
Ludwig–Maximilians–Universität

München

Promotionsarbeit
Christoph-Simon Senjak

Fach:

Informatik

Thema:

An Implementation of Deflate in Coq

Abgabetermin …2018

Betreuer Prof. Dr. Martin Hofmann, PhD





Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in





In Memoriam

Prof. Dr. Martin Hofmann





Abstract

The compression format “Deflate” is defined in RFC 1951. It is a con-
tainer format that can utilize prefix-free codings (“Huffman codings”), back-
references for deduplication, and run length encoding. Its unverified refer-
ence implementation is the ZLib. It is widely used, for example in several
network protocols like HTTP or SSH; modern file systems like ZFS and
BTRFS even support online compression. Since Deflate is only a container
format, there are many possibilities to compress a given data stream, with
different tradeoffs. Hence, alternative implementations exist, like the popu-
lar Zopfli library from Google.

The standard is quite hard to read, and there are several sources for
confusion. We try to remedy this problem by giving a rigorous mathematical
specification, which we formalized in Coq. The formalization is axiomatic,
and can itself not be verified, which is why we test it empirically against the
Canterbury Corpus. Our formalization is furthermore very modular, which
makes it easier to test single parts of the implementation, and put them
together later. This formalism should be applicable to other data formats
in verified implementations in the future.

We produced a verified implementation of a decompression algorithm
in Coq which achieves reasonable performance on inputs of several mega-
bytes. To achieve performance, we investigated several efficient functional
data structures, and “semi-functional” data structures like DiffArrays, the
latter being the ones to perform best.

In this work we present the several parts of our implementation. Our
main contribution is a well-tested formalization of the standard. We fur-
thermore produced a fully verified implementation of canonical prefix-free
codings, which can be used for other compression formats as well.

We also programmed a compression algorithm in Coq which we formally
prove to be inverse to the decompression algorithm – the first time this has
been achieved to our knowledge.

We will also talk about the difficulties, specifically regarding memory
and runtime requirements, and our approaches to overcome them.



German Abstract

Das Kompressionsformat ”Deflate“ ist in RFC 1951 spezifiziert. Es ist
ein Containerformat, welches präfixfreie Kodierungen (”Huffmankodierun-
gen“), Rückreferenzen zur Deduplikation und Lauflängenkodierung unter-
stützt. Seine unverifizierte Referenzimplementierung ist die ZLib. Das For-
mat ist weit verbreitet, zum Beispiel in diversen Netzwerkprotokollen wie
HTTP oder SSH; moderne Dateisysteme wie ZFS und BTRFS unterstützen
sogar transparente Kompression. Da es sich nur um ein Containerformat
handelt, gibt es viele Möglichkeiten, einen gegebenen Datenstrom zu kom-
primieren, mit unterschiedlichen Vor- und Nachteilen. Entsprechend gibt es
auch alternative Implementierungen, wie das bekannte, von Google imple-
mentierte Zopfli.

Der Standard ist schwierig zu lesen, und es gibt etliche Unklarheiten.
Wir versuchen, dieses Problem zu beheben, indem wir eine streng mathe-
matische, in Coq formalisierte Spezifikation angeben. Da die Formalisierung
axiomatisch ist, und somit selbst nicht verifiziert werden kann, testen wir
sie empirisch mit dem Canterbury Corpus. Unsere Formalisierung ist außer-
dem sehr modular, sodass es einfach ist, einzelne Teile der Implementierung
zu testen, bevor sie zusammengefügt werden. Dieser Formalismus sollte sich
auch auf andere Datenformate in künftigen verifizierten Implementierungen
anwenden lassen.

Wir entwickelten eine verifizierte Implementierung eines Dekompressi-
onsalgorithmus in Coq, welcher bei Eingabedaten von mehreren Megabyte
eine angemessene Performanz erzielt. Um Performance zu erreichen, haben
wir diverse effiziente funktionale und ”semi-funktionale“ Datenstrukturen
wie zum Beispiel DiffArrays untersucht; letztere zeigten das beste Verhal-
ten.

In dieser Arbeit stellen wir die verschiedenen Teile unserer Implementie-
rung vor. Das wichtigste Ergebnis ist eine gut getestete Formalisierung des
Standards. Wir haben außerdem eine vollverifizierte Implementierung kano-
nischer präfixfreier Kodierungen, die auch für andere Kompressionsformate
benutzt werden kann.

Des Weiteren programmierten wir einen Kompressionsalgorithmus in
Coq, von dem wir formal beweisen, dass er invers zum Dekompressions-
algorithmus ist – unseres besten Wisses nach das erste Mal, dass so etwas
gemacht wurde.

Wir werden außerdem über die Schwierigkeiten reden, speziell bezüglich
Speicher- und Laufzeitverhalten, und über unsere Ansätze um sie zu lösen.





4



Contents

1 Introduction 9
1.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Formal Verification . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Data Compression . . . . . . . . . . . . . . . . . . . . 11

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Reasons for Deflate . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Similar Goals . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Formal Methods in General . . . . . . . . . . . . . . . 18
1.4.3 Similar Methodology . . . . . . . . . . . . . . . . . . . 19

2 Technical Overview 21
2.1 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Trusted Codebase . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Program Extraction 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Formalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Classical Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Phases of Extraction . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Moravec’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Practical Applications . . . . . . . . . . . . . . . . . . . . . . 38

4 An Introduction To Coq 41
4.1 Set and Prop . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Gauss formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Square Pyramidal Numbers . . . . . . . . . . . . . . . . . . . 44

5 Deflate Codings 47

6 Parsers from Constructive Proofs 57
6.1 Strong Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Strong Decidability . . . . . . . . . . . . . . . . . . . . . . . . 58

5



6 CONTENTS

6.3 Relational Combinators . . . . . . . . . . . . . . . . . . . . . 59
6.4 Streamable Strong Decidability . . . . . . . . . . . . . . . . . 61

7 The Encoding Relation 67
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 The Toplevel Relation . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Uncompressed Blocks . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Backreferences . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.5 Compressed Blocks . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5.1 Compressed Code with Extra Bits . . . . . . . . . . . 76
7.5.2 Compressed Data . . . . . . . . . . . . . . . . . . . . . 77
7.5.3 Statically Compressed Blocks . . . . . . . . . . . . . . 79
7.5.4 Dynamically Compressed Blocks . . . . . . . . . . . . 79

7.6 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Efficiency 85
8.1 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Singly-linked Lists . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 Backreferences . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.4 Using DiffArrays . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.5 A Purely Functional, Efficient Backreference-resolver . . . . . 92

8.5.1 Pairing Heaps . . . . . . . . . . . . . . . . . . . . . . . 93
8.5.2 General Idea . . . . . . . . . . . . . . . . . . . . . . . 95
8.5.3 A Formal Proof . . . . . . . . . . . . . . . . . . . . . . 97

9 Extraction and Testing 101
9.1 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.1.1 Compatibility . . . . . . . . . . . . . . . . . . . . . . . 102
9.1.2 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.2 Testing Unverified Algorithms . . . . . . . . . . . . . . . . . . 102
9.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3.1 No Backreferences . . . . . . . . . . . . . . . . . . . . 103
9.3.2 With ExpLists . . . . . . . . . . . . . . . . . . . . . . 103
9.3.3 With DiffArrays . . . . . . . . . . . . . . . . . . . . . 104
9.3.4 Unverified Functional Resolver . . . . . . . . . . . . . 104
9.3.5 Compression . . . . . . . . . . . . . . . . . . . . . . . 105

9.4 Building and Running . . . . . . . . . . . . . . . . . . . . . . 106

10 Conclusion 109
10.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.1.1 Streamable Strong Decidability . . . . . . . . . . . . . 109
10.1.2 Fast Compression . . . . . . . . . . . . . . . . . . . . . 109
10.1.3 Trusted Codebase . . . . . . . . . . . . . . . . . . . . 109
10.1.4 Imperative Implementation . . . . . . . . . . . . . . . 111



CONTENTS 7

10.1.5 Usage In Other Projects . . . . . . . . . . . . . . . . . 112
10.1.6 Other System Components . . . . . . . . . . . . . . . 112

10.2 Lessions Learned . . . . . . . . . . . . . . . . . . . . . . . . . 112



8 CONTENTS



Chapter 1

Introduction

Program testing can be used to
show the presence of bugs, but
never to show their absence!

Edsger Wybe Dijkstra

In this work, we will describe our implementation of the Deflate com-
pression standard in the Coq proof assistant, and the various aspects of the
proof and optimization techniques we used. In this chapter, we will give
a short introduction to the history of formal methods and compression, as
well as our motivation for choosing Deflate, and working on this project.

It is more and more recognized that traditional methods for maintenance
of software security reach their limits, and different approaches become in-
evitable. At the same time, formal program verification has reached a state
where it becomes realistic to prove correctness of low-level system compo-
nents and combine them to prove the correctness of larger systems. This is
an important step towards fully verified software, but it is also desirable to
verify the low-level middleware. While for these components the adherence
of access restrictions would be assured by an underlying sandbox, functional
correctness becomes the main concern.

It is desirable to have some guarantees on data integrity, in the sense that
the implementation itself will not produce corrupted output. The possibility
of faking output could lead to leaks of information like – in a browser setting
– passwords or session IDs, which can be hidden inside injected parts of
websites, or worse, in the case of software packages like JAR and APK, it
could directly inject binary code. Considering the “Raising Lazarus” bug of
LZ4 [28], and several ZLIB vulnerabilities [50, 51], such a scenario is realistic.

In Section 1.4.1 we will show some projects that work at this level. We
propose to add to this list an implementation of one such middleware, the
widely-used compression format Deflate, and analyze the difficulties.

In addition to the aforementioned data corruption bugs, there might also

9



10 CHAPTER 1. INTRODUCTION

be situations in which sandboxing is not possible, like embedded devices.
Our implementation of Deflate so far may not be suitable for embedded
devices, but it can be used as a specification for other algorithms. For
example, one could think of an implementation in the Cminor-language
which can be compiled by the CompCert compiler [71] and is verified against
our specification. To go even deeper, there is the Bedrock system [36],
which allows for specification of low-level algorithms in assembly language,
and therefore could be used to make a verified implementation suitable for
embedded devices. We will have a closer look at these possibilities in section
10.1.4.

A common complaint at this point is that you can get this guarantee by
just re-defining your unverified implementations of compression, say c, and
decompression, say d, by

c′x =

{
(⊤, cx) for d(cx) = x
(⊥, x) otherwise

d′x =

{
dy for x = (⊤, y)
y for x = (⊥, y)

This works well as long as only one computer architecture is involved, and
as long as no bugs are fixed and new features are added. However, for se-
cure long-term-archiving of important data, this is not sufficient: It is not
clear that there will be working processors being able to run our d imple-
mentation in, say, 50 years; but a formal, mathematical, human-readable
specification of the actual data format being used can mitigate against such
digital obsolescence: The language of mathematics is universal.

One limitation of all of these approaches is that, of course, one has to rely
on some specification. Besides having to rely on some hardware specification,
as pointed out in [69], finding the right formal specification is not trivial.

A rigorous formal specification of an informally stated standard must be
carefully crafted, and we consider our mathematical specification of Deflate
as a contribution in this direction.

Parts of this work, specifically Sections 5, 6.1-6.3 and 8.3, have already
been published in [89, 90], which was joint work with Martin Hofmann,
of which I was the leading author with more than 50% contribution. Small
parts of the source code of this work have been discussed in the IRC channel
#coq in the irc.freenode.net network.

1.1 Historical Overview
1.1.1 Formal Verification
Formal systems of computability have been of interest at least since it be-
came clear that all of these systems are limited: Wilhelm Ackermann showed

irc.freenode.net


1.1. HISTORICAL OVERVIEW 11

in 1928 that there are effectively computable functions which cannot be ex-
pressed as primitive recursive functions [23]. This paper already talks about
“types” of functions, but only in a very rudimentary way, which would
today probably be called the rank of the type of a function: Functions
N→ N are called “type 1”, functions with type 1 arguments or results, like
(N → N) → N, are called “type 2”, etc. In 1931, Kurt Gödel proved that
the decision problem for sufficiently strong formal systems is not generally
solvable [53]. Alan Turing famously proved in 1937 that the halting problem
is not solvable by a recursive function [95]. In a further famous paper from
1949, he gives a correctness proof of a procedure that computes factorials,
which he does to point out that it is easier to prove correctness of programs
by splitting it to smaller pieces and pointing out their invariants, which
is essentially proving correctness using pre- and postconditions [96]. The
notion of recursive functions were usually in terms of primitive recursion
and the µ-operator. While being turing complete, this widened the gap to
real machines, which is why John McCarthy introduced a formalism with
conditionals [74], being closer to if-then-else instructions of contemporary
programming languages, and closer to structural recursion operators.

