects: The implementation of active objects that
we have presented here.

Selective/Libraries/ReceiveSublist: Provides the function receive-sublist
that lets an actor receive the messages that fall in a certain range of the actors
InboxShape. I. e. for an actor with the InboxShape xs ++ ys ++ zs it will
return Message ys. This function is used in active objects to only receive messages
that are ment for its methods.

Selective/Examples/ChatAO: Reimplementation of the ‘Chat’ protocol, now
using active objects. Active objects reduce a fair bit of boilerplate code, making the
code that can use it easier to read.

8https://github.com/epsrc-abcd/session-types-use-cases/tree/master/
fibonacci

9https://github.com/epsrc-abcd/session-types-use-cases/
10https://github.com/epsrc-abcd/session-types-use-cases/tree/master/

Bookstore/description
11https://github.com/epsrc-abcd/session-types-use-cases/tree/master/

Bookstore/description

65

https://github.com/epsrc-abcd/session-types-use-cases/tree/master/fibonacci
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/fibonacci
https://github.com/epsrc-abcd/session-types-use-cases/
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Bookstore/description
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Bookstore/description
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Bookstore/description
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Bookstore/description

5. Selective receive

Library testing: Our libraries come with simple programs that serve as minimal
tests of the library’s functionality. These test programs are: Examples/
TestSelectiveReceive, Examples/TestCall, Selective/Examples/
TestCall, Selective/Examples/TestCall2, Selective/Examples/
TestAO.

66

6
Discussion

Modeling distributed systems is a difficult endeavour. A complete model should
capture communication latency, failures, bandwidth, liveness, and so on. The singly
typed actor model captures very few of these properties. However, this does not
make the model a failure.

The singly typed actor model bridges the gap between actors and static type safety,
and it does so using means that are available today. The industry has shown that
singly typed actors can be practically implemented and Fowler, Lindley and Wadler
(2017), followed by this thesis, show that they are theoretically sound as well.

The request-response pattern is very common in distributed programming. We have
shown in chapter 5 how request-response can be encoded using selective receive and
that the type of the response can be translated to the tight representation we expect.
Unfortunately, having to capture the type of every message that should ever be
received in a single type is still a significant nuisance.

The big issue in Mact, and in typing actors in general, is that actors have a single
inbox. Even with selective receive, a single inbox per actor leads to wide types and
a poor programming experience. These issues are very difficult to resolve and we
instead argue for pursuing the local channels of Vyšniauskas (2015), even though
they can be emulated in Mact. We believe that local channels can easily replace
inboxes in the actor model and that doing so will result in simpler types.

While recommending local channels we want to highlight Vyšniauskas’s (2015)
conclusion that ‘the full-ownership restriction does not mix well with the general
formulation of the π-calculus’. Vyšniauskas (2015) ponders whether their πdist would
benefit from a formulation not based on the π-calculus, and to that we answer that
λact (or Mact), extended with multiple inboxes, is a strong contender. λact is a
calculus that is well-suited for distribution and it is easy to extend and work with.
To researchers who wish to explore this route, we urge you to consider using Agda
(or a similar language) in your mechanizations; dependent types are very well suited
for this type of work. Dependent types gives you the freedom to create intricate
typing relations, just by writing a function. This freedom lets you explore ideas
about types quickly and relieves you from the burden of writing a special compiler
that can capture these ideas.

67

6. Discussion

The following sections present ideas for future work in the context of extending Mact.

6.1 Serialization
A distributed system involves values communicated between different computers and
this inevitably requires serializing the data into a stream of bits (and deserializing
it at the other end). For simplicity’s sake we will assume the usage of Haskell’s
ByteString and access to Haskell’s Binary class from the binary package. These
assumptions lets us build on the work of Epstein, Black and Jones (2011) which
requires that transmitted data implements the type class Serializable. The
Serializable type class ensures that an item is Binary, i. e. it can be encoded and
decoded to and from binary, and that it is Typeable, i. e. that we can get a concrete
representation of its type. Agda uses an alternative to type classes called instance
arguments (Devriese and Piessens 2011), where Serializable would be represented as
a record that is provided similarly to implicit arguments.

The first operator in Mact that requires serialization is Send. For this we need to
implement Serializable for messages, which requires serialization of the message’s tag
and fields. The tag is an index into a list of message types and can be serialized by
first converting the index to a natural number. Serializing the message fields requires
serialization of values and references. Values can be serialized by constraining them
to only those that have an instance of Serializable, whereas references require a bit
more thought.

References in Mact contain the name of the referenced actor and a subtyping relation.
Names are just natural numbers, which we know how to serialize. The subtyping
relation in Mact is a subset relation, which depending on your representation of
subsets can be simple or very hard to serialize. A subset relation represented as
a function between indices would be a representation that is difficult to serialize,
whereas the representation we have, a list of indices into the other list, can be
serialized as a list of integers.

The second operator that requires serialization is Spawn. Spawn needs ActorM
to be serializable, which in the case of bind requires serialization of functions.
Serializing functions is a complicated topic, in that it requires not only runtime
support for serializing the code, but also requires serialization of free variables.
Epstein, Black and Jones (2011) provide the solution of capturing closures as static
code paired with its arguments as a serializable environment. Their solution can only
mark code as static if it is a top-level definition, but we suspect that this is a small
limitation in the context of actors. We have in fact already noted a natural tendency
to define the spawned actor as its own top-level definition due to the spawned actor
often having a fair amount of code.

68

6. Discussion

6.2 Evolving interfaces
We have highlighted that request-response patterns lead to wide interfaces that must
accommodate the needs of their actor for the actor’s whole lifetime. Selective receive
lets the actor handle only the messages that are relevant at the moment, but a wide
interface still poses a significant nuisance that we would like to avoid.

The interface of an actor in Mact is fixed for its whole lifetime, making the model
less flexible than a dynamically typed counterpart. It would make sense to let actors
of Mact grow their interface in accordance to the subtyping rules we have already
established since this would increase flexibility without invalidating old references.

To implement evolving interfaces one needs to consider what should happen when a
message is sent via a reference that uses one of the older interfaces. The old references
can not be modified, so the system will have to prove the subtype relation behind
the scenes before the message is added to the inbox. We believe that the simplest
method to accomplish this is to tag each message with a version number and to
remember every evolution that an actor has performed. The version number can
then be used to extract which evolutions lie between the message’s interface and the
current one. The extracted evolutions thus form a path of subtyping relations that
can be applied one after another, thanks to transitivity of subtyping.

If we could ignore old references it would make sense to also let an interface shrink.
A long running actor would then be able to temporarily extend its capabilities in
order to follow a protocol and when the protocol is complete, forget this temporary
extension to decrease noise in the types. However, if the other actors do not follow
the protocol, or if the protocol is bad, the actor that shrunk its interface might get
sent a message that it no longer understands. Implementing shrinking interfaces
would thus require either adding some run-time checks à la dynamic typing, or
modelling protocols as types as well, e. g. using session types.

We are not sure how well statically typed sessions can be adapted to actors with a
single inbox since there is a big risk that types will easily become unwieldy. Current
research has focused on the channels of π-calculus, which instead leads to problems
with distribution. We believe that these problems can both be avoided by taking
the best of both models: the distributability of actors and the granular typing of
channels. This idea is somewhat explored already in Epstein, Black and Jones’s
(2011) Cloud Haskell, which supports typed channels that are fully local.