An early version of a computational interpretation of mathematics was
given 1958 by Kurt Gödel’s Dialectica interpretation [54], see Section 3.4. In
1969, William Howard presented a theory which would later become known
as the Curry-Howard correspondence [60], interpreting mathematical formu-
lae as types, and derivations in intuitionistic natural deduction as lambda
terms. Related to this development is Dana Scott’s logic of computable
functionals from the same year, which was first presented in an unpublished
manuscript in 1969 [87]. Later, in 1982, Per Martin-Löf introduces type
theory, and points out the parallels between mathematics and programming
in [73]. These papers form the basis of program extraction, and much of
Section 3.2 is about this topic.

In 1967, Robert Floyd introduced the notion of a “flowchart”, which is
a directed graph with instructions on its nodes, and of an “interpretation”
of a flowchart, which adds assertions to its edges [48]. He defines a “verifi-
cation” of such an interpretation as a proof of the postconditions from the
preconditions and the instructions. This approach is extended by Charles
Hoare in 1969 [57] to a fully axiomatic theory of imperative programming.
The idea of pre- and postconditions is still the basis of most systems for
formal verification of imperative programs, a more modern example being
the Ynot library [22], which adds pre- and postconditions to state monads.

1.1.2 Data Compression

Mechanical communication using signals dates back to at least 1837 [15],
when the Morse code was invented. The lengths of the letters is selected
according to the frequency in which they occur in the english language,



12 CHAPTER 1. INTRODUCTION

which is the basic idea of entropy coding. Probably the first binary coding
is given by Louis Braille in 1825 [3] , who invented a system for encoding
letters into patterns of up to 6 dots, which enables blind people to read by
feeling them. In the context of Braille, there is also an entropy coding, the
German Kurzschrift (“short script”) from 1904 [2], which replaces several
letters with syllables. For example, there is a special sign for “ch” (⠹), and
as “C” (⠉) almost never stands alone in German, the meaning of the letter
“C” is changed to mean “en” – a syllable which is frequent in the German
language – while to write a single “C”, one has to apply a prefix (⠠⠉). In
1949, Robert Fano presented Shannon-Fano-Codings in [46], which are a
predecessor of Huffman codings, but not always optimal, though. He also
introduces a notion of “bits”, which he calls a binary “unit of information”.
In 1952, David Huffman presented an improved method of generating such
minimum redundancy codes [61], the Huffman codings, with which we will
deal, which are used in Deflate. Besides improving the coding of information,
data often contains repetitions. Abraham Lempel and Jacob Ziv invented a
simple algorithm in 1977 [104], the famous LZ77, which is able to deduplicate
texts using a “sliding window”. This algorithm has seen several refinements
since then, for example, the Lempel-Ziv-Storer-Szymanski-Algorithm from
1982, see [91], which can be used in Deflate. The newer BZip2 format,
which came after Deflate, can utilize Burrows-Wheeler-Transformation [34].
Deflate as such was introduced by Phil Katz in his implementation of pkZip
in 1993, and standardized as an RFC in 1999. Today, even though there
are better compression algorithms, the Deflate format is widely used, and
many newer formats, for example PNG and HTTP, have support for it.
Its reference implementation is the ZLib [84], but there are several other
implementations with different tradeoffs, for example the Zopfli [56] library
from Google.

1.2 Notation

Regarding the exposition of this work, a challenge is that we are working
with more than one language. Besides the mathematical notion, there are at
least Coq, in which the project is written, and Haskell, to which the code is
compiled, which have to be considered. It is not always possible to stick with
one notation, especially when we have to switch between abstraction levels.
Therefore, we at least try to maintain continuity inside each abstraction
level. We furthermore use different monospace fonts for Coq and Haskell.
Programming language examples which are imperative will be in Java, and
we will use this font for them.

Type annotations in Coq are made with a colon a : t; in Haskell, they
are made with two colons a :: t. For the consing and pattern matching on
lists, it is the other way around, x :: xs and x : xs. In mathematical



1.2. NOTATION 13

notation, we will usually use superscript notation at, but in certain typo-
graphic situations, the Coq-like notation a : t will be used. In all of these
languages, type annotations are mostly optional when it is clear which type
a term has. For list consing, we use :: in mathematical notation.

Coq uses the distinction between Set and Prop to realize computational
irrelevance. We will use Prop to denote the Prop type in mathematical no-
tation. Coq therefore has multiple concepts of existence. The usual exists
x, A is computationally irrelevant. Mathematically, we will denote it as
usual as ∃xA. However, there are also two existential quantifications with
computationally relevant eigenvariables, namely { x : A & Q }, where
Q may itself be computationally relevant, and { x : A | Q }, where Q
is computationally irrelevant. Though the notation is obviously inspired by
the mathematical notion of set comprehension, we will not use this notation.
We will use the more common notation ΣxAQ for both, as it will always be
clear whether Q should be computational relevant.

In Haskell, the type of lists with elements of type a is denoted by [a].
Similarly, in mathematical notation, we will write [a]. In Coq, it is denoted
by list a. [ ], [] and [] denote the empty list, respectively, and explicit
lists are denoted by [1, 2, . . .], [1,2,...] and [1;2;...]. We may call
the empty list “nil”. Notice that the two notations are overloaded, that is,
[a] can mean a type or a list with one element, depending on a, but this
will always be clear. To talk about the n-th element of a list, Haskell has
the (!!) operator, and we will use a !! n in mathematical notation as well.
There is no directly corresponding function in Coq, though there are nth :
(forall A : Type, nat -> list A -> A -> A), which returns a
default value if out of bounds, and nth_error : (forall A : Type,
list A -> nat -> option A). In mathematical notation, we will write
a+ for the lists of elements of type a which are not [ ]. Furthermore, we will
write [t]n for the list [t, . . . , t︸ ︷︷ ︸

n×

].

Standard functions like map, drop, find, etc., will be denoted as map,
drop, find, etc., in mathematical notation, and we will put the non-list
argument in the index, so mapf translates to map f, as we think this improves
readability.

In Coq, the unit type is denoted by unit, and its only inhabitant is
called tt. In Haskell, the unit type is called (), and its inhabitant is also
called (). In mathematical notation, we will call the unit type 1, and its
inhabitant ().

For product types, Coq has several notions, depending on the computa-
tional content. Inside Prop, there is A /\ B, which we will mathematically
denote as A ∧ B. For the actual pair type, Coq has the notion A * B,
Haskell denotes it as (A, B) and mathematically, we will denote it as A×B.
For sum types, analogeous, there is A \/ B, which we will mathematically
denote as A ∨ B, and A + B for the computationally relevant sum type.



14 CHAPTER 1. INTRODUCTION

Mathematically, we will also denote it by A+ B, with constructors inl and
inr. In Haskell, we will usually use the Either type for it, which has the
constructors Left and Right.

There is the special case of the type 1 +E. It is called option in Coq,
and its constructors are called Some and None. In Haskell, it is called Maybe,
and has the constructors Just and Nothing. Mathematically, we will stick
with 1 + E.

We will not distinguish sets and types. In most cases, the sets we talk
about are finite or inductively defined. For example, we will call the natural
numbers N.

In our examples, we might use the DiffArray [10] library. In our imple-
mentation, we use CpdtTactics [37].

1.3 Reasons for Deflate
We started our work with the observation that dependently typed languages
fit perfectly for verifying purely functional, high-level algorithms like the one
given in our next example below, while low-level algorithms, like the ones
used for programming embedded devices or in high-performance computing,
are usually not machine-verified, even though these algorithms are usually
more complicated to understand.

A very simple but beautiful example of such a high-level algorithm is list
reversal. There is a canonical implementation of list reversal, which intu-
itively does the right thing (though formally, it depends on the ++ function,
which makes it more complex):
Fixpoint lrev {A} (l : list A) :=
match l with
| [] => []
| (x :: l_) => (lrev l_) ++ [x]
end.

This algorithm is so simple that it needs no explanation and no verification
at all. It is fairly a specification of list reversal. However, as concatena-
tion takes linear time, this algorithm takes quadratic time. The following
algorithm only uses linear time:
Fixpoint lrev2_ {A} (l y : list A) :=
match l with
| [] => y
| (x :: l_) => lrev2_ l_ (x :: y)
end.

Function lrev2 {A} (l : list A) := lrev2_ l [].

However, this algorithm is less obvious. We can, however, easily prove that
this is equivalent. The first thing we prove is a lemma that states that



1.3. REASONS FOR DEFLATE 15

lrev2_ l m = lrev l ++ m, by a simple inductive argument. From
this follows directly our claim by setting m = [].

Lemma lrev_lrev_ : forall {A} (l m : list A),
lrev2_ l m = lrev l ++ m.

Proof.
intros A.
induction l as [|a l IHl].
+ auto.
+ intro m.
simpl.
rewrite −> IHl.
rewrite <− app_assoc.
reflexivity.

Qed.

Corollary lrev_lrev : forall {A} (l : list A), lrev2 l = lrev l.
Proof.

intros.
unfold lrev2.
rewrite −> lrev_lrev_.
apply app_nil_r.

Qed.

The great advantage of functional purity is that it helps writing algo-
rithms which are “correct by design”, so the work of actually verifying them
is usually not needed. However, in the presence of tight space and time
requirements, it might be inevitable to write low-level code, which is not
trivially correct. This holds even in the purely functional realm: Structures
like real-time catenable deques [66] are not “obviously” correct anymore.

In the search of something from the “real world”, we decided in favor of
the Deflate compression standard [41], since it is a widely used standard for
lossless general purpose compression, and since so many other formats refer
to it: HTTP can make use of it through an HTTP Content-Encoding [47], so
does ZIP and derived formats (APK, JAR). Source-code-tarballs are often
compressed with GZip [42], which is a container around a Deflate stream [42].
Zlib [43] is another such container format. Both GZip and Zlib are often
confused with Deflate. TLS supports Deflate compression [59], even though
it is considered deprecated due to the BREACH family of exploits [67]. The
filesystem ZFS allows to select GZip as compression format. GZip allows
programs to “squeeze out” every bit of memory. Besides that, it uses some
nice properties from coding theory, which, to our best knowledge, have not
been formalized yet, and which are used by other compression formats like
BZip2, too. It was therefore an ideal candidate for a case study on low-level
formal verification.



16 CHAPTER 1. INTRODUCTION

1.4 Related Work
In this chapter we want to give an overview of the current state of the art of
formal program verification, and relate the several projects to our project.
We can roughly separate these in projects that use a similar methodology,
and projects that have a similar goal.

1.4.1 Similar Goals

Our original goal was to verify higher-level middleware, and we considered
compression to be an important part of it, and could not find any implemen-
tation of some realistic compression- and decompression-format yet. There-
fore, we chose the Deflate compression standard was worthwile.

From the general topic of data compression, there is a formalization of
Shannon’s theorems in Coq [24]. While being interesting in general, it is
not useful for our specific project. A formalization of Huffman’s algorithm
can be found in [33] in Isabelle, and in [94] in Coq. As we focussed on
decompression rather than compression, we had no use of this in our project
so far. Our proof-of-concept compression algorithm only uses backreferences,
not codings. Furthermore, as we will point out in Section 5, the codings
Deflate requires do not need to be Huffman codings, but they need to satisfy
a canonicity condition, and the code lengths are bounded.

An important example of middleware is compiler infrastructure. The
CompCert compiler is a realistic compiler infrastructure for a large subset
of the C programming language. [71] points out that a compiler bug can
invalidate all guarantees obtained by formal methods, which is similar to
our concerns about data integrity when the data is compressed. This com-
piler uses several layers of differently complex intermediate languages, with
operational semantics specified on the abstract syntax trees. A correctness
property is then derived that guarantees that the final code – the assembly
code – is equivalent to the original source code. From this project evolved
the Verified Software Toolchain [26], which uses it to be able to verify C
algorithms, using a semantic which bases on separation logic. We think
that it is possible to use our specification to verify some highly optimized C
source for deflate. This is, however, further work.

Furthermore, there is the CakeML [4] compiler, which aims, similarly to
CompCert, to become a realistically usable and formally verified subset of
ML. It also uses a formal semantic of the underlying processor architecture,
and a formal language semantic, and proves that during compilation, the
semantic is kept. Furthermore, there are efforts to create a verified extrac-
tion mechanism to CakeML [62]. Hence, CakeML would also be a candidate
for a more optimized implementation of Deflate to be verified against our
specification.

In [72], a relational database management system is presented, which is



1.4. RELATED WORK 17

implemented in Coq. It specifies a semantic on abstract syntax trees of SQL
commands, and has a verified query optimizer that recompiles the queries.
It is therefore related to compiler infrastructures, but as well to the general
topic of data integrity.

The Vellvm project [20, 103] aims to build “a framework for reason-
ing about programs expressed in LLVM’s intermediate representation and
transformations that operate on it”. Similar to our project, it formalizes an
informal specification, implements it, and tests it with real-life examples.

The RockSalt software fault isolator [79] is a sandboxing mechanism
that checks executable memory pages before allowing them to be executed,
enforcing certain policies. RockSalt is implemented in Coq, and, like Com-
pCert and CakeML, uses a semantic for the X86 instruction set. This kind
of security enforcement became popular with Google’s Native Client [21]. It
can be seen as a special form of virtual machine which realizes security not
by just-in-time compilation or processor level privilege separation, but by
checking.

The Quark Browser [63] is a web browser which uses “shim verification”,
that is, a capability-based sandboxing mechanism. With this approach, it
can provide security guarantees of unverified components. This makes it
safe against attacks on implementations of web standards. On the other
hand, of course, there are no guarantees on data integrity.

The method they use is generalized in [83], were the Reflex DSL is intro-
duced, with which several components can be isolated, and only the kernel
of the browser has to be verified to actually satisfy permissions. We think
that this is a reasonable approach to get formal guarantees from unverified
code, and a similar approach could be used to reimplement some larger soft-
ware project one part at a time. However, directly verifying data integrity
is the better way on the long run, in our opinion.

Quark uses kernel-level privilege separation. Therefore, the sandboxing
mechanism is still part of the trusted codebase. It might be interesting to
use something similar to the aforementioned RockSalt project for separation
instead.

The ConCon conference management system [64] has a large trusted
codebase around a small kernel which assures that no information is leaked,
except according to specified capabilities. It generates a RESTful web ser-
vice adhering a specification in Isabelle, and a web interface around this
service. This is a further example of verified middleware: The underlying
operating system kernel and even parts of the underlying middleware are
part of the trusted codebase.

The FSCQ Filesystem [35] is a filesystem that uses a specification which
also considers system crashes, and is hence crash-tolerant – a data integrity
property. It is verified in Coq and uses the FUSE virtual filesystem API
[17], so it is not part of the kernel, but also middleware. This project is also
interesting with respect to the fact that it uses a specification that was no



18 CHAPTER 1. INTRODUCTION

widely used standard before, and therefore shows that it is possible to start
a new protocol using a formal specification from the start.

The MiTLS [32] project implements TLS. Besides correctness and data
integrity, cryptographic security properties become the main concern. In [32],
an example about “alert fragmentation” is given, which might give an at-
tacker the possibility to change error codes by injection of a byte. This is
standard-compliant, but obviously not intended. In this case, as this is a
cryptographic protocol, eliminating such specification bugs is more impor-
tant than adhering to a formal specification.

In the context of cryptography, one should also name CertiCrypt, a
framework for cryptographic proofs, which “takes a language-based ap-
proach to cryptography: security goals and assumptions are expressed by
means of probabilistic programs. In a similar way, adversarial models are
specified in terms of complexity classes, e.g. probabilistic polynomial-time
programs.” [6]

1.4.2 Formal Methods in General

At the time of writing, the most well-known project that is fully verified is
probably the seL4 [69] kernel. It is an implementation of a microkernel which
is – except for small parts – formally verified. It uses Haskell-code, and after
refinement, it uses a formal semantic on the binary level, to assure that the
compiler is not part of the trusted codebase. Its permission-system is based
on capabilities through a capability distribution language capDL. As it is a
microkernel, drivers being processes do not belong to the verified core but
run in sandboxes. Thus, the amount of work to get a fully verified system
is smaller. Besides being much larger than our project, it has focus on the
kernel-level rather than on user-level middleware, and it uses an entirely
different approach than we do.

Another approach of verifying software components is automatic soft-
ware analysis. The Linux kernel has been analyzed by several model check-
ers [102], and several bugs have been found. Components of Windows have
been analyzed, and in [52], it is argued that formal verification is costy and
only gives minor advantages over modern program analysis: The SAGE sys-
tem made it vitally impossible to find buffer overflows, and it is argued that
“if nobody can find bugs in P, P is observationally equiv to ‘verified’”. While
we also think that program analysis is absolutely worthwile, we do not really
agree with this standpoint. We consider dynamic analysis as more a way of
software testing than a way of software verification, and, as Dijkstra said in
[101], “Program testing can be used to show the presence of bugs, but never
to show their absence!”.

Furthermore, there is more to software correctness than security against
explicit attacks. While static and dynamic analysis is a good way of en-
suring that old code does not contain certain types of vulnerabilities, for



1.4. RELATED WORK 19

a compression algorithm like in our case, it is desirable to get the formal
property that decompression after compression yields the original data, no
matter what that data was. Also notice that software which has been fully
formally verified is usually also fully specified, and therefore documented.

1.4.3 Similar Methodology

We are trying to use program extraction as our main programming tech-
nique, in the sense that we prove properties and existences mathematically,
and then extract a program which can compute them. This approach is
somewhat unusual to directly produce application software, rather than ver-
ifying other tools.

For example, in [70], one such tool, a DPLL-based SAT-Solver, is ex-
tracted by “[proving] a theorem that just states that each formula in CNF is
either unsatisfiable or has a model, and [synthesising] the program from the
proof”: It proves that a certain given calculus can derive pairs of valuations
and formulae in conjunctive normal form

(ΓVariables→Maybe Bool,∆)

where ∆ is a set of subsets of the set Variables ∪ {¬v | v ∈ Variables},
and to be read as the logical formula

∧
C∈∆

∨
g∈C g, which is false after be-

ing assigned the truth values from an arbitrary function Γ̃Variables→Bool that
agrees with Γ, meaning Γ(g) = Just b implies Γ̃(g) = b. From the com-
pleteness of this calculus follows an algorithm which decides such pairs, and
from such a decision procedure, we get a SAT-solver, by checking whether
(λxNothing,∆) is derivable for some formula ∆. In our diagram in Section
3, this would be reconstruction, translation, pruning and compilation; Min-
log was used in this project. They also give some information on efficiency
considerations, which are, however, not applicable to our case.

The case study [81], albeit on a different topic (Myhill-Nerode), is an
interesting source of inspiration in that it distills general principles for im-
proving efficiency of extracted programs which we have integrated where
applicable. We will discuss this in further detail in Section 3.

Our theory of getting parsers from constructive proofs from Section 6
follows an idea similar to [30], trying to produce parsers directly from proofs,
as opposed to other approaches, for example [40], which defines a formal
semantic on parser combinators. Most of the algorithms involved in parsing
are short, and therefore, we directly use program extraction for the largest
part, and we think it is a feasible way of producing parsers for complicated
grammars.

In [45], a verified LTL-Solver is shown, which was verified internally
inside a theory in Isabelle, and then extracted to ML. In our diagram in
Section 3, the extraction part would be “compilation”, but notice that the



20 CHAPTER 1. INTRODUCTION

reason for this is that this project focuses on refinement of programs, and
keeps the formal, computationally irrelevant parts apart from the program
in advance, and therefore avoids the “pruning” part. While we preferred the
former method of program extraction, for the other parts, this method is
comparable to ours in the sense that we also sometimes implement code in
the Coq language and verify properties separately; however, while at some
positions we use refinement, we do not use a sophisticated framework for it,
as this is not the focus of our work.

Notice that DPLL- and LTL-solvers are rather a tool for automatic ver-
ification than actual middleware for application software like our Deflate
implementation.



Chapter 2

Technical Overview

2.1 Design Decisions

Our first approach was to implement Deflate in Haskell, and then try to use
the information we gained to give a verified implementation in Agda [1].
However, at that time, Agda was missing a working library of rational num-
bers with addition (which is useful in the realm of canonical Huffman cod-
ings), and it did not have many proof strategies. While programming this
would have been possible, it was not our chosen topic. Similarly, Idris [13]
would have been a language of choice, since it aims for practical usability,
but it was not ready for our project. Therefore, we decided to switch to Coq.
Coq is an LCF-Style proof checker, meaning that it has a very small kernel
written in OCaml, through which all proofs are checked, and an extensive
library of proof strategies. It furthermore allows for program extraction,
which we used to test our specifications empirically: While it was clear that
we specify some compression format, it was not clear that it actually is what
the world understands by Deflate. The Deflate standard [41] is informally
specified, and it is not impossible that our formal specification has errors:
In fact, during our work, there occured some mistakes, partially because of
the strange nature of the standard in some places; for examples, see Section
7.1. However, this assured us even more that a fully formal specification
of the standard, against which new implementations could check, is useful.
There has been lots of development in program verification and type theory
since we started with our project, meaning that some parts might not be up
to date with respect to the techniques we used; however, our main contri-
bution is not the implementation itself, but the specification, which should
be easily portable to other languages.

Of course, the ZLib [84] is a reference implementation of Deflate, and we
could just have taken its source, and verify it against our specification. This
way, we would probably have been able to find bugs in both our relation
as well as the ZLib. However, the ZLib itself is written in highly optimized

21



22 CHAPTER 2. TECHNICAL OVERVIEW

C, and verification of existing and highly optimized C code is still a field
of research on its own (see [26]). While we certainly think that formally
verifying the original ZLib is an interesting and worthwile topic, we decided
to create our own new implementation of the standard, the consequence
being that we have to test it against real-world data. Program extraction
from simple proofs yields algorithms which can be of bad performance, but
are usually sufficient for testing against small datasets as a plausibility check.

This was one reason for separating the specification from the imple-
mentation: In theory, just programming a decompression algorithm and
verifying that it is inverse to some compression algorithm would be suffi-
cient, but we wanted to be able to give differrent implementations of the
standard, combine them, test them and maintain them. Another reason
was that the Deflate format is itself not entirely strict: It leaves the details
of how the data is compressed to the implementation (though the standard
gives suggestions). This way, it is possible to tune an implementation for
speed or saved memory. The Zopfli library [56] for example tunes for better
compression at the cost of runtime. Having a relational specification which
is sufficiently easy to understand (and should also be comparably easy to
“port” to other proof checkers) seemed to be the better alternative.

We decided to give high-level proofs that involve lots of tactics, rather
than giving proof terms, whenever this was possible. However, we struc-
tured and annotated our proofs, and in the later code we used Coq’s tactic
combination language. One reason is that Coq itself is under active devel-
opment, and tactics might change their behavior. Another reason lies in the
improbable case of a specification bug. A clear presentation of the proofs
lowers the impact of such changes, and makes it easier to adapt proofs when
necessary.

Our concepts of strong decidability and strong uniqueness, which we will
introduce in Section 6, allow to replace parts of the implementation, and
makes our specification and implementation very modular. This way, we
could test parts of the specification without needing to use all the other
parts. For optimization, we follow a top-down approach, replacing the cur-
rent bottlenecks first. Coq’s Extract Constant mechanism furthermore
allows to replace parts of the algorithm with unverified code, therefore al-
lowing us to test the efficiency of complicated algorithms prior to verifying
them. We do this, for example, in our benchmark for our still unverified
backreference algorithm in Section 9.3.

However, to this point, we are not trying to compete with the speed of
the ZLib. While we give some digressions on how to improve efficiency, our
goal is an implementation with reasonable space and runtime requirements.
While our first implementations took weeks for several KiB, now we are at
the magnitude of seconds for several MiB, and we believe that it is possible
to continue this trend. However, the memory consumption is a more recent
problem, which we address, for example, in Section 6.4.



2.2. TRUSTED CODEBASE 23

2.2 Trusted Codebase
Coq allows for extraction to OCaml, Haskell and Scheme. The extraction
mechanism itself is not verified. For example, we found a bug in the ex-
traction mechanism during our studies, see [9]. The workaround required
rewriting the array_set function in Combi.v. There are efforts to cre-
ate a verified extraction mechanism [62], but currently, no such mechanism
is available, and therefore the extraction mechanism has to be part of our
trusted codebase. We began using extraction to Haskell, because it allows
doing lazy I/O transparently, adding the GHC to our trusted codebase.
We use singly-linked lists of bytes and even bits as intermediate values, as
these are well-understood and easy. However, in absence of lazy evalua-
tion, this results in having all the intermediate values fully loaded; lists are
usually represented as cons cells of two machine words, and boxed booleans
are represented as machine words – this means up to 1536 times the size
of the original file. It would have been possible to use coinductive lists
(“streams”), but strong decidability (which we define in Section 6) would
not hold anymore on these, which we prove in Section 6.2. Our code relies
on lazy evaluation, and it does lazy I/O, even though this is discouraged by
the Haskell community [18]. Changing this would require a lot of efforts,
which, for now, we leave as future work.

It is important to make sure to know the trusted codebase of verified
software, since it is axiomatic, and a bug in it can invalidate all proven
guarantees. In [49], such a case where programmers work with wrong as-
sumptions is analyzed. We do not make any assumptions about the underly-
ing operating system itself, but work at a higher level of abstraction, which
seems more suitable for an implementation of a data format.

We will have a closer look at the trusted codebase and how it can be
made smaller in Section 10.1.3.

2.3 Module Overview
This is a brief overview over the modules our project consists of. Some con-
cepts will be introduced later, but we mention them here for later reference.