The need for multiple inboxes is also discussed by de’Liguoro and Padovani
(2018). They present the mailbox calculus—a mild extension of the asynchronous
π-calculus—and mailbox types—a new kind of behavioral types. We find it
especially interesting that their model subsumes actors and that their approach
can compositionally ensure mailbox conformance and deadlock freedom of a system.
In contrast, a multiparty session approach, such as that by Charalambides, Dinges
and Agha (2016), requires global types that are then extracted into local ones. We

69

6. Discussion

are eager to see what future work will spawn from their mailbox approach, especially
the possibility of efficiently distributable and type safe programming models.

6.3 Frame rule
When computations are chained in Mact, the postcondition of a computation must
match exactly with the precondition of the following computation. A function that
is not written with this idea in mind could therefore end up not being callable even
though every variable it needs is in the context, just not in the right place. We have
written two similar functions that illustrate this problem. The function send-nat
is written with invariants in mind, whereas send-nat-frame is explicit about a
specific shape of the variable context.

NatMessage : MessageType
NatMessage = [ValueType ℕ]ˡ

send-nat : ∀ {i IS ToIS pre} →
(canSendTo : ToIS ∈ pre) →
(NatMessage ∈ ToIS) →
∞ActorM (↑ i) IS ⊤₁ pre (λ _ → pre)

send-nat canSendTo p = canSendTo ![t: p] [lift 42]ᵃ

send-nat-frame : ∀ {i IS ToIS} →
(NatMessage ∈ ToIS) →
∞ActorM (↑ i) IS ⊤₁ [ToIS]ˡ (λ _ → [ToIS]ˡ)

send-nat-frame p = Z ![t: p] ([lift 42]ᵃ)

We added the Strengthen operator which lets us forget about variables, but using
Strengthen to call send-nat-frame results in losing the other variables forever.
We see from this example that Mact lacks an operator for local reasoning, i. e. the
frame rule from separation logic.

{P }C{Q}
{P ∗ R}C{Q ∗ R}

Modifies(C) ∩ Free(R) = ∅

Figure 6.1: Frame rule

The frame rule, see figure 6.1, codifies a notion of local behaviour (O’Hearn,
Reynolds and Yang 2001). The idea is that the precondition P in {P }C{Q} specifies
the properties that are sufficient for C to run and that running C with precondition
P will establish the postcondition Q. A program that executes safely in the small
state P can also execute in a bigger state (P ∗R), and this execution will not affect the
additional part of the state (Q ∗ R), as long as the variables modified (Modifies(C))
are not occurring in the free variables of R.

70

6. Discussion

Adding a frame rule operator to Mact would provide a means to call functions
that are written without invariants in mind. The frame rule would thus let
us call send-nat-frame without losing variables. The frame rule could also
simplify functions that have invariants in mind by alleviating them from specifying
variables that are irrelevant for the function. E. g. in SRlib, Γ is not used by
selective-receive and could be left out.

6.4 Time, failures, and delays
We have conveniently ignored some important but difficult problems when designing
Mact, namely timeouts, failures, and delays between sending and receiving messages.
Adding a clock to Mact should be fairly simple, but you have to decide whether it
should use a wall-clock, logical local time, or logical global time (Raynal and Singhal
1996). The receive construct should also be extended with a timeout facility, which
gives back control to the actor if no message was received in the timeout interval.

Failure detection and timeouts are heavily connected in asynchronous distributed
systems. In fact, Chandy and Misra (1986) showed that detection of process failure is
impossible without using timeouts. Errors not related to processes being unreachable
should be possible to model using the operations already available in Mact, e. g. by
the usage of error messages. We therefore suggest that extensions of Mact should
focus on adding timeouts, leaving other error handling to be implemented as a
library.

Even though Mact is asynchronous, to call it distributed would not be entirely honest.
What Mact fails to model is that every non-local action has to be distributed to
its target and that distribution has an inherent latency. To make Mact properly
distributed, sending a message should be separated from delivering the message to
the inbox, so that latency can be properly accounted for.

With each message having an independent latency, messages between actors could
arrive in a different order from the order they were sent in. Agha (1990) shows
that such arrival order non-determinism can easily be handled and they propose a
scheme for restoring order of communication. Their solution is that if actor a wish
that actor b should process messages in the same order as a sent them, then a should
tag each message with an ordinal that gets increased for each message. The actor b
in turn remembers how many messages it has processed and buffers messages that
arrive before the message it is supposed to process next. Alternatively, the model
could of course be extended to buffer and reorder messages behind the scenes.

71

7
Conclusion

We have seen how the concept of a coinductive parameterized monad can be used
to model actors in Agda (section 4.2). In section 4.8 we explain the semantics of
Mact, showing how the model captures type-safety if we ignore the possibility of
deadlocks.

Shallowly embedding Mact in Agda was a powerful move which has allowed us to
explore problems that are relevant and of significant size. Dependent types in
particular have let us describe advanced abstractions without resorting to tricks,
which one often has to do in less powerful type systems.

We demonstrated how selective receive simplifies control flow and can be used to
build powerful abstractions (chapter 5). This shows that our intuition that selective
receive can emulate many communication patterns was correct, but we can still not
call that result a complete success. In chapter 6 we describe why a single inbox
per actor is problematic, even when paired with selective receive. We suggest that
the actor model should be extended to support multiple inboxes or local channels,
resolving the type granularity problem without compromising distributability.

Exploring local channels is the future work we are most excited about. In particular,
we would like to see the mailbox types (de’Liguoro and Padovani 2018) adapted to
a programming model—perhaps as an EDSL in Agda.

72

Bibliography

Abel, Andreas (2010). ‘MiniAgda: Integrating Sized and Dependent Types’. In:
Partiality and Recursion in Interactive Theorem Provers, PAR@ITP 2010,
Edinburgh, UK, July 15, 2010. Ed. by Ekaterina Komendantskaya, Ana Bove
and Milad Niqui. Vol. 5. EPiC Series. EasyChair, pp. 18–32. url: http://www.
easychair.org/publications/paper/51657.

Abel, Andreas and James Chapman (2014). ‘Normalization by Evaluation in the
Delay Monad: A Case Study for Coinduction via Copatterns and Sized Types’. In:
Proceedings 5th Workshop on Mathematically Structured Functional Programming,
MSFP@ETAPS 2014, Grenoble, France, 12 April 2014. Ed. by Paul Levy and Neel
Krishnaswami. Vol. 153. EPTCS, pp. 51–67. doi: 10.4204/EPTCS.153.4.
url: https://doi.org/10.4204/EPTCS.153.4.

Abel, Andreas and Brigitte Pientka (2013). ‘Wellfounded recursion with copatterns:
a unified approach to termination and productivity’. In: ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP’13, Boston, MA, USA
- September 25 - 27, 2013. Ed. by Greg Morrisett and Tarmo Uustalu. ACM,
pp. 185–196. isbn: 978-1-4503-2326-0. doi: 10.1145/2500365.2500591.
url: http://doi.acm.org/10.1145/2500365.2500591.

Agha, Gul A. (1990). ACTORS - a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence. MIT Press. isbn: 978-0-262-
01092-4.

Atkey, Robert (2009). ‘Parameterised notions of computation’. In: J. Funct. Program.
19.3-4, pp. 335–376. doi: 10.1017/S095679680900728X. url: https://
doi.org/10.1017/S095679680900728X.

Bengtson, Jesper and Joachim Parrow (2009). ‘Formalising the pi-calculus using
nominal logic’. In: Logical Methods in Computer Science 5.2. url: http://
arxiv.org/abs/0809.3960.

Berghofer, Stefan and Christian Urban (2007). ‘A Head-to-Head Comparison of de
Bruijn Indices and Names’. In: Electr. Notes Theor. Comput. Sci. 174.5, pp. 53–67.

73

http://www.easychair.org/publications/paper/51657
http://www.easychair.org/publications/paper/51657
https://doi.org/10.4204/EPTCS.153.4
https://doi.org/10.4204/EPTCS.153.4
https://doi.org/10.1145/2500365.2500591
http://doi.acm.org/10.1145/2500365.2500591
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1017/S095679680900728X
http://arxiv.org/abs/0809.3960
http://arxiv.org/abs/0809.3960

Bibliography

doi: 10.1016/j.entcs.2007.01.018. url: https://doi.org/10.
1016/j.entcs.2007.01.018.

Bove, Ana, Peter Dybjer and Ulf Norell (2009). ‘A Brief Overview of Agda - A
Functional Language with Dependent Types’. In: Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings. Ed. by Stefan Berghofer et al. Vol. 5674. Lecture
Notes in Computer Science. Springer, pp. 73–78. isbn: 978-3-642-03358-2. doi:
10.1007/978-3-642-03359-9_6. url: https://doi.org/10.1007/
978-3-642-03359-9_6.

Brady, Edwin (2015). Embedded Domain Specific Languages in Idris. url: https:
//www.cs.ox.ac.uk/projects/utgp/school/idris-tutorial.pdf.

Chandy, K. Mani and Jayadev Misra (1986). ‘How Processes Learn’. In: Distributed
Computing 1.1, pp. 40–52. doi: 10.1007/BF01843569. url: https://doi.
org/10.1007/BF01843569.

Charalambides, Minas, Peter Dinges and Gul A. Agha (2016). ‘Parameterized,
concurrent session types for asynchronous multi-actor interactions’. In: Sci.
Comput. Program. 115-116, pp. 100–126. doi: 10.1016/j.scico.2015.
10.006. url: https://doi.org/10.1016/j.scico.2015.10.006.

Charousset, Dominik, Raphael Hiesgen and Thomas C. Schmidt (2016). ‘Revisiting
actor programming in C++’. In: Computer Languages, Systems & Structures 45,
pp. 105–131. doi: 10.1016/j.cl.2016.01.002. url: https://doi.org/
10.1016/j.cl.2016.01.002.

Clebsch, Sylvan et al. (2015). ‘Deny capabilities for safe, fast actors’. In: Proceedings
of the 5th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October 26, 2015.
Ed. by Elisa Gonzalez Boix et al. ACM, pp. 1–12. isbn: 978-1-4503-3901-8. doi:
10.1145/2824815.2824816. url: http://doi.acm.org/10.1145/
2824815.2824816.

Coquand, Thierry (1993). ‘Infinite Objects in Type Theory’. In: Types for Proofs
and Programs, International Workshop TYPES’93, Nijmegen, The Netherlands,
May 24-28, 1993, Selected Papers. Ed. by Henk Barendregt and Tobias Nipkow.
Vol. 806. Lecture Notes in Computer Science. Springer, pp. 62–78. isbn: 3-540-
58085-9. doi: 10.1007/3-540-58085-9_72. url: https://doi.org/10.
1007/3-540-58085-9_72.

Dardha, Ornela, Elena Giachino and Davide Sangiorgi (2017). ‘Session types
revisited’. In: Inf. Comput. 256, pp. 253–286. doi: 10.1016/j.ic.2017.
06.002. url: https://doi.org/10.1016/j.ic.2017.06.002.

74

https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://www.cs.ox.ac.uk/projects/utgp/school/idris-tutorial.pdf
https://www.cs.ox.ac.uk/projects/utgp/school/idris-tutorial.pdf
https://doi.org/10.1007/BF01843569
https://doi.org/10.1007/BF01843569
https://doi.org/10.1007/BF01843569
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1145/2824815.2824816
http://doi.acm.org/10.1145/2824815.2824816
http://doi.acm.org/10.1145/2824815.2824816
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002

Bibliography

de Boer, Frank S. et al. (2017). ‘A Survey of Active Object Languages’. In: ACM
Comput. Surv. 50.5, 76:1–76:39. doi: 10.1145/3122848. url: http://doi.
acm.org/10.1145/3122848.

De Koster, Joeri, Tom Van Cutsem and Wolfgang De Meuter (2016). ‘43 years of
actors: a taxonomy of actor models and their key properties’. In: Proceedings of
the 6th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE 2016, Amsterdam, The Netherlands, October 30,
2016. Ed. by Sylvan Clebsch et al. ACM, pp. 31–40. isbn: 978-1-4503-4639-9. doi:
10.1145/3001886.3001890. url: http://doi.acm.org/10.1145/
3001886.3001890.

de’Liguoro, Ugo and Luca Padovani (2018). ‘Mailbox Types for Unordered Interac-
tions’. In: CoRR abs/1801.04167. arXiv: 1801.04167. url: http://arxiv.
org/abs/1801.04167.

Devriese, Dominique and Frank Piessens (2011). ‘On the bright side of type
classes: instance arguments in Agda’. In: Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011. Ed. by Manuel M. T. Chakravarty, Zhenjiang Hu and
Olivier Danvy. ACM, pp. 143–155. isbn: 978-1-4503-0865-6. doi: 10.1145/
2034773.2034796. url: http://doi.acm.org/10.1145/2034773.
2034796.

Dijkstra, Edsger W. (1975). ‘Guarded Commands, Nondeterminacy and Formal
Derivation of Programs’. In: Commun. ACM 18.8, pp. 453–457. doi: 10.1145/
360933 . 360975. url: http : / / doi . acm . org / 10 . 1145 / 360933 .
360975.

Epstein, Jeff, Andrew P. Black and Simon L. Peyton Jones (2011). ‘Towards Haskell
in the cloud’. In: Proceedings of the 4th ACM SIGPLAN Symposium on Haskell,
Haskell 2011, Tokyo, Japan, 22 September 2011. Ed. by Koen Claessen. ACM,
pp. 118–129. isbn: 978-1-4503-0860-1. doi: 10.1145/2034675.2034690. url:
http://doi.acm.org/10.1145/2034675.2034690.

Fowler, Simon (2016). ‘An Erlang Implementation of Multiparty Session Actors’. In:
Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion,
Greece, 8-9 June 2016. Ed. by Massimo Bartoletti et al. Vol. 223. EPTCS, pp. 36–
50. doi: 10.4204/EPTCS.223.3. url: https://doi.org/10.4204/
EPTCS.223.3.

Fowler, Simon, Sam Lindley and Philip Wadler (2017). ‘Mixing Metaphors: Actors
as Channels and Channels as Actors’. In: 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain. Ed. by
Peter Müller. Vol. 74. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

75

https://doi.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
https://doi.org/10.1145/3001886.3001890
http://doi.acm.org/10.1145/3001886.3001890
http://doi.acm.org/10.1145/3001886.3001890
http://arxiv.org/abs/1801.04167
http://arxiv.org/abs/1801.04167
http://arxiv.org/abs/1801.04167
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2034773.2034796
http://doi.acm.org/10.1145/2034773.2034796
http://doi.acm.org/10.1145/2034773.2034796
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
https://doi.org/10.1145/2034675.2034690
http://doi.acm.org/10.1145/2034675.2034690
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3

Bibliography

11:1–11:28. isbn: 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.2017.
11. url: https://doi.org/10.4230/LIPIcs.ECOOP.2017.11.