• Backreferences.v: Lemmata and definitions regarding the resolu-
tion of backreferences.

• Combi.v: Several lemmata and functions that are mostly combina-
torial and are used multiple times throughout the project.

• Compress.v: An implementation of a simple compression algorithm.

• DecompressWithPheap.v: An unfinished implementation of our
algorithm from Section 8.5. Finishing it is future work.



24 CHAPTER 2. TECHNICAL OVERVIEW

• DeflateCoding.v: Definition of deflate codings, proof of uniqueness
and existence of codings for a sequence of code lengths.

• DiffStack.v: An implementation of the algorithm described in Sec-
tion 8.4.

• EncodingRelation.v: The most of the encoding relation is speci-
fied here.

• EncodingRelationProperties.v: Proofs of strong decidability
and strong uniqueness of the relations from EncodingRelation.v.

• EncodingRelationProperties2.v: Definition of streamable strong
decidability, and some proofs.

• ExpList.v: Decompression using a queue of doom of two ExpLists
for backreference resolution, see Section 8.3.

• Extraction.v: Definitions of constants for extraction.

• HashTable.v: An implementation of a hash table, using an FMa-
pAVL. Mainly used in Compress.v.

• Intervals.v: Helper functions for the compression.

• KraftList.v: Kraft’s inequality for sets (duplicate-free lists).

• KraftVec.v: Kraft’s inequality for vectors and codings.

• Lex.v: Lemmata and functions about the lexicographical ordering.

• LSB.v: Several lemmata for converting numbers in least-significant-
bit-first format into natural numbers, converting bytes to Fin 256
and vice versa, proving several lemmata about them (uniqueness, etc).

• NoRBR.v: Extraction of the algorithm that decompresses, but does
not resolve backreferences.

• Pheap.v: Verified implementation of a pairing heap.

• Prefix.v: Lemmata and functions about the prefix relation.

• Quicksort.v: An implementation of quicksort.

• Repeat.v: Lemmata and functions about repetitive lists.

• Shorthand.v: Lots of small definitions that make writing Coq code
easier. For example, Notation Vnth := Vector.nth.

• StrongDec.v: Definitions of strong uniqueness and decidability, sev-
eral lemmata.



2.3. MODULE OVERVIEW 25

• Transports.v: In many cases, it is necessary to transport types into
other types. For example, Definition vec_id A a b (eq : a
= b) : vec A a -> vec A b. Such definitions and lemmata are
in this module.



26 CHAPTER 2. TECHNICAL OVERVIEW



Chapter 3

Program Extraction

We dedicate this section to a general introduction to and an overview of
program extraction from proofs. For the largest part, it is not Coq-specific,
and we will not provide a full formalization. For a complete specification
of the calculus of inductive constructions, on which the Coq proof assistant
bases, we refer to [93].

3.1 Motivation
As a motivation, let us look at a very simple proof:
Lemma 1. For every n ∈ N, there either exists an m ∈ N such that n =
m+m or an m ∈ N such that n = m+m+ 1.
Proof. We now prove this by induction.

• For n = 0 we have m = 0.

• For n = n′ + 1, there are two cases:

– Assume n′ = m′+m′ for some m′. Then n = n′+1 = m′+m′+1,
so m = m′.

– Assume n′ = m′ +m′ + 1. Then
n = m′ +m′ + 1 + 1 = (m′ + 1) + (m′ + 1)

and so m = m′ + 1.

This proof intuitively translates into the following algorithm:
div2 :: Integer −> Either Integer Integer
div2 0 = Left 0
div2 n = case div2 (n − 1) of

Left m ' −> Right m '
Right m ' −> Left $ m ' + 1

The objective is to give this “intuition” a formal background. We will use
this as a motivating example in the further sections.

27



28 CHAPTER 3. PROGRAM EXTRACTION

3.2 Formalizing
The calculus of inductive constructions, with which Coq works, is a sophis-
ticated calculus with scalability in mind. As the goal of this section is rather
to give an idea of what program extraction is about, it is out of scope here,
and we will only look at a few simple rules here, which resemble the calculus
of natural deduction. A detailed introduction to the calculus of inductive
constructions can be found in [93].

One central rule in mathematics is usually called modus ponens: If we
have a proof for A → B, and a proof for A, we also know B. In some
calculi, this can be derived, but mostly, this is a basic rule itself, called
implication elimination. Similarly, when having a term aA→B, and a term
bA, by application, we get a term (ab)B.

A→ B A
B

(aA→BbA)B

The opposite rule is implication introduction: If we have a proof of B
which uses A as an assumption (which we give a name, say u), this is a proof
of A→ B. The computational counterpart is abstraction: If we have a term
MB containing a free variable uA, we may create (λuM)A→B.

[u : A]

|M
B

A→ B

(λuAMB)A→B

A rule similar to modus ponens is forall-elimination: If we have a proof
of ∀xAB, and an object o of type A, then we get B[x := a]. There is
no computational counterpart in the simply typed λ-calculus anymore, the
computational counterpart is dependently typed: We have a term M∀xAB

and then apply an object oA, we get (Mo)B[x:=o].

∀xAB oA

B[x := o]
(M∀xBo)B[x:=o]

Finally, forall-introduction says that if we can prove B without any as-
sumption regarding xA, then we can prove ∀xB. Computationally, this is
again abstraction, but with a dependent type: (λxAMB)∀xB.

|M
B
∀xAB

(λxAMB)∀xB

These rules are already the basic rules of natural deduction. Type theory
adds more intricate rules, but these rules are enough to transport the basic
idea.



3.2. FORMALIZING 29

We could add rules for ∧, ∨ and Σ, but we can as well give axioms for
their introduction and elimination.

• ∨+B : A→ A ∨B, ∨A+ : B → A ∨B
∨− : A ∨B → (A→ C)→ (B → C)→ C

• ∧+ : A→ B → A ∧B
∧− : A ∧B → (A→ B → C)→ C

• Σ+ : ∀x(A→ ΣxA)
Σ− : ΣxA→ (∀xA→ B)→ B (where x does not occur freely in B)

The terms for ∧ and ∨ can be interpreted as the constructors and recursion
operators of the product and sum types (pairs and tagged unions), respec-
tively. The interpretation of Σ is a dependent product, where the first
component is the object, and the second component is a proof of the propo-
sition about this object. This duality of mathematical proofs and algorithms
is often called Curry-Howard isomorphism.

Finally, to formalize our proof, we need rules for natural numbers N. We
have two axiomatic terms 0N and SN→N, and for induction we have the term

indP0→∀m(Pm→P (Sm))→∀nPn
P

The induction term can be interpreted as recursion operator on natural
numbers.

We can now formalize the proof. We leave out annotations where they
are clear. The proposition we want to prove is

∀n.Σm(n = m+m) ∨ Σm(n = m+m+ 1)

and our proof will look like

indλnQ(n) c
Q(0)
1 c

∀n.Q(n)→Q(Sn)
2

where Q(n) = Σm(n = m+m) ∨ Σm(n = m+m+ 1). We have

c1 = ∨+Σ+0ω
0=0+0

In the following, the term ω(t1, . . . , tk) proves an equality that can be calcu-
lated directly from the arguments t1, . . . , tk. We will not elaborate on this
simple kind of proof here, and just accept that it is provable – in Coq, the
tactic for solving such simple equations is called omega, and uses Presburger
Arithmetic.

For c2, we have a case distinction on Q(n):

c2 = λnNλqQ(n) ∨− qd
Σm(n=m+m)→Q(n+1)
1 d

Σm(n=m+m+1)→Q(n+1)
2



30 CHAPTER 3. PROGRAM EXTRACTION

where
d1 = Σ−(λmNλtn=m+m ∨+ Σ+m(ω(t))n+1=m+m+1)

and similarly

d2 = Σ−(λmNλtn=m+m+1 ∨+ Σ+(m+ 1)(ω(t))n+1=(m+1)+(m+1))

So we have

ind
∨+Σ+0(ω())

0=0+0

(λnλq. ∨− q
Σ−(λmλt ∨+ Σ+m(ω(t))
Σ−(λmλt ∨+ Σ+(m+ 1)(ω(t)))))

which resembles the above algorithm. We can formalize the proof in Coq,
too:
Lemma div2 : forall (n : nat),

{m | n = m + m} + {m | n = m + m + 1}.
Proof.
induction n as [|n ' IHn].
+ apply inl.
exists 0.
reflexivity.

+ destruct IHn as [[m ' M] | [m ' M]].
− apply inr.

exists m '.
omega.

− apply inl.
exists (m ' + 1).
omega.

Qed.

The extracted Haskell-Code then looks like
div2 :: Nat −> Sum Nat Nat
div2 n =

nat_rec (Inl O) (\_ iHn −>
case iHn of {
Inl s −> Inr s;
Inr s −> Inl (add s (S O))}) n

Coq defines natural numbers in terms of S and O, if we do not override
this manually. Coq furthermore removes the dependent pairs: The result of
the extracted term is a Sum Nat Nat, the second component of the depen-
dent pairs lies in the Prop universe, which is computationally irrelevant: It
encodes invariants that we prove, but for the computation itself, it is not
necessary, and hence erased. Instead of leaving it out, we can interpret it
as the unit type, and we get the following algorithm, which resembles the
proof term more directly:



3.3. CLASSICAL REASONING 31

div2 :: Integer −> Either (Integer , ()) (Integer , ())
div2 n_ = case n_ of

0 −> Left (0, ())
n −> case div2 (n − 1) of

Left q −>
case q of

(m ' , ()) −> Right (m ' , ())
Right q −>

case q of
(m ' , ()) −> Left (m ' + 1, ())

However, it is clear that this algorithm can be automatically optimized to
the above one.

3.3 Classical Reasoning
As soon as we introduce classical reasoning, things get more complicated.
A standard example which can be found in many places throughout related
literature is the following classical proof.

Lemma 2. There exist two irrational numbers p, q ∈ R\Q such that pq ∈ Q.

Proof. If
√
2
√
2 ∈ Q. Then p = q =

√
2 is the solution. Otherwise we have

(
√
2
√
2 )
√
2 =
√
2 2 = 2 ∈ Q, so p =

√
2
√
2 and q =

√
2 is the solution.

We are using tertium non datur t :
√
2
√
2 ∈ Q ∨

√
2
√
2 ̸∈ Q in this

proof. However, we have no realizer for this axiom: In general, it is not
decidable whether a real number is rational, since no non-trivial subset of
R is decidable.

However, in many cases, one can use tricks to extract algorithms from
classical proofs. We analyzed a few examples in [86]. On the other hand, as
long as only the computationally irrelevant parts require tertium non datur,
we can in theory use it. In Coq, computationally irrelevant terms are of
type Prop, and it is possible to add the tertium non datur for these terms.
However, for the largest part, our own code is computationally relevant, and
whenever classical reasoning would really make things easier, it would also
break program extraction. Therefore, we do not use it.

3.4 Phases of Extraction
In our personal experience, there is some confusion about the concepts re-
volving around program extraction, starting with the simple question about
what program extraction actually is. The problem is that every proof re-
sembles some sort of algorithm: A witness of the theorem can be computed,
as soon as there are realizers of all axioms that were used – it is just that in
the case of non-constructive proofs, realizers of axioms might not exist.



32 CHAPTER 3. PROGRAM EXTRACTION

A well-known example for an inherently non-constructive theorem is

Theorem 1. Every infinite sequence a : N→ N of natural numbers has an
infinite non-descending subsequence.

Proof. Assume ∀n∃m∀k≥m.ak ̸= n. Then let q be such that ∀n∀k≥qn.ak ̸= n.
We define rn := max{q0, . . . , qn}. Then, ∀n∀k≥rnak > n. In particular,
a(rn) > n. Now let x0 = a0 and x(n + 1) = a(r(xn)). Then x(n + 1) =
a(r(xn)) > xn, and hence, x is a strictly increasing subsequence of a.

Now assume ¬∀n∃m∀k≥m.ak ̸= n. That means, classically, ∃n∀m∃k≥m.ak =
n, and henceforth, the constant sequence λ_.n is a non-decreasing subse-
quence of a.

This proof is strictly non-constructive: Obviously, we cannot compute
this subsequence, at least not without further knowledge about the sequence
a. However, if we have an oracle that tells us that every n ∈ N occurs at
most up to an index k, we can construct an infinitely ascending sequence.
If the oracle tells us the opposite, and if it is also kind enough to tell us a
counterexample, we can also construct a subsequence. Hence, it describes
an algorithm. Therefore, from a certain point of view, talking about “pro-
gram extraction from proofs” sounds wrong in the sense that every proof
is a program. However, the usual mathematician will not regard proofs
as algorithms, and it is arguable whether an algorithm that requires oracles
should be regarded as a “program”. We will distinguish programs and proofs
in a more intuitive way: A proof is something that validates some lemma or
theorem, and a program is something that can compute some desired output
from given inputs. Both concepts are two sides of the same medal.