Geuvers, Herman (2009). ‘Proof assistants: History, ideas and future’. In: Sadhana
34.1, pp. 3–25.

Gifford, David K. and John M. Lucassen (1986). ‘Integrating Functional and
Imperative Programming’. In: LISP and Functional Programming, pp. 28–38.

Haller, Philipp (2012). ‘On the integration of the actor model in mainstream
technologies: the scala perspective’. In: Proceedings of the 2nd edition on
Programming systems, languages and applications based on actors, agents, and
decentralized control abstractions, AGERE! 2012, October 21-22, 2012, Tucson,
Arizona, USA. Ed. by Gul A. Agha et al. ACM, pp. 1–6. isbn: 978-1-4503-1630-
9. doi: 10.1145/2414639.2414641. url: http://doi.acm.org/10.
1145/2414639.2414641.

Haller, Philipp and Martin Odersky (2009). ‘Scala Actors: Unifying thread-based
and event-based programming’. In: Theor. Comput. Sci. 410.2-3, pp. 202–220.
doi: 10.1016/j.tcs.2008.09.019. url: https://doi.org/10.1016/
j.tcs.2008.09.019.

Hawblitzel, Chris et al. (2017). ‘IronFleet: proving safety and liveness of practical
distributed systems’. In: Commun. ACM 60.7, pp. 83–92. doi: 10 . 1145 /
3068608. url: http://doi.acm.org/10.1145/3068608.

He, Jiansen (2014). ‘Type-parameterized actors and their supervision’. PhD thesis.

He, Jiansen, Philip Wadler and Philip W. Trinder (2014). ‘Typecasting actors:
from Akka to TAkka’. In: Proceedings of the Fifth Annual Scala Workshop,
SCALA@ECOOP 2014, Uppsala, Sweden, July 28-29, 2014. Ed. by Philipp Haller
and Heather Miller. ACM, pp. 23–33. isbn: 978-1-4503-2868-5. doi: 10.1145/
2637647.2637651. url: http://doi.acm.org/10.1145/2637647.
2637651.

Hewitt, Carl, Peter Boehler Bishop and Richard Steiger (1973). ‘A Universal
Modular ACTOR Formalism for Artificial Intelligence’. In: Proceedings of the 3rd
International Joint Conference on Artificial Intelligence. Standford, CA, USA,
August 20-23, 1973. Ed. by Nils J. Nilsson. William Kaufmann, pp. 235–245.
url: http://ijcai.org/Proceedings/73/Papers/027B.pdf.

Hoare, C. A. R. (1969). ‘An Axiomatic Basis for Computer Programming’. In:
Commun. ACM 12.10, pp. 576–580. doi: 10.1145/363235.363259. url:
http://doi.acm.org/10.1145/363235.363259.

76

https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.1145/2414639.2414641
http://doi.acm.org/10.1145/2414639.2414641
http://doi.acm.org/10.1145/2414639.2414641
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1145/3068608
https://doi.org/10.1145/3068608
http://doi.acm.org/10.1145/3068608
https://doi.org/10.1145/2637647.2637651
https://doi.org/10.1145/2637647.2637651
http://doi.acm.org/10.1145/2637647.2637651
http://doi.acm.org/10.1145/2637647.2637651
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259

Bibliography

– (1978). ‘Communicating Sequential Processes’. In: Commun. ACM 21.8, pp. 666–
677. doi: 10.1145/359576.359585. url: http://doi.acm.org/10.
1145/359576.359585.

Honda, Kohei (1993). ‘Types for Dyadic Interaction’. In: CONCUR ’93, 4th
International Conference on Concurrency Theory, Hildesheim, Germany, August
23-26, 1993, Proceedings. Ed. by Eike Best. Vol. 715. Lecture Notes in Computer
Science. Springer, pp. 509–523. isbn: 3-540-57208-2. doi: 10.1007/3-540-
57208-2_35. url: https://doi.org/10.1007/3-540-57208-2_35.

Honda, Kohei, Vasco Thudichum Vasconcelos and Makoto Kubo (1998). ‘Language
Primitives and Type Discipline for Structured Communication-Based Program-
ming’. In: Programming Languages and Systems - ESOP’98, 7th European
Symposium on Programming, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28
- April 4, 1998, Proceedings. Ed. by Chris Hankin. Vol. 1381. Lecture Notes in
Computer Science. Springer, pp. 122–138. isbn: 3-540-64302-8. doi: 10.1007/
BFb0053567. url: https://doi.org/10.1007/BFb0053567.

Honda, Kohei, Nobuko Yoshida and Marco Carbone (2008). ‘Multiparty asyn-
chronous session types’. In: Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008. Ed. by George C. Necula and Philip
Wadler. ACM, pp. 273–284. isbn: 978-1-59593-689-9. doi: 10.1145/1328438.
1328472. url: http://doi.acm.org/10.1145/1328438.1328472.

Hu, Raymond, Nobuko Yoshida and Kohei Honda (2008). ‘Session-Based Distributed
Programming in Java’. In: ECOOP 2008 - Object-Oriented Programming, 22nd
European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings. Ed. by Jan
Vitek. Vol. 5142. Lecture Notes in Computer Science. Springer, pp. 516–541. isbn:
978-3-540-70591-8. doi: 10.1007/978-3-540-70592-5_22. url: https:
//doi.org/10.1007/978-3-540-70592-5_22.

Igried, Bashar and Anton Setzer (2016). ‘Programming with monadic CSP-style
processes in dependent type theory’. In: Proceedings of the 1st International Work-
shop on Type-Driven Development, TyDe@ICFP 2016, Nara, Japan, September
18, 2016. Ed. by James Chapman and Wouter Swierstra. ACM, pp. 28–38. isbn:
978-1-4503-4435-7. doi: 10.1145/2976022.2976032. url: http://doi.
acm.org/10.1145/2976022.2976032.

Johnsen, Einar Broch, Reiner Hähnle et al. (2010). ‘ABS: A Core Language for
Abstract Behavioral Specification’. In: Formal Methods for Components and
Objects - 9th International Symposium, FMCO 2010, Graz, Austria, November 29
- December 1, 2010. Revised Papers. Ed. by Bernhard K. Aichernig, Frank S. de
Boer and Marcello M. Bonsangue. Vol. 6957. Lecture Notes in Computer Science.

77

https://doi.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
http://doi.acm.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2976022.2976032
http://doi.acm.org/10.1145/2976022.2976032
http://doi.acm.org/10.1145/2976022.2976032

Bibliography

Springer, pp. 142–164. isbn: 978-3-642-25270-9. doi: 10.1007/978-3-642-
25271-6_8. url: https://doi.org/10.1007/978-3-642-25271-6_8.

Johnsen, Einar Broch, Olaf Owe and Marte Arnestad (2003). ‘Combining active and
reactive behavior in concurrent objects’. In: Citeseer.