Starting from a proof in natural language, the first thing that usually
exists is a formalization of that proof in some language that is designed to
be easy to cope with. For example, Mizar’s goal is to make machine proofs
readable and writable in a manner that is close to natural language. It uses
a very strong theory, such that Mizar proofs are not the easiest starting
point for extracting programs, which is not a goal of Mizar [80]. In Coq and
Minlog [76], you usually start with a sequence of tactic applications, which
try to automatically break down the problem into smaller subproblems. This
sequence of tactics can be converted into a proof tree. After such a proof is
finished, the generated proof tree is checked by a kernel. Therefore, tactics
can be written in an unverified manner, and might yield wrong proofs, but
these proofs would be rejected by the kernel. This kind of proof checker is
called LCF-Style, because the LCF proof checker used this model. We say,
the proof term is reconstructed from this sequence of tactics. An example is
our code from Section 3.2.

If it is a classical proof, some Glivenko-Style theorem is usually applied.
Such theorems are in some form generalizations of Glivenko’s Theorem:



3.4. PHASES OF EXTRACTION 33

Theorem 2. Let Γ be a set of propositional axioms, and γ be some propo-
sitional formula following classically from Γ. Then ¬¬γ follows intuitionis-
tically from {¬¬ϑ | ϑ ∈ Γ}.

The proof does structural induction on proof terms. If we can classically
prove some fact ∀xA(x), then we can intuitionistically prove ¬¬∀xA(x),
which is equivalent to ¬∃x¬A(x), which relates it to the no counterexample
interpretation:

Some systems, specifically Minlog [76], distinguish between proofs and
programs, and therefore define realizers for terms. An early version which
does this specifically for Peano arithmetic was Gödel’s Dialectica Interpre-
tation [27]. One usually uses + and × instead of ∨ and ∧ on the type-level
in this context, and defines, as interpretation τ :

τ(⊥) := ⊥
τ(A ∧B) := τ(A)× τ(B)

τ(A ∨B) := τ(A) + τ(B)

τ(A→ B) := τ(A)→ τ(B)

τ(∀xδQ) := δ → τ(Q)

τ(∃xδQ) := δ × τ(Q)

Specifically, τ(¬Q) = τ(Q) → ⊥. In dependent type theory, proofs and
programs need no distinction, and the type of a term is the same as the
proved formula of a proof, because types are formulas and terms are proofs.
However, for the moment, the distinction between proofs and terms makes
things easier. In all systems that are suitable for program extraction, the
existence of a closed term tτ(A) is equivalent to the existence of a proof of
A.

Now, we have τ(¬∃xδ¬A) = τ(∃xδ¬A) → ⊥, meaning that a proof of
∃xδ¬A would yield an element of the empty type, which is impossible. But
τ(∃xδ¬A) = δ × τ(¬A) is the type of counterexamples for A. Hence, the
mixture of the negative translation and the dialectica interpretation is called
no counterexample interpretation.

In [31], a classical consequence of our Theorem 1 for pairs of numbers is
given:

Theorem 3. ∀f,g:N→N∃i,j:N.i < j ∧ f(j) ̸< f(i) ∧ g(j) ̸< g(i)

It uses the following minimum principle:

Lemma 3. Given a type A, a property P : A → Prop, and a measure
function m : A → N, then ∃xAP (x) → ∃xA(P (x) ∧ ∀y.m(y) < m(x) →
¬P (y)), that is, there exists an m-minimal xA which satisfies P (x).

This minimum principle can be proven by classical reasoning and strong
induction:



34 CHAPTER 3. PROGRAM EXTRACTION

Proof. By eliminating the first existential quantifier, we get some xA. We
now do strong induction on m(xA). If m(xA) = 0, we are done, since nothing
is smaller than 0. If m(xA) = n + 1, then xA might already be m-minimal
(this case distinction is strictly classical). Otherwise, there must be some yA

and q such that m(yA) = q ≤ n, and by induction hypothesis with n := q,
we get a minimal element.

The rest of the proof will be constructive:

Proof of Theorem 3. Let M(x) := ∀y≥x.f(y) ̸< f(x). Using m = f and
P (x) = ⊤ in the minimum principle, we get a global minimum δ of f ,
meaning M(δ). Therefore, ∃xM(x). Therefore, by the minimum principle
with M and g, we get a g-minimal element i with M(i), that is, M(i) ∧
∀y(g(y) < g(i)→ ¬M(y)). Now, again, we can apply the minimum principle
with λx.x > i and f , and we get a j > i which is f -minimal, that is,
∀y>i.f(y) ̸< f(j). Since M(i), we now have f(j) ̸< f(i). On the other hand,
since j is the minimal value of f such that j > i, we have ∀y≥jf(y) ̸< f(j),
meaning M(j). Since i < j, and by the minimality of i, it follows that
g(j) ̸< g(i). Hence, i and j are as desired.

Even though this proof is classical, and we cannot extract from the
minimum principle in general, [31] uses negative translation and Dragalin-
Friedman-translation to obtain a constructive proof (we discussed this pro-
cedure in [88]), and extracts an algorithm which is searching for such a
pair (i, j). However, the resulting algorithm is somewhat hard to grasp, a
simplified version is given as
modifiedSolution f g = mod [] 0 1 where

mod s i j = if g j < g i
then mod (i : s) j (j + 1)
else if f j < f i

then case s of
[] −> mod [] j $ j + 1
(x : xs) −> mod xs x j

else (i, j)

However, this shows that with this kind of program extraction, the resulting
algorithms might be complicated. It is also difficult to estimate their run-
time behavior without directly looking at them, because the correspondence
between the existence proof and the resulting extracted term is much weaker.
We do not use this kind of program extraction in our implementation.

As in this case, we will get a constructive proof of some refinement
of the original theorem which still reflects its computational content. We
call this phase translation of the proof. In some cases, not all classical
applications are removed; for example, Coq has the type-universe Prop
which may contain classical reasoning, but otherwise Coq proofs are usually
constructive from the start, so no negative translation is needed. Notice



3.4. PHASES OF EXTRACTION 35

that it is not always possible to convert proofs into constructive proofs with
the desired properties. Our above example shows this. In Coq, usually all
proofs are constructive. It is possible to use classical reasoning, but only in
the non-computational parts of the proof, which will be removed in the next
phase.

After gaining a constructive proof term, it is pruned: The parts which
are computationally irrelevant are removed. This is the part where we really
“extract” something from it, it is the first time we do not care about the
proof anymore and concentrate on the algorithm it resembles. Simple dead-
code-elimination can be applied. This is an a posteriori approach. Coq,
on the other hand, has an a priori approach, by distinguishing between
computationally relevant types Set, and computationally irrelevant types
Prop. Minlog uses a somewhat intermediate approach where proofs can be
automatically decorated: Every → and ∀ gets an annotation c or nc, which
annotates whether this implication or quantification should be regarded as
computationally relevant. The computational relevance of axioms must be
given before.

After pruning the proof, we usually have a term which has another type
than the original proof. Ideally, it is provable that the pruned term realizes
the original proof term regarding some carefully crafted realizer relation.
The property we usually want is that if t : ∀xA∃yBRxy is proved, then the
corresponding extracted program t′ : A→ B satisfies ∀xARx(t′x).

Getting a term inside the theory itself is called internal extraction. In
the case of Coq, the extraction mechanism computes a term in some stock
programming language, in our case this will usually be Haskell. This is
called external extraction. Still, at least indirectly, there will be an internal
term before external extraction. We call the transition from internal ex-
traction to some stock programming language compilation, conforming with
the common notion of programming languages being “compiled” into other
programming languages, as is done in compiler backends like Emscripten
[11], Chicken Scheme [7] or Stalin [14]. Sometimes, the readability of the
compiled code from extracted algorithms is criticized. However, the afore-
mentioned compilers do not explicitly have the goal of producing readable
code, and we think that a compiler does not need to produce readable code,
rather than correct and efficient code. However, besides the use of recursion
operators instead of pattern matching, the extracted code is quite readable.

Often, in Coq, people are starting from having a function t′ : A → B
and proving its correctness by a proof about t′ rather than by extracting t′

from a proof about some existence, but still call the process of compiling it
to some stock programming language “program extraction”. We sometimes
used this technique when it was more feasible; sometimes, especially when
we had a complicated induction scheme, we even mixed both styles, using
the refine statement, for example in DeflateCoding.v:



36 CHAPTER 3. PROGRAM EXTRACTION

Lemma existence_lex_lemma : forall a m p, lex p m −> prefix a m −>
~ prefix a p −> lex p a.

Proof.
refine (fix f a m p :=

match (a, m, p) as R return ((a, m, p) = R −> _) with
| (nil, _, _) => fun eq => _
| (xa :: a', nil, _) => fun eq => _
| (xa :: a', xm :: m', nil) => fun eq => _
| (xa :: a', xm :: m', xp :: p ') => fun eq => _

end eq_refl).

How far these techniques should be regarded as program extraction is a
discussion that is besides the point of our work.

In general, we can factorize “program extraction” in the following way:

Informal Proof

Formal Proof

Classical Proof Term

Constructive Proof Term

Realizing Term

Program in
stock programming language

formalization
(usually manual; some projects like
Naproche try to narrow this step)

reconstruction

translation

pruning

compilation

’Qed’, ’Defined’ in Coq
’cdp’ in Minlog

usually
manually
for Agda,
Idris

proof-to-
extracted-term
in Minlog

’Extract’ in Coq

Notice that this diagram only has the purpose of clarifying terminology,



3.5. MORAVEC’S PARADOX 37

and only the terminology we use in this work. Neither is it normative, nor
is it a complete discussion of all details.

It can sometimes be hard to estimate the efficiency of an extracted pro-
gram. The case study [81] points out some techniques to improve efficiency,
which we mostly followed. In particular, these were

• to use expensive statements non-computationally, which we have done
in large parts of the code.

• to use existential quantifiers as memory, which we did, for example, in
our proofs regarding strong decidability (see Section 6).

• to calculate values in advance, which we did, for example, for the value
fixed_lit_code.

• to turn loop invariants into induction statements, which is not di-
rectly applicable because Coq does not have imperative loops, but
corresponds to Coq’s induction measures, which give a clue about the
computational complexity.

3.5 Moravec’s Paradox
In the realm of artificial intelligence, there is a paradoxical fact, named
after Hans Moravec, which states that it is often the case that things that are
trivial for humans are complicated or even impossible for computers, but also
the other way around. In [78], he states “In hindsight, this dichotomy is not
surprising. Since the first multicelled animals appeared about a billion years
ago, survival in the fierce competition over such limited resources as space,
food or mates has often been awarded to the animal that could most quickly
produce a correct action from inconclusive perceptions. [...] Abstract thought,
though, is a new trick, perhaps less than 100 thousand years old. We have not
yet mastered it. It is not all that intrinsically difficult; it just seems so when
we do it.” In formal methods, there is a similar dichotomy. If you are trying
to formalize higher mathematics, it is often clear, or at least very plausible,
that a theorem is formalizable, although actually doing so may require a
significant amount of work. For example, proving that π1(S

1) ∼= Z uses
an argument that uses a covering of S1 and a lifting and several properties
of the resulting curve which are intuitive but hard to formalize. In formal
mathematics, the concrete formalization of a theorem can be important for
the difficulty of its proof. To be able to formalize such theorems, Homotopy
Type Theory uses another formalization of mathematics which makes it easy
to prove this. On the other hand, making sure that in a large amount of
case distinctions all cases are properly handled, like in the four-color-theorem
[55], computers have a clear advantage.



38 CHAPTER 3. PROGRAM EXTRACTION

In the same way, it is not always clear which parts of our project are
difficult. A major peak in difficulty were Deflate codings, see Section 5.
We had to deal with binary sequences, which were as well interpreted as
numbers as they were as sequences. Though, the informal proofs are not
hard to understand.

Furthermore, understanding simple algorithms, like the backreference
algorithm with DiffArrays in Section 8.4, is easy for humans, but finding
out the actual invariants and proving them formally is a lot harder.

Of course, there are situations where computers and humans have about
the same level of difficulty: The omega strategy solves many simple equa-
tions which are also “clear” to humans. On the other hand, the purely
functional algorithm for resolution of backreferences, which we presented in
Section 8.5, is comparably difficult for both humans and computers.

It is, in any case, not always easy to estimate the difficulty of a formal
proof in advance. One should keep this in mind when reading this work. We
will try to point out the difficulties we found and how we coped with them.

3.6 Practical Applications
Every sophisticated algorithm should come with a proof. Therefore, in the-
ory, program extraction should make it easier to produce sophisticated algo-
rithms, because you only need to formalize the proof, and get the algorithm
for free.

Unfortunately, reality looks different. While formal methods are be-
coming more and more widespread, program extraction from proofs is less
popular, even though formally, there is no need to distinguish between de-
pendently typed programs and proofs. The main difference is how you write
these programs.