Kobayashi, Naoki, Benjamin C. Pierce and David N. Turner (1999). ‘Linearity and
the pi-calculus’. In: ACM Trans. Program. Lang. Syst. 21.5, pp. 914–947. doi:
10.1145/330249.330251. url: http://doi.acm.org/10.1145/
330249.330251.

Levy, Paul Blain, John Power and Hayo Thielecke (2003). ‘Modelling environments
in call-by-value programming languages’. In: Inf. Comput. 185.2, pp. 182–210. doi:
10.1016/S0890-5401(03)00088-9. url: https://doi.org/10.1016/
S0890-5401(03)00088-9.

Maksimovic, Petar and Alan Schmitt (2015). ‘HOCore in Coq’. In: Interactive
Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China,
August 24-27, 2015, Proceedings. Ed. by Christian Urban and Xingyuan Zhang.
Vol. 9236. Lecture Notes in Computer Science. Springer, pp. 278–293. isbn: 978-3-
319-22101-4. doi: 10.1007/978-3-319-22102-1_19. url: https://doi.
org/10.1007/978-3-319-22102-1_19.

Martin, Robert C (2002). Agile software development: principles, patterns, and
practices. Prentice Hall.

Martin-Löf, Per and Giovanni Sambin (1984). Intuitionistic type theory. Vol. 9.
Bibliopolis Napoli.

McBride, Conor and James McKinna (2004). ‘The view from the left’. In: J.
Funct. Program. 14.1, pp. 69–111. doi: 10.1017/S0956796803004829. url:
https://doi.org/10.1017/S0956796803004829.

Milner, Robin, Joachim Parrow and David Walker (1992). ‘A Calculus of Mobile
Processes, I’. In: Inf. Comput. 100.1, pp. 1–40. doi: 10.1016/0890-5401(92)
90008-4. url: https://doi.org/10.1016/0890-5401(92)90008-4.

Moggi, Eugenio (1991). ‘Notions of Computation and Monads’. In: Inf. Comput.
93.1, pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url: https:
//doi.org/10.1016/0890-5401(91)90052-4.

Mostrous, Dimitris and Vasco Thudichum Vasconcelos (2011). ‘Session Typing
for a Featherweight Erlang’. In: Coordination Models and Languages - 13th
International Conference, COORDINATION 2011, Reykjavik, Iceland, June 6-9,
2011. Proceedings. Ed. by Wolfgang De Meuter and Gruia-Catalin Roman.
Vol. 6721. Lecture Notes in Computer Science. Springer, pp. 95–109. isbn: 978-3-

78

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1145/330249.330251
http://doi.acm.org/10.1145/330249.330251
http://doi.acm.org/10.1145/330249.330251
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4

Bibliography

642-21463-9. doi: 10.1007/978-3-642-21464-6_7. url: https://doi.
org/10.1007/978-3-642-21464-6_7.

Musser, David R. and Carlos A. Varela (2013). ‘Structured reasoning about actor
systems’. In: Proceedings of the 2013 Workshop on Programming based on Actors,
Agents, and Decentralized Control, AGERE!@SPLASH 2013, Indianapolis, IN,
USA, October 27-28, 2013. Ed. by Nadeem Jamali et al. ACM, pp. 37–48. isbn:
978-1-4503-2602-5. doi: 10.1145/2541329.2541334. url: http://doi.
acm.org/10.1145/2541329.2541334.

Nanevski, Aleksandar et al. (2008). ‘Ynot: dependent types for imperative programs’.
In: Proceeding of the 13th ACM SIGPLAN international conference on Functional
programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008. Ed. by
James Hook and Peter Thiemann. ACM, pp. 229–240. isbn: 978-1-59593-919-7.
doi: 10.1145/1411204.1411237. url: http://doi.acm.org/10.
1145/1411204.1411237.

Neykova, Rumyana and Nobuko Yoshida (2017). ‘Multiparty Session Actors’. In:
Logical Methods in Computer Science 13.1. doi: 10.23638/LMCS-13(1:
17)2017. url: https://doi.org/10.23638/LMCS-13(1:17)2017.

Nordström, Bengt, Kent Petersson and Jan M Smith (1990). Programming in
Martin-Löf’s type theory. Oxford University Press.

Norell, Ulf (2008). ‘Dependently typed programming in Agda’. In: International
School on Advanced Functional Programming. Springer, pp. 230–266.

O’Hearn, Peter W., John C. Reynolds and Hongseok Yang (2001). ‘Local Reasoning
about Programs that Alter Data Structures’. In: Computer Science Logic, 15th
International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris,
France, September 10-13, 2001, Proceedings. Ed. by Laurent Fribourg. Vol. 2142.
Lecture Notes in Computer Science. Springer, pp. 1–19. isbn: 3-540-42554-3. doi:
10.1007/3-540-44802-0_1. url: https://doi.org/10.1007/3-
540-44802-0_1.

Perera, Roly and James Cheney (2016). ‘Proof-relevant pi-calculus’. In: CoRR
abs/1604.04575. arXiv: 1604.04575. url: http://arxiv.org/abs/1604.
04575.

Pierce, Benjamin C. (1997). ‘Foundational Calculi for Programming Languages’. In:
The Computer Science and Engineering Handbook. Ed. by Allen B. Tucker. CRC
Press, pp. 2190–2207. isbn: 0-8493-2909-4.

– (2002). Types and programming languages. MIT Press. isbn: 978-0-262-16209-8.

79

https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1145/2541329.2541334
http://doi.acm.org/10.1145/2541329.2541334
http://doi.acm.org/10.1145/2541329.2541334
https://doi.org/10.1145/1411204.1411237
http://doi.acm.org/10.1145/1411204.1411237
http://doi.acm.org/10.1145/1411204.1411237
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
http://arxiv.org/abs/1604.04575
http://arxiv.org/abs/1604.04575
http://arxiv.org/abs/1604.04575

Bibliography

Raynal, Michel and Mukesh Singhal (1996). ‘Logical Time: Capturing Causality in
Distributed Systems’. In: IEEE Computer 29.2, pp. 49–56. doi: 10.1109/2.
485846. url: https://doi.org/10.1109/2.485846.

Sirjani, Marjan et al. (2004). ‘Modeling and Verification of Reactive Systems using
Rebeca’. In: Fundam. Inform. 63.4, pp. 385–410. url: http://content.
iospress.com/articles/fundamenta-informaticae/fi63-4-05.

Srinivasan, Sriram and Alan Mycroft (2008). ‘Kilim: Isolation-Typed Actors for
Java’. In: ECOOP 2008 - Object-Oriented Programming, 22nd European Confer-
ence, Paphos, Cyprus, July 7-11, 2008, Proceedings. Ed. by Jan Vitek. Vol. 5142.
Lecture Notes in Computer Science. Springer, pp. 104–128. isbn: 978-3-540-70591-
8. doi: 10.1007/978-3-540-70592-5_6. url: https://doi.org/10.
1007/978-3-540-70592-5_6.

Summers, Alexander J. and Peter Müller (2016). ‘Actor Services - Modular
Verification of Message Passing Programs’. In: Programming Languages and
Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Ed. by Peter
Thiemann. Vol. 9632. Lecture Notes in Computer Science. Springer, pp. 699–726.
isbn: 978-3-662-49497-4. doi: 10.1007/978-3-662-49498-1_27. url:
https://doi.org/10.1007/978-3-662-49498-1_27.