The following is a dependently typed proof of

Theorem 4. 0 + n = n

where addition is defined recursively by
_+_ : Nat −> Nat −> Nat
a + O = a
a + (S n) = S (a + n)

and hence this equality must be proved. The informal proof is easy:

Proof. We prove this by induction: For n = 0, it holds by definition. Now
consider Sn. We have 0 + Sn = S(0 + n), and by the induction hypothesis
0 + n = n, we have S(0 + n) = Sn, and hence, 0 + Sn = Sn.

The proof in Agda is



3.6. PRACTICAL APPLICATIONS 39

n0 : (n : Nat) −> O + n ≡ n
n0 O = refl
n0 (S n) = cong S (n0 n)

which is an explicit proof term, with some implicit arguments. In Coq, one
would proof this rather by
Goal forall n, O + n = n.
Proof.

induction n.
reflexivity.
simpl.
rewrite −> IHn.
reflexivity.

Qed.

The second code feels more like a list of instructions, while the first
one feels more like a program. The first one is much shorter in this case.
However, this is not the case in general; for example, we can prove simple
number theoretic equations using the omega tactic, a oneliner. In this
case, the second one seems more readable. This is also not always the
case: Using complicated tactics and tactic combinators can make proofs
hardly readable. Generally speaking, in dependently typed programming,
you build up proofs, while in tactic based program extraction, you break
down propositions. However, Agda also has some tactics, for example, the
RingSolver tactic [19].

We started the project with Agda. Our first specification of Deflate
codings (see Secion 5) was motivated by trying to define code trees:
data DeflateTree {alpha : N} : (range : Subset alpha)

→ (shortHeight : N)
→ (shortBranchChar : Fin alpha)
→ (longHeight : N)
→ (longBranchChar : Fin alpha)
→ (notNonFork : Bool) → Set where

leaf : (b : Fin alpha) → DeflateTree ⁅ b ⁆ 0 b 0 b true
forkEq : {ld rd md : N} → {f g : Subset alpha} →

{lc mc1 mc2 rc : Fin alpha} → {tl : Bool}
→ DeflateTree f ld lc md mc1 true
→ DeflateTree g md mc2 rd rc tl
→ (disjoint : Empty (f ∩ g))
→ (toN mc1) < (toN mc2)
→ DeflateTree (f ∪ g) ld lc rd rc tl

forkNeq : {ld md1 md2 rd : N} → {f g : Subset alpha}
→ {lc mc1 mc2 rc : Fin alpha} → {tl : Bool}
→ DeflateTree f ld lc md1 mc1 true
→ DeflateTree g md2 mc2 rd rc tl
→ (disjoint : Empty (f ∩ g))
→ md1 < md2 → DeflateTree (f ∪ g) ld lc rd rc tl

nonFork : {b : Bool} → {ld rd : N} → {f : Subset alpha}
→ {lc rc : Fin alpha}



40 CHAPTER 3. PROGRAM EXTRACTION

→ DeflateTree f ld lc rd rc b
→ DeflateTree f (suc ld) lc (suc rd) rc false

This directly and locally specifies the structure one can produce, and
has a directly visible correspondence to what will be saved in the memory
when the program runs. However, this also means that it is not possible to
temporarily break these invariants, which is sometimes necessary.

At the time we began our project, Agda’s standard library was not ma-
ture enough, which was the reason we switched to Coq. While Coq’s proof
mechanism focuses on tactic-based proving, Coq allows for both styles of
programming, and we often mix both styles, depending on which is more
apropriate for the specific problem.

While in Agda, we directly see the terms we programmed, in Coq, we
have to trust the extraction algorithm, which enlargens the trusted codebase.
There are, however, verified algorithms in work [62].

We think that especially for complicated type signatures, the break-
down-approach of tactic based proving and program extraction are more
beneficial, since breaking down large propositions into smaller ones has to
be done in any case. Then, after profiling the resulting algorithms, one can
replace bottlenecks with explicitly crafted proof terms.

In [31], some examples of realistic program extraction are given, but
they are still no more than a case study. A more practical example is the
DPLL-Solver we discussed in Section 1.4.3.



Chapter 4

An Introduction To Coq

As we use Coq for our project, we give a short introduction to Coq by
examples. This introduction is by no means complete, and mainly for readers
familiar with some other proof checker, to get an overview. For an example
of program extraction, refer to Section 3.

4.1 Set and Prop

The Coq type system is documented in the Coq reference manual. A rule
of thumb is that there is a Type universe (actually, there are infinitely
many, but they are hidden by the language), which contains Prop and Set.
Objects of type Prop are computationally irrelevant, while objects of type
Set are relevant and can be extracted. For example, if we wanted to define
our own type of natural numbers (though there is a type nat in the standard
library with intrinsic decimal representation) one would define them as Set,
like

Inductive Nat : Set :=
| O : Nat
| S : Nat −> Nat.

because we want to be able to use it in programs. The definition

Inductive NatEven : Nat −> Prop :=
| OEven : NatEven O
| SSEven : forall n, NatEven n −> NatEven (S (S n)).

is a Prop: We are usually not interested in the structure of the proofs of
evenness of a natural number, we just need the fact that they are. We can
then, of course, not eliminate an evenness proof inside a computationally
relevant context.

41



42 CHAPTER 4. AN INTRODUCTION TO COQ

4.2 Gauss formula
As a more sophisticated example, we now want to prove the Gauss formula

2

n∑
i=0

i = n(n+ 1)

Firstly, we need to import the packages we need, in our case, we only need
the omega tactic
Require Import Omega.

It is commonly defined that

k∑
i=0

wi :=

{
w0 for k = 0

wn+1 +
∑n

i=0wi for k = n+ 1

In Coq, we do this using a Fixpoint:
Fixpoint sum (to : nat) (what : nat −> nat) :=
match to with
| 0 => what 0
| S n => what (S n) + sum n what

end.

The Gaussian sum is now for wi = i, or what = Id:
Definition Id (x : nat) := x.
Definition GaussSum n := sum n Id.

We can now compute a Gaussian sum by
Eval compute in GaussSum 10.

which correctly yields 55. The proof itself starts with the statement and
declaration.
Lemma GaussSumFormula : forall n, 2 * GaussSum n = n * (n + 1).
Proof.

We prove this by induction on n.
induction n as [|n].

The as clause tells Coq the name of the destructured parameter: A nat-
ural number can either be 0, in which case we need no additional name, and
the successor of something, which we call n, overloading the original mean-
ing of n. We now have two cases, therefore, we can prefix our instructions
with the bullet +. The first case is 2 * GaussSum 0 = 0 * (0 + 1),
which we can just prove by reflexivity, since evaluating it results in the
same term.



4.2. GAUSS FORMULA 43

+ reflexivity.

The second goal is 2 * sum (S n) Id = S n * (S n + 1), but
we can use the induction hypothesis, which Coq automatically called IHn,
which is 2 * GaussSum n = n * (n + 1). We need to help Coq a
little to find the right way of expanding a term: We need the equality sum
(S n) Id = (S n) + GaussSum n which is trivial, but we need it in
this form to replace a subterm in our goal.

+ unfold GaussSum.
assert (X : sum (S n) Id = (S n) + GaussSum n).
− reflexivity.

We can now use this equality to replace the part in our term with the
equal term

− rewrite −> X.

The goal becomes 2 * (S n + GaussSum n) = S n * (S n +
1), which we rewrite to 2 * S n + 2 * GaussSum n = S n * (S n
+ 1) by distributivity:

rewrite −> mult_plus_distr_l.

We finally can apply our induction hypothesis
rewrite −> IHn.

yielding the new goal 2 * S n + n * (n + 1) = S n * (S n + 1).
Now we do

replace (S n) with (n + 1); [|omega].

This tells Coq to replace the given subterm with the new term, and
prove the equality using the omega tactic. We apply commutativity and
distributivity once again

rewrite <− mult_plus_distr_r.
rewrite −> mult_comm.

and gain the goal (n + 1) * (2 + n) = (n + 1) * (n + 1 + 1).
This is a goal of the form f(a) = f(b), which can be reduced to the goal
a = b by the tactic

f_equal.

yielding the goal 2 + n = n + 1 + 1 which can finally be solved by the
tactic

omega.
Qed.

This concludes the proof.



44 CHAPTER 4. AN INTRODUCTION TO COQ

4.3 Square Pyramidal Numbers

A similar formula holds for the sum of squares, namely the formula for the
n-th square pyramidal number,

6 ·
n∑

i=0

i2 = n(n+ 1)(2n+ 1)

However, the equality we need in the induction is more complicated and
can be automated. For this, there is the ring tactic, which allows us to
define rings and semirings, and automatically solve equalities in them. We
need to import two additional libraries, the first one for the ring theory
itself, and the second one for the tactic.

Require Import Omega.
Require Import Coq.setoid_ring.Ring_theory.
Require Import Ring.

We now want to prove that the natural numbers form a semiring. The
ring theory library declares a record that contains all the axioms, parametrized
on the objects and operations for 0, 1,+, ·,=:

Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
SRadd_comm : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
SRmul_comm : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p

}.

To realize this record, we prove a lemma:

Lemma SRNat : semi_ring_theory 0 1 plus mult eq.
Proof.
constructor;
intros;
(omega ||
apply mult_comm ||
apply mult_assoc ||
apply mult_plus_distr_r).

Qed.

This proof utilizes the tactic language of Coq. The call to constructor
produces the goals, which are the fields of the semi_ring_theory record.
Everything after the semicolon is applied to all goals. intros eliminates
leading universal quantifiers and puts them into the antecedent. The ||
operator tells Coq to use the first tactic that solves the goal. For three



4.3. SQUARE PYRAMIDAL NUMBERS 45

of the goals, this can just be done by the omega tactic, the rest are the
respective laws proven directly in the standard library.

To use it, we do
Add Ring RNat : SRNat.

Now we can prove our formula.
Lemma PyramidFormula : forall n,

6 * sum n (fun x => x * x) = n * (n + 1) * (2 * n + 1).
Proof.

The ring tactic has no notion of numbers other than 0 and 1, hence we
replace these numbers, using the tactic omega:

replace 6 with ((1+1)*(1+1+1)) by omega.
replace 2 with (1+1) by omega.

We then need to do a bit of work, similar to our work for the Gaussian
formula:

induction n as [|n].
− reflexivity.
− replace (sum (S n) (fun x : nat => x * x))

with (S n * S n + sum n (fun x : nat => x * x))
by reflexivity.

replace (S n) with (n + 1) by omega.
rewrite −> mult_plus_distr_l.
rewrite −> IHn.

After that, the goal will be (1 + 1) * (1 + 1 + 1) * ((n + 1)
* (n + 1)) + n * (n + 1) * ((1 + 1) * n + 1) = (n + 1) *
(n + 1 + 1) * ((1 + 1) * (n + 1) + 1), which can be solved by
the semiring solver

ring.
Qed.



46 CHAPTER 4. AN INTRODUCTION TO COQ



Chapter 5

Deflate Codings

Even though this section is about what we call “Deflate Codings”, it is not
specific to Deflate at all: The same mechanism is used, for example, in
BZip2, too. It is more about coding theory in general, with an emphasis on
Deflate.

It is a well-known result from [61] that for every string A ∈ [A] over a
finite alphabet A, there is a Huffman coding h : A → [{0, 1}], which is a
prefix-free coding such that fold(++)[ ](maphA) has minimal length. In fact,
this has already been formally proved [33]. While this is useful for compres-
sion, Deflate does not require codings to be optimal. Furthermore, there
is more than one optimal coding; for example, if two symbols are encoded
by equally long codes, we can swap their encodings without losing mini-
mality. Deflate codings are special prefix-free codings which are uniquely
determined by their code lengths. Therefore, instead of expensively sav-
ing a tree structure, it is sufficient to save the sequence of code lengths for
the encoded characters. Other standards, like BZip2, have a similar way
of saving codings, and therefore, our implementation might be usable for
implementations of them, too. Optimal Deflate codings are also known as
canonical Huffman codings. To our best knowledge, there is no verified
formalization of Deflate codings so far.

In any practical case, there will be a canonical ordering on A, so from
now on, let us silently assume A = {0, . . . , n− 1}.

Definition 1. The lexicographical order ⊑ on [{0, 1}] is defined by

∀a.[ ] ⊑ a

∀a,b.0 :: a ⊑ 1 :: b

∀a,b,j .a ⊑ b→ j :: a ⊑ j :: b

It is easy to show that the lexicographical order is in fact a decidable
total ordering relation. This, and some additional lemmata that we need
later, is proved in Lex.v.

47



48 CHAPTER 5. DEFLATE CODINGS

Definition 2. Let a, b ∈ [{0, 1}]. We say a is a prefix of b and write a ≼ b,
if there is a code c ∈ [{0, 1}] such that a++ c = b. Notice that a ≼ a.

Decidability of the prefix relation on Boolean lists, transitivity and some
other small lemmata are proved in Prefix.v. In practice, the code [ ] is
used to denote that the corresponding codepoint does not occur, and we will
therefore exclude this special case from our definition of prefix-freeness.

Definition 3. A Deflate coding is a coding ⌈·⌉ : A → [{0, 1}] which
satisfies the following conditions:

1. ⌈·⌉ is prefix-free, except that there may be codes of length zero:

∀a,b.(a ̸= b ∧ ⌈a⌉ ̸= [ ])→ ⌈a⌉ ̸≼ ⌈b⌉

2. Shorter codes lexicographically precede longer codes:

∀a,b. len⌈a⌉ < len⌈b⌉ → ⌈a⌉ ⊑ ⌈b⌉

3. Codes of the same length are ordered lexicographically according to the
order of the characters they encode:

∀a,b.(len⌈a⌉ = len⌈b⌉ ∧ a ≤ b)→ ⌈a⌉ ⊑ ⌈b⌉

4. For every code, all lexicographically smaller bit sequences of the same
length are prefixed by some code:

∀a∈A,l∈{0,1}+ .(l ⊑ ⌈a⌉ ∧ len l = len⌈a⌉)→ ∃b.⌈b⌉ ̸= [ ] ∧ ⌈b⌉ ≼ l

The corresponding Coq definition is the record deflateCoding which
can be found in DeflateCoding.v. These Axioms are our proposed for-
malization of the informal specification in [41], which states: The Huffman
codes used for each alphabet in the ”deflate” format have two additional
rules:

• All codes of a given bit length have lexicographically consecutive values,
in the same order as the symbols they represent;

• Shorter codes lexicographically precede longer codes.

[41] claims that with these two rules, Huffman codings are uniquely de-
termined by their code lengths. Even though this might be true, Huffman
codings are defined for strings – from a given coding, you cannot tell whether
it is a Huffman coding. However, of course, some codings are clearly not
Huffman codings, for example the coding

0→ [0], 1→ [1, 0, 0], 2→ [1, 0, 1], 3→ [1, 1, 0]



49

is clearly not a Huffman coding, since for every case it would apply to, we
could also use

0→ [0], 1→ [1, 0], 2→ [1, 1, 1], 3→ [1, 1, 0]

which will always be better. We tried to introduce the concept of “optimal
codings”, but as it appeared to be harder to use and less general than the
definition we actually used, and all the reference algorithms in [41] work for
non-optimal codings too, we decided to follow Postel’s Robustness Princi-
ple [82] and accept them.

Axiom 3 is weaker than the first axiom from [41], as it does not postulate
the consecutivity of the values, which is ensured by axiom 4: Assuming you
have characters a < b such that len⌈a⌉ = len⌈b⌉, and there is a l ∈ {0, 1}len⌈a⌉

such that ⌈a⌉ ⊑ l ⊑ ⌈b⌉, then there is a d such that ⌈d⌉ ≼ l, and therefore
⌈d⌉ = l and a ≤ d ≤ b, so the values are consecutive.

Furthermore, consider our non-optimal coding from above: It has the
lengths 0 → 1, 1 → 3, 2 → 3, 3 → 3, and satisfies our axioms 1-3, and
additionally, the codes of the same length have lexicographically consecutive
values. But the same holds for the coding

0→ [0], 1→ [1, 0, 1], 2→ [1, 1, 0], 3→ [1, 1, 1]

However, in this coding, there is a “gap” between the codes of different
lengths, namely between [0] and [1, 0, 1], and that is why it violates our
axiom 4: The list [1, 0, 0] is lexicographically smaller than [1, 0, 1], but it has
no prefix.

We can show that Deflate codings are uniquely determined by their code
lengths:

Theorem 5 (uniqueness). Let ⌈·⌉, ⌊·⌋ : A → [{0, 1}] be two Deflate codings,
such that len⌈·⌉ = len⌊·⌋. Then ⌈·⌉ = ⌊·⌋.

Proof. Besides the fact that equality is computationally irrelevant, equality
of codings is obviously decidable, therefore we can do a proof by contra-
diction. So assume there were two distinct deflate codings ⌈·⌉ and ⌊·⌋ with
len⌈·⌉ = len⌊·⌋. Then there must exist n,m such that ⌈n⌉ = min⊑{⌈x⌉ |
⌈x⌉ ̸= ⌊x⌋} and ⌊m⌋ = min⊑{⌊x⌋ | ⌈x⌉ ̸= ⌊x⌋}.

If len ⌈n⌉ > len ⌊m⌋, then also len ⌈n⌉ > len ⌈m⌉, and by our axiom 2,
⌈m⌉ ⊑ ⌈n⌉. But n was chosen minimally. Symmetric for len ⌈n⌉ > len ⌊m⌋.
Therefore, len ⌈n⌉ = len ⌊m⌋.

Assuming n < m, by axiom 3, ⌊n⌋ ⊑ ⌊m⌋, but m was chosen minimally.
Symmetric for n > m. Hence, n = m.
⌊m⌋ ̸= [ ], because otherwise 0 = len ⌊m⌋ = len ⌈n⌉, so ⌈n⌉ = [ ], and so

⌈m⌉ = ⌊m⌋, which contradicts our assumption on the choice of m. Analo-
gously, ⌈n⌉ ̸= [ ].



50 CHAPTER 5. DEFLATE CODINGS

By totality of ⊑, we know that ⌈n⌉ ⊑ ⌊m⌋∨ ⊑ ⌊m⌋ ⊑ ⌈n⌉. Both cases
are symmetric, so without loss of generality assume ⌈n⌉ ⊑ ⌊m⌋. Now, by
axiom 4, we know that some b exists, such that ⌊b⌋ ≼ ⌈n⌉, therefore by
axiom 2, ⌊b⌋ ⊑ ⌊m⌋, and thus, by the minimality of m, either b = m or
⌊b⌋ = ⌈b⌉.

But since n = m, b = m would imply b = n, and hence, ⌊m⌋ ≼ ⌈n⌉, and
therefore, since the lengths are equal, ⌊m⌋ = ⌈m⌉, which contradicts our
choice of m.

But ⌊b⌋ = ⌈b⌉ would imply ⌈b⌉ ≼ ⌈n⌉, which contradicts our axiom 1.

This theorem is proved as Lemma uniqueness in DeflateCoding.v.
While uniqueness is a desirable property, it does not give us the guarantee
that, for every configuration of lengths, there actually is a Deflate coding.
And in fact, there isn’t. Trivially, for the sequence of code lengths 1, 1, 1,
there is no Deflate coding. It is desirable to have a simple criterion on the
list of code lengths, that can be efficiently checked, before creating the actual
coding.

Theorem 6 (Kraft’s inequality for sets of codes). Let k1, . . . , kN be non-
negative integers. Then the following propositions are equivalent:

1. There is a prefix-free S = {s1, . . . , sN} ⊆ [{0, 1}] such that ki = len si
for all i ∈ {1, . . . , N}

2.
N∑
i=1

2−ki ≤ 1

Equality in 2. holds if and only if there is no a ∈ [{0, 1}]\S such that S∪{a}
is prefix-free.

This is a well-known result, see e.g. [75]. We only prove 1.⇒ 2. directly,
since we need the stronger proposition for the other direction from Theorem
7. Notice that we are talking about sets of codes, and not about codings,
now. In our implementation, we use duplicate- and prefix-free lists. The
implementation is mainly in KraftList.v. The reason why we do not
directly use the codings is that we allow our codings’ images to contain [ ],
as this is closer to the standard [41]. However, Kraft’s inequality also holds
for the set {[ ]}, and here it is even sharp, because [ ] is a prefix of all lists,
and this is the base-case for our induction. The theorem is proved in Lemma
kraft_pflist, the sharp version in Lemma kraft_pflist_sharp, in
KraftList.v. To then apply it to our Deflate coding data structures,
there are several lemmata in KraftVec.v.

In the following, let KS :=
∑

i∈S 2− len i, i :: S := {i :: x | x ∈ S} and
Si := {x | i :: x ∈ S}. Notice that S = 0 :: S0 ∪ 1 :: S1.

Lemma 4 (pflist_splittable). If S is prefix-free, then so is Si for
i ∈ {0, 1}.



51

Proof. As prefix-freedom is a negative property, we can use a proof by con-
tradiction. Assume Si contained a prefix a ≼ b. Then i :: a ≼ i :: b. Contra-
diction.

Lemma 5 (maxlen_split). Let maxlenS := max{lenx | x ∈ S} and
maxlen ∅ := 0. If maxlenS ̸= 0, then maxlenSi < maxlenS for i ∈ {0, 1}.

Proof. We do this proof in a more complicated way than necessary, to be
closer to the formal proof in Coq (which is about lists rather than sets).
We do an induction on the size of S. If S = ∅ we are done. Now assume
S = {a} ∪̇ S′, and the proposition holds for S′ already. If a = (1 − i) :: a′,
then Si = S′i, and since then trivially maxlenS ≥ maxlenS′, the proposition
holds. If a = i :: a′, then len a ≤ maxlenS. If len a = maxlenS, then
trivially, len a′ = maxlenSi, because it must be greater than or equal any
elements of any subset of S as well. But len a′ = len a − 1 < len a. Now
assume the case len a < maxlenS. If len a′ = maxlenSi, we are done, since
len a′ = len a − 1. If len a′ < maxlenSi, then maxlenSi = maxlenS′i, and
also maxlenS = maxlenS′, and the claim follows by induction.

Lemma 6 (kraft_pflist_split). Let S = {s1, . . . , sN} ⊆ [{0, 1}] be
prefix-free. Then [ ] ∈ S or KS = 2(KS0 + KS1).

Proof. Let {s1, . . . , sN} be prefix-free, and [ ] ̸= sk for all k. Trivially,

KS = K(S ∩ {0 :: l | l ∈ [{0, 1}]}) + K(S ∩ {1 :: l | l ∈ [{0, 1}]})

But

K(S ∩ {j :: l | l ∈ [{0, 1}]}) =
∑

(j::i)∈S

2− len j::i

=
∑

(j::i)∈S

2−(1+len i)

=
1

2

∑
(j::i)∈S

2− len i

=
1

2

∑
i∈{l|j::l∈S}

2− len i

=
1

2
K{l | j :: l ∈ S}

for j ∈ {0, 1}. The claim immediately follows.

Proof of Theorem 6. We do induction on the maximum code length of S. If
it is 0, the claim can be calculated directly. If it is n+1, then the maximum



52 CHAPTER 5. DEFLATE CODINGS

code lengths of {x | i :: x ∈ S} for i ∈ {0, 1} are less then or equal n, so by
induction, we know that

∑
i::x∈S 2− lenx ≤ 1 for i ∈ {0, 1}, and thus∑

x∈S
2− lenx =

1

2

∑
i∈{0,1}

∑
i::x∈S

2− lenx ≤ 1

Assume
∑

x∈S 2− lenx = 1 and an a existed such that S ∪ {a} is prefix-
free. Then clearly

∑
x∈S 2− lenx > 1, but we just proved

∑
x∈S 2− lenx ≤ 1.

Contradiction.
Assume there was no a such that S ∪ {a} is prefix-free. If the maximum

code length of S is 0, the claim can be calculated directly. Assume it is
n+ 1. If there existed an ai such that {x | i :: x ∈ S} ∪ {ai} was prefix-free,
then S ∪ {i :: ai} would also be prefix-free. Thus, such an ai does not exist
for i ∈ {0, 1}, and thus, by induction,∑

x∈S
2− lenx =

1

2

∑
i∈{0,1}

∑
i::x∈S

2− lenx =
1

2

∑
i∈{0,1}

1 = 1

We furthermore show that a Deflate coding exists if and only if its length
sequence satisfies Kraft’s inequality. (From this, the direction 2.⇒ 1. follows
immediately.)

Theorem 7 (extended_kraft_ineq). Let ⌈·⌉ : A → [{0, 1}] be a Deflate
coding. Then ∑

i∈A
⌈i⌉̸=[ ]

2− len⌈i⌉ ≤ 1

Equality holds if and only if there is some k ∈ A such that ⌈k⌉ ∈ {1}+.

Proof. The first claim follows directly from Theorem 6, since (img⌈·⌉)\{[ ]}
is a prefix-free set. For the second claim, it is sufficient to show that such a
k exists if and only if no a ̸∈ img⌈·⌉ exists such that ((img⌈·⌉)\{[ ]})∪{a} is
prefix-free. So assume such a k exists, but also such an a existed. If ⌈k⌉ ⊑ a,
then ⌈k⌉ ≼ a, since ⌈k⌉ is a sequence of 1’s. If a ⊑ ⌈k⌉, then by axiom 4,
a prefix of a must already be in img⌈·⌉. This is a contradiction. For the
other direction, assume equality holds, but no sequence of 1’s is contained
in img⌈·⌉. Let m be the maximum code length of img⌈·⌉. Then all prefixes
of [1]m+1 are sequences of 1’s, so it is not prefixed by any of the codes in
img⌈·⌉. This contradicts Theorem 6.