Svenningsson, Josef and Emil Axelsson (2012). ‘Combining Deep and Shallow
Embedding for EDSL’. In: Trends in Functional Programming - 13th International
Symposium, TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected
Papers. Ed. by Hans-Wolfgang Loidl and Ricardo Peña. Vol. 7829. Lecture Notes
in Computer Science. Springer, pp. 21–36. isbn: 978-3-642-40446-7. doi: 10.
1007/978-3-642-40447-4_2. url: https://doi.org/10.1007/978-
3-642-40447-4_2.

Takeuchi, Kaku, Kohei Honda and Makoto Kubo (1994). ‘An Interaction-based
Language and its Typing System’. In: PARLE ’94: Parallel Architectures and
Languages Europe, 6th International PARLE Conference, Athens, Greece, July
4-8, 1994, Proceedings. Ed. by Constantine Halatsis et al. Vol. 817. Lecture Notes
in Computer Science. Springer, pp. 398–413. isbn: 3-540-58184-7. doi: 10.1007/
3-540-58184-7_118. url: https://doi.org/10.1007/3-540-58184-
7_118.

Turbak, Franklyn, David Gifford and Mark A Sheldon (2008). Design concepts in
programming languages. MIT press.

Vitek, Jan, ed. (2008). ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings. Vol. 5142. Lecture
Notes in Computer Science. Springer. isbn: 978-3-540-70591-8. doi: 10.1007/

80

https://doi.org/10.1109/2.485846
https://doi.org/10.1109/2.485846
https://doi.org/10.1109/2.485846
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1007/978-3-540-70592-5

Bibliography

978-3-540-70592-5. url: https://doi.org/10.1007/978-3-540-
70592-5.

Vyšniauskas, Ignas (2015). ‘𝜋dist: Towards a Typed 𝜋-calculus for Distributed
Programming Languages’. MA thesis. Universiteit van Amsterdam.

Wadler, Philip (1989). ‘Theorems for Free!’ In: Proceedings of the fourth international
conference on Functional programming languages and computer architecture,
FPCA 1989, London, UK, September 11-13, 1989. Ed. by Joseph E. Stoy. ACM,
pp. 347–359. isbn: 0-201-51389-7. doi: 10.1145/99370.99404. url: http:
//doi.acm.org/10.1145/99370.99404.

– (1992). ‘Monads for functional programming’. In: Program Design Calculi,
Proceedings of the NATO Advanced Study Institute on Program Design Calculi,
Marktoberdorf, Germany, July 28 - August 9, 1992. Ed. by Manfred Broy. Vol. 118.
NATO ASI Series. Springer, pp. 233–264. isbn: 978-3-642-08164-4. doi: 10.
1007/978-3-662-02880-3_8. url: https://doi.org/10.1007/978-
3-662-02880-3_8.

Wilcox, James R. et al. (2015). ‘Verdi: a framework for implementing and formally
verifying distributed systems’. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015. Ed. by David Grove and Steve Blackburn. ACM,
pp. 357–368. isbn: 978-1-4503-3468-6. doi: 10.1145/2737924.2737958. url:
http://doi.acm.org/10.1145/2737924.2737958.

Wright, Andrew K. and Matthias Felleisen (1994). ‘A Syntactic Approach to Type
Soundness’. In: Inf. Comput. 115.1, pp. 38–94. doi: 10.1006/inco.1994.
1093. url: https://doi.org/10.1006/inco.1994.1093.

Yasutake, Shohei and Takuo Watanabe (2015). Actario: A framework for reasoning
about actor systems.

Yonezawa, Akinori, Jean-Pierre Briot and Etsuya Shibayama (1986). ‘Object-
Oriented Concurrent Programming in ABCL/1’. In: Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’86),
Portland, Oregon, Proceedings. Ed. by Norman K. Meyrowitz. ACM, pp. 258–268.
isbn: 0-89791-204-7. doi: 10.1145/28697.28722. url: http://doi.acm.
org/10.1145/28697.28722.

Yoshida, Nobuko et al. (2013). ‘The Scribble Protocol Language’. In: Trustworthy
Global Computing - 8th International Symposium, TGC 2013, Buenos Aires,
Argentina, August 30-31, 2013, Revised Selected Papers. Ed. by Martı́n Abadi and
Alberto Lluch-Lafuente. Vol. 8358. Lecture Notes in Computer Science. Springer,
pp. 22–41. isbn: 978-3-319-05118-5. doi: 10.1007/978-3-319-05119-2_3.
url: https://doi.org/10.1007/978-3-319-05119-2_3.

81

https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1007/978-3-540-70592-5
https://doi.org/10.1145/99370.99404
http://doi.acm.org/10.1145/99370.99404
http://doi.acm.org/10.1145/99370.99404
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/28697.28722
http://doi.acm.org/10.1145/28697.28722
http://doi.acm.org/10.1145/28697.28722
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

Bibliography

82

A
Examples of monadic computation

Example program for the identity monad:

bind-suc : ℕ → MonadID ℕ
bind-suc n = return (suc n)

is-3+ : ℕ → MonadID Bool
is-3+ 0 = return false
is-3+ 1 = return false
is-3+ 2 = return false
is-3+ _ = return true

prog : ℕ → MonadID Bool
prog n =

return n >>=
bind-suc >>=
bind-suc >>=
is-3+

run-0 : run-monadID (prog 0) ≡ false
run-0 = refl

run-1 : run-monadID (prog 1) ≡ true
run-1 = refl

Example program for the Maybe monad:

safe-div : ℕ → ℕ → Maybe ℕ
dividend safe-div zero = nothing
dividend safe-div (suc divisor) = just (dividend div suc divisor)

divmania : ℕ → ℕ → ℕ → ℕ → Maybe ℕ
divmania a b c d = (a safe-div b) >>= λ a/b →

(c safe-div d) >>= λ c/d →
a/b safe-div c/d

result-0 : divmania 0 1 1 1 ≡ just 0
result-0 = refl

I

A. Examples of monadic computation

result-1 : divmania 100 3 10 3 ≡ just 11
result-1 = refl

result-2 : divmania 10 3 2 5 ≡ nothing
result-2 = refl

II

B
Actor helper functions

--
-- ========== Helpers for ActorM ==========
--

open ∞ActorM public

-- coinduction helper for Value
return₁ : {A : Set (lsuc lzero)} → ∀ {i IS post} → (val : A) →

∞ActorM i IS A (post val) post
return₁ val .force = Return val

-- universe lifting for return₁
return : {A : Set} → ∀ {i IS post} → (val : A) →

∞ActorM i IS (Lift A) (post (lift val)) post
return val = return₁ (lift val)

>>= : ∀ {i IS A B pre mid post} → (m : ∞ActorM i IS A pre mid) →
(f : (x : A) → ∞ActorM i IS B (mid x) (post)) →
∞ActorM i IS B pre post

(m >>= f) .force = m ∞>>= f

∞>> : ∀ {i IS A B pre mid post} → (m : ∞ActorM i IS A pre (λ _ → mid)) →
(n : ∞ActorM i IS B mid post) →
ActorM i IS B pre post

m ∞>> n = m ∞>>= λ _ → n

[mid:_]_>>=_ : ∀ {i IS A B pre post} → ∀ mid →
(m : ∞ActorM i IS A pre mid) →
(f : (x : A) → ∞ActorM i IS B (mid x) (post)) →
∞ActorM i IS B pre post

[mid: mid] m >>= f = _>>=_ {mid = mid} m f

>> : ∀ {i IS A B pre mid post} → (m : ∞ActorM i IS A pre (λ _ → mid)) →
(n : ∞ActorM i IS B mid post) →
∞ActorM i IS B pre post

(m >> n) .force = m ∞>> n

[mid:_]_>>_ : ∀ {i IS A B pre post} → ∀ mid →
(m : ∞ActorM i IS A pre (λ _ → mid)) →

III

B. Actor helper functions

(n : ∞ActorM i IS B mid (post)) →
∞ActorM i IS B pre post

[mid: mid] m >> f = _>>_ {mid = mid} m f

-- coinduction helper for spawn
spawn : ∀ {i IS NewIS A pre postN} →
ActorM i NewIS A [] postN →
∞ActorM (↑ i) IS ⊤₁ pre λ _ → NewIS ∷ pre

spawn newAct .force = Spawn newAct

-- spawn potentially infinite actors
spawn∞ : ∀ {i IS NewIS A pre postN} →
∞ActorM (↑ i) NewIS A [] postN →
∞ActorM (↑ i) IS ⊤₁ pre λ _ → NewIS ∷ pre

spawn∞ newAct = spawn (newAct .force)

-- coinduction helper and neater syntax for message sending
![t:]_ : ∀ {i IS ToIS pre MT} →
(canSendTo : ToIS ∈ pre) →
(MT ∈ ToIS) →
All (send-field-content pre) MT →
∞ActorM (↑ i) IS ⊤₁ pre (λ _ → pre)

(canSendTo ![t: p] fields) .force = Send canSendTo (SendM p fields)

-- coinduction helper for Receive
receive : ∀ {i IS pre} → ∞ActorM (↑ i) IS (Message IS) pre (add-references pre)
receive .force = Receive

self : ∀ {i IS pre} → ∞ActorM (↑ i) IS ⊤₁ pre (λ _ → IS ∷ pre)
self .force = Self

-- coinduction helper for Strengthen
strengthen : ∀ {i IS xs ys} → ys ⊆ xs → ∞ActorM (↑ i) IS ⊤₁ xs (λ _ → ys)
strengthen inc .force = Strengthen inc

begin : ∀ {i IS A pre post} → ∞ActorM i IS A pre post → ActorM i IS A pre post
begin = _∞>>_ (return tt)

⊠-of-values : List Set → InboxShape
⊠-of-values [] = []
⊠-of-values (x ∷ vs) = ([ValueType x]ˡ) ∷ ⊠-of-values vs

IV

C
Full implementation of selective

receive as a library

This constitutes the full implementation of selective receive as a library. The bulk
of the code is concerned with moving references in the variable context, and if we
ignore that part of the code selective-receive is actually fairly short.

module Libraries.SelectiveReceive where

open import ActorMonad public
open import Prelude
open import Data.List.Properties using (++-assoc ; ++-identityʳ)

waiting-refs : ∀ {IS} → (q : List (Message IS)) → ReferenceTypes
waiting-refs [] = []
waiting-refs (x ∷ q) = add-references (waiting-refs q) x

record SplitList {a : Level} {A : Set a} (ls : List A) : Set (lsuc a) where
field
heads : List A
el : A
tails : List A
is-ls : (heads) ++ (el ∷ tails) ≡ ls

matches-filter : ∀{a} {A : Set a} → (f : A → Bool) → A → Set
matches-filter f v = f v ≡ true

misses-filter : ∀{a} {A : Set a} → (f : A → Bool) → A → Set
misses-filter f v = f v ≡ false

data FoundInList {a : Level} {A : Set a}
(ls : List A)
(f : A → Bool) :
Set (lsuc a) where

Found : (split : SplitList ls) →
(matches-filter f (SplitList.el split)) →
FoundInList ls f

Nothing : All (misses-filter f) ls →
FoundInList ls f

V

C. Full implementation of selective receive as a library

find-split : {a : Level} {A : Set a}
(ls : List A) (f : A → Bool) →
FoundInList ls f

find-split [] f = Nothing []
find-split (x ∷ ls) f with (f x) | (inspect f x)
... | false | [neq] = add-x (find-split ls f)
where
add-x : FoundInList ls f → FoundInList (x ∷ ls) f
add-x (Found split el-is-ok) = Found (record {

heads = x ∷ heads split
; el = el split
; tails = tails split
; is-ls = cong (_∷_ x) (is-ls split)
}) el-is-ok
where open SplitList

add-x (Nothing ps) = Nothing (neq ∷ ps)
... | true | [eq] = Found (record {

heads = []
; el = x
; tails = ls
; is-ls = refl
}) eq

add-references++ : ∀ {IS} → (xs ys : ReferenceTypes) →
(x : Message IS) →
add-references (xs ++ ys) x ≡
add-references xs x ++ ys

add-references++ xs ys (Msg {MT} x x₁) =
sym (++-assoc (extract-references MT) xs ys)

waiting-refs++ : ∀ {IS} → (xs ys : List (Message IS)) →
waiting-refs (xs ++ ys) ≡
waiting-refs xs ++ waiting-refs ys

waiting-refs++ [] _ = refl
waiting-refs++ (x ∷ xs) ys with (waiting-refs++ xs ys)
... | q with (cong (λ qs → add-references qs x) q)
... | r = trans r (halp xs ys x)
where
halp : ∀ {IS} → (xs ys : List (Message IS)) (x : Message IS) →

add-references (waiting-refs xs ++ waiting-refs ys) x ≡
add-references (waiting-refs xs) x ++ waiting-refs ys

halp xs ys x = add-references++ (waiting-refs xs) (waiting-refs ys) x

move-received : ∀ {IS} → ∀ pre →
(q : List (Message IS)) →
(x : Message IS) →

(pre ++ (waiting-refs (q ++ [x]ˡ))) ⊆
(add-references (pre ++ waiting-refs q) x)

move-received pre q (Msg {MT} x x₁) rewrite
(waiting-refs++ q [Msg x x₁]ˡ) |

VI

C. Full implementation of selective receive as a library

(++-identityʳ (extract-references MT)) =
⊆-trans move-1 move-2

where
move-1 : (pre ++ waiting-refs q ++ extract-references MT) ⊆

((pre ++ waiting-refs q) ++ extract-references MT)
move-1 = ⊆++comm' pre (waiting-refs q) (extract-references MT)
move-2 : ((pre ++ waiting-refs q) ++ extract-references MT) ⊆

(extract-references MT ++ (pre ++ waiting-refs q))
move-2 = ⊆-move (pre ++ waiting-refs q) (extract-references MT)

accept-received : ∀ {IS} → ∀ pre →
(q : List (Message IS)) →
(x : Message IS) →
(add-references pre x ++ waiting-refs q) ⊆
(add-references (pre ++ waiting-refs q) x)

accept-received pre q (Msg {MT} x x₁) = ⊆++comm
(extract-references MT)
pre
(waiting-refs q)

open SplitList

accept-found : ∀ {IS} → ∀ Γ →
(q : List (Message IS)) →
(split : SplitList q) →

(add-references Γ (el split) ++
waiting-refs (heads split ++ tails split)) ⊆

(Γ ++ waiting-refs q)
accept-found Γ q record {
heads = heads
; el = Msg {MT} x y
; tails = tails
; is-ls = is-ls
} rewrite (sym is-ls) =
⊆-trans
(⊆-inc

(extract-references MT ++ Γ)
(Γ ++ extract-references MT)
(waiting-refs (heads ++ tails))
(⊆-move (extract-references MT) Γ)

)
(⊆-trans

(⊆++comm
Γ
(extract-references MT)
(waiting-refs (heads ++ tails))

)
(⊆-skip
Γ
(extract-references MT ++ waiting-refs (heads ++ tails))

VII

C. Full implementation of selective receive as a library

(waiting-refs (heads ++ Msg x y ∷ tails))
final-move

)
)

where
final-move : (extract-references MT ++ waiting-refs (heads ++ tails)) ⊆

waiting-refs (heads ++ Msg x y ∷ tails)
final-move rewrite

(waiting-refs++ heads tails) |
(waiting-refs++ heads (Msg x y ∷ tails)) =
⊆-trans
(⊆++comm'
(extract-references MT)
(waiting-refs heads)
(waiting-refs tails)

)
(⊆-trans
(⊆-inc

(extract-references MT ++ waiting-refs heads)
(waiting-refs heads ++ extract-references MT)
(waiting-refs tails)
(⊆-move (extract-references MT) (waiting-refs heads))

)
(⊆++comm

(waiting-refs heads)
(extract-references MT)
(waiting-refs tails)

)
)

MessageFilter : (IS : InboxShape) → Set₁
MessageFilter IS = Message IS → Bool

record SelRec (IS : InboxShape) (f : MessageFilter IS) : Set₁ where
constructor sm:_[_]-stash:_
field
msg : Message IS
msg-ok : f msg ≡ true
waiting : List (Message IS)

open SelRec

selective-receive : ∀ {i IS Γ} →
(q : List (Message IS)) →
(f : MessageFilter IS) →
∞ActorM i IS
(SelRec IS f)
(Γ ++ (waiting-refs q))

VIII

C. Full implementation of selective receive as a library

(λ m → add-references Γ (msg m) ++
waiting-refs (waiting m))

selective-receive {IS = IS} {Γ} q f = case-of-find (find-split q f)
where
case-of-find : ∀ {i} →

FoundInList q f →
∞ActorM i IS
(SelRec IS f)
(Γ ++ waiting-refs q)
(λ m → add-references Γ (msg m) ++

waiting-refs (waiting m))
case-of-find (Found split x) .force =
strengthen (accept-found Γ q split) ∞>>
return₁ (record {
msg = el split
; msg-ok = x
; waiting = (heads split) ++ (tails split)
})

case-of-find (Nothing ps) .force =
receive ∞>>=
handle-receive
where
handle-receive : ∀ {i}

(x : Message IS) →
∞ActorM i IS
(SelRec IS f)
(add-references (Γ ++ waiting-refs q) x)
(λ m → add-references Γ (msg m) ++

waiting-refs (waiting m))
handle-receive x with (f x) | (inspect f x)
handle-receive {i} x | false | p =
strengthen (move-received Γ q x) >>
selective-receive (q ++ [x]ˡ) f

handle-receive x | true | [p] =
strengthen (accept-received Γ q x) >>
return₁ ret-v
where
ret-v : SelRec IS f
ret-v = record { msg = x ; msg-ok = p ; waiting = q }

IX

D
Definition of initiate-channel

lookup-all : ∀ {a p} {A : Set a} {P : A → Set p} {ls : List A} {x : A} →
x ∈ ls →
All P ls → P x

lookup-all Z (px ∷ pxs) = px
lookup-all (S px) (px₁ ∷ pxs) = lookup-all px pxs

translate-⊆ : ∀ {a} {A : Set a} {ls ks : List A} {x : A} →
(ls ⊆ ks) →
(x ∈ ls) →
(x ∈ ks)

translate-⊆ [] ()
translate-⊆ (x₂ ∷ subs) Z = x₂
translate-⊆ (x₂ ∷ subs) (S px) = translate-⊆ subs px

X

D. Definition of initiate-channel

extra-fields-shape : ∀ {IS Mt} →
IsRequestMessage IS Mt →
MessageType

extra-fields-shape (HasTag+Ref Mt) = Mt

extra-fields : ∀ {IS Mt} →
(Γ : TypingContext) →
IsRequestMessage IS Mt →
Set₁

extra-fields Γ irm = All
(send-field-content Γ)
(extra-fields-shape irm)

record Request (Γ : TypingContext)
(caller : InboxShape)
(ci : ChannelInitiation) : Set₁ where

field
{callee} : InboxShape
var : Γ ⊢ callee
{MtTo} : MessageType
chosen-field : MtTo ∈ (ci .request)
fields : extra-fields

Γ
(lookup-all chosen-field (ci .request-tagged))

session : ChannelInitiationSession ci caller callee

XI

D. Definition of initiate-channel

suc-send-field-content : ∀ {Γ IS F} →
send-field-content Γ F →
send-field-content (IS ∷ Γ) F

suc-send-field-content {F = ValueType x} sfc = sfc
suc-send-field-content {F = ReferenceType x}
([actual-is-sendable]>: actual-handles-requested) =
[S actual-is-sendable]>: actual-handles-requested

initiate-channel-fields :
∀ {Γ caller ci} →
(request : Request Γ caller ci) →
All (send-field-content (caller ∷ Γ)) (Request.MtTo request)

initiate-channel-fields {ci = ci} record {
chosen-field = chosen-field
; fields = fields
; session = session
} with (lookup-all chosen-field (ci .request-tagged))

... | HasTag+Ref _ =
let open ChannelSession

open ChannelInitiationSession
channel = session .response-session
channel-tag = lift (channel .tag)
reference = [Z]>: (channel .can-receive)

in channel-tag ∷ reference ∷ ∀map suc-send-field-content fields

initiate-channel : ∀ {Γ i receiver} →
(ci : ChannelInitiation) →
Request Γ receiver ci →
∞ActorM i receiver ⊤₁ Γ (λ _ → Γ)

initiate-channel ci request =
let
open Request
open ChannelInitiationSession

in do
self
let
protocol-to-callee = translate-⊆ (request .session .can-request)
to = S (request .var)
which = protocol-to-callee (request .chosen-field)

to ![t: which] initiate-channel-fields request
strengthen (⊆-suc ⊆-refl)

XII

	Introduction
	Contributions
	Structure of the thesis

	Background
	Dependent types and Agda
	Coinduction and sized types
	Monads
	Parameterized monads
	Subtyping
	The actor model
	Our conventions

	Related work
	Singly typed actors
	Active object based actor systems
	Session types
	Similar formal models
	Process calculi
	Formally verified distributed systems

	Mact
	Syntax
	A monad for actors
	Typing rules
	Typing inboxes
	Inbox Subtyping
	References

	Messages
	ActorM revisited
	A simple actor program
	Representing references
	Semantics
	Environment of Mact
	Reductions

	Selective receive
	Theory of selective receive
	Selective receive as a primitive operation
	Semantics

	Selective receive as a library
	Building on selective receive
	Channels
	Initiating channels
	Synchronous call
	Active objects
	Guide to examples

	Discussion
	Serialization
	Evolving interfaces
	Frame rule
	Time, failures, and delays

	Conclusion
	Bibliography
	Examples of monadic computation
	Actor helper functions
	Full implementation of selective receive as a library
	Definition of initiate-channel