This is proved in theorem kraft_ineq and theorem extended_kraft_
ineq in the file DeflateCoding.v.

Lemma 7. Let d ∈ [{0, 1}] and d ̸= [1]len d. Then there is a ⊑-minimal
d ∈ [{0, 1}] with len d = len d and d ≲ d.



53

Regarding d as a binary number, d = d+ 1 does the job. Formally, this
is proved as Lemma lex_inc in Combi.v. The most important theorem
regarding Deflate codings is:

Theorem 8. Let l : A → N be such that∑
i∈A
l(i)̸=0

2−l(i) ≤ 1

Then there is a Deflate coding ⌈·⌉ : A → [{0, 1}] such that l = λx len⌈x⌉.

Proof. Let ≲ be a binary relation on N2, defined by

∀mqo.q < o→ (q,m) ≲ (o,m)

∀m1m2n1n2 .m1 < m2 → (n1,m1) ≲ (n2,m2)

It is easy to show that ≲ is a transitive decidable antisymmetric ordering
relation. Now let R = L := sort≲ mapλk(k,lk)

[0, . . . , n− 1], S = [ ], c = λx[ ].
We will do a recursion on tuples (S, c,R), maintaining the invariants

∀q.(q, len(c(q))) ̸∈ S → (c(q) = [ ] ∧ (q, l(q)) ∈ R) (5.1)
(revS) ++R = L (5.2)

S = [ ] ∨ ∀q.c(q) ⊑ c(π1(carS)) (5.3)

Furthermore, c will be a deflate coding at every step. The decreasing element
will be R, which will become shorter at every step.

We first handle the simple cases:

• For the initial values ([ ], λx[ ], L), the invariants are easy to prove.

• For R = [ ], we have revS = L by 5.2 and therefore, either c = λx[ ] if
L = [ ], or ∀q.(q, len(c(q))) ∈ L by 5.1, and therefore, c is the desired
coding.

• For R = (q, 0) :: R′, S can only contain elements of the form (_, 0).
We proceed with ((q, 0) :: S, λx[ ], R

′). All invariants are trivially pre-
served.

• For R = (q, 1 + l) :: R′ and S = [ ] or S = (r, 0) :: S′, we set c′(x) =
[0]1+l for x = q, and c′(x) = [ ] otherwise. We proceed with ((q, 1+ l) ::
S, c′, R′). The invariants are easy to show. It is easy to show that c′

is a Deflate coding.

Now the most general case is R = (q, 1+ l) :: R′ and S = (r, 1+m) :: S′,
and let the intermediate Deflate coding c be given. We have∑

i∈A
c(i)̸=[ ]

2− len(c(i)) < 2−l−1 +
∑
i∈A

c(i)̸=[ ]

2− len(c(i)) ≤
∑
i∈A
li ̸=0

2−l(i) ≤ 1



54 CHAPTER 5. DEFLATE CODINGS

By Theorem 7, [1]1+m ̸∈ img c, and therefore, by Lemma 7, we can find a
fresh code d′ of length 1 +m. Let d = d′ ++ [0]l−m and set

c′(x) :=

{
d for x = q

c(x) otherwise

We have to show that c′ is a Deflate coding. The axioms 2 and 3 are easy.
For axiom 4, assume x ̸= [ ] and x ⊑ c′(q). If x ⊑ c′(r), the claim follows by
axiom 4 for r. Otherwise, by totality c′(r) ⊑ x. If x ⊑ d′, by the minimality
of d′ follows x = c′(r). If d′ ⊑ x, trivially, d′ ≼ c′(q). Axiom 4 holds.
For axiom 2, it is sufficient to show that no other non-[ ] code prefixes d.
Consider a code e ≼ d. As all codes are shorter or of equal length than d′,
e ≼ d′. But then, either e ≼ c(r), or c(r) ⊑ e. Contradiction. Therefore, we
can proceed with ((q, 1 + l) :: S, c′, r′).

The formal proof can be found as Theorem existence in Deflate-
Coding.v. For a better understanding of the algorithm proposed here, we
consider the following length function as an example:

l : 0→ 2; 1→ 1; 2→ 3; 3→ 3; 4→ 0

We first have to sort the graph of this function according to the ≲ ordering.

[(4, 0), (1, 1), (0, 2), (2, 3), (3, 3)]

Then, the following six steps are necessary to generate the coding (for the
lack of space, we leave out the column stating that c(4) is always [ ]).



55

Step R S c(0) c(1) c(2) c(3)

0

[(4, 0),
(1, 1),
(0, 2),
(2, 3),
(3, 3)]

[ ] [ ] [ ] [ ] [ ]

1

[(1, 1),
(0, 2),
(2, 3),
(3, 3)]

[(4, 0)] [ ] [ ] [ ] [ ]

2
[(0, 2),
(2, 3),
(3, 3)]

[(1, 1),
(4, 0)] [ ] [0] [ ] [ ]

3 [(2, 3),
(3, 3)]

[(0, 2),
(1, 1),
(4, 0)]

[1,0] [0] [ ] [ ]

4 [(3, 3)]

[(2, 3),
(0, 2),
(1, 1),
(4, 0)]

[1,0] [0] [1,1,0] [ ]

5 [ ]

[(3, 3),
(2, 3),
(0, 2),
(1, 1),
(4, 0)]

[1,0] [0] [1,1,0] [1,1,1]

The final values of c are, in fact, a Deflate coding. The main difference to
the algorithm in the standard [41] is that we sort the character/length pairs
and then incrementally generate the coding, while the proposed algorithm
counts the occurrences of every non-zero code length first, determines their
lexicographically smallest code, and then increases these codes by one for
each occurring character. In our case, that means that it would first generate
the function a : 1 → 1; 2 → 1; 3 → 2 and 0 otherwise, which counts the
lengths, and then define

b(m) =
m−1∑
j=0

2ja(j)

which gets the numerical value for the lexicographically smallest code of
every length when viewed as binary number with the most significant bit
being the leftmost bit. In our case, this is 1→ 0; 2→ 2; 3→ 6. Then

c(n) = b(l(n)) + |{r < n | l(r) = l(n)}|



56 CHAPTER 5. DEFLATE CODINGS

meaning c(0) = b(2) = 10(2), c(1) = b(1) = 0(2), c(2) = b(3) = 110(2),
c(3) = b(3) + 1 = 111(2) which is consistent with the algorithm presented
here.

The algorithm described in the standard [41] is more desirable for prac-
tical purposes, as it can make use of low-level machine instructions like bit
shifting:
static int[] get_canonical_code (int[] lengths) {

// check for kraft 's inequality
double kraft = 0 ;
for (int i = 0; i < lengths.length; ++i)

kraft += (1.0d / (1 << lengths[i])) ;
if (kraft > 1) return null ;

// get the maximum code length
int MAX_BITS = 0 ;
for (int i = 0; i < lengths.length; ++i)

if (MAX_BITS < lengths[i]) MAX_BITS = lengths[i] ;

// Count the number of codes for each code length except 0
int[] bl_count = new int[MAX_BITS+1] ;
for (int i = 0; i < lengths.length; ++i)

bl_count[lengths[i]]++ ;
bl_count[0] = 0 ;

// Find the numerical value of the smallest code for each code
// length
int[] next_code = new int[MAX_BITS+1] ;
int code = 0 ;
for (int bits = 1; bits <= MAX_BITS; ++bits) {

code = (code + bl_count[bits−1]) << 1 ;
next_code[bits] = code ;}

// Assign numerical values to all codes
int[] tree_code = new int[lengths.length] ;
for (int n = 0; n < lengths.length; ++n) {

int len = lengths[n] ;
if (len != 0) {

tree_code[n] = next_code[len] ;
next_code[len]++ ;}}

return tree_code ;}



Chapter 6

Parsers from Constructive
Proofs

Before we get into the actual Deflate-specific parts, we introduce the several
concepts we created to be able to get a nice, usable and modular framework
for specifying and using grammars, which we think will also be useful for
further work on other data formats.

We specify a part of the format through a relation that relates the output
to the input. Usually, output will be a list of bytes, and input will be a list
of bits, but this is no requirement. The relations can have other parameters,
but these parameters will always be before the output and input parameter.

6.1 Strong Uniqueness
In Deflate – and in most other formats – there is more than one way to
represent the same thing. More specific, in [41], only recommendations for
compression algorithms are given, but it is not required to use any specific
algorithm – by design, Deflate is flexible, and a byte sequence can be com-
pressed in several ways. However, for the other direction, it is different: We
want, for every dataset in our format, a unique original dataset, meaning
the guarantee that for any given data d, decompress(compress d) = d. While
most container formats have some checksum or error correction code, Deflate
itself does not have mechanisms to cope with data corruption due to hard-
ware failures and transcription errors, therefore a formal discussion of these
is outside the scope of this work, and we will focus on the correctness of the
algorithms themselves in absence of external memory corruption. However,
the concepts defined here should be applicable for such other formats, too.
In summary, we want left-uniqueness.

Left-Uniqueness (“injectivity”) can be formalized as ∀a,b,l.R a l→ Rb l→
a = b. However, when reading from a stream, it must always be clear when
to “stop” reading, which essentially means that given an input l such that

57



58 CHAPTER 6. PARSERS FROM CONSTRUCTIVE PROOFS

Ra l, it cannot be extended: ∀a,b,l,l′ .R a l → Rb (l ++ l′) → l′ = [ ]. In
StrongUniqueLemma in the file StrongDec.v, we proved that these two
properties are equivalent to the following property, which we call strong
uniqueness:

StrongUniqueR :⇔ ∀a,b,la,l′a,lb,l′b . la ++ l′a = lb ++ l′b →
Ra la → Rb lb →
a = b ∧ la = lb

Lemma 8. ((∀a,b,l,l′ .R a l → Rb (l ++ l′) → l′ = [ ]) ∧ ∀a,b,l.R a l → Rb l →
a = b)↔ StrongUniqueR.

Proof. “→”: We have la ++ l′a = lb ++ l′b, Ra la and Rb lb. Without loss of
generality assume len la ≤ len lb. Then lb = la ++ l′′b for some l′′b . Therefore,
l′′b = [ ]. Thus, la = lb and by uniqueness a = b. “←”: We have Ra l and
Rb (l ++ l′). Setting la = l, l′a = l′, lb = l ++ l′, l′b = [ ], strong uniqueness
yields a = b and l = l ++ l′, therefore l′ = [ ].

6.2 Strong Decidability

While strong uniqueness gives us uniqueness of a prefix, provided that it
exists, we need an additional property that states that it is actually decidable
whether such a prefix exists, which we call strong decidability:

StrongDecE R :⇔
∀l.(Σa,x,y.l = x++ y ∧Rax) + (E × ¬(∃a,x,y.l = x++ y ∧Rax))

This is a decidability predicate with the negated part tagged with some
type E. This tag is formally not necessary, and is there for error messages;
it is a string in our implementation, to get information of errors in the
given compressed data, and as an additional documentation. The existential
quantifiers in our implementation are strong: If a prefix exists, then we can
compute it. This is the obvious type of a verified decoder. It resembles
Haskell’s Exception-monad. The extracted terms from strong decidability
proofs are parsers.

Lemma 9. Let R : A→ [B]→ Prop. If StrongDecR and StrongUniqueR
and A has decidable equality, then R is decidable.

Proof. Let a : A and b : [B] be given. If ¬(∃c,x,y.b = x ++ y ∧ Rcx), then
by uniqueness we know ¬Ra b. Otherwise, we can check whether y = [ ]. If
not, then by uniqueness we also know ¬Ra b. Otherwise, we have to decide
whether a = c.



6.3. RELATIONAL COMBINATORS 59

However, strong decidability is actually stronger than decidability: Let
the inputs [B] encode turing machines, and let R : N→ [B]→ Prop be the
relation such that Rn b denotes “The turing machine encoded in b stops after
n steps”. We clearly have ∀n,b.R n b ∨ ¬Rn b. However, strong decidability
would imply solving the halting problem.

One drawback of strong decidability is that combining them consumes
stack space, the same way Exception monads do: You usually have to recur-
sively call the next sub-parser to know whether it succeeds, before you can
return anything. Furthermore, it prevents lazy evaluation to some extent.
A possible solution is proposed in Section 6.4.

A further drawback is that we cannot use cototal lists. This is for the
simple reason that parsing potentially infinite lists is not strongly decidable
anymore. For example, the relation R : 1→ [bool]→ Prop defined by

R tt [true]
∀a,b,c.R a b→ Ra (c :: b)

holds if and only if the list contains true. This is strongly decidable for total
lists, but clearly not for cototal lists: We can encode the halting problem
in this problem: For an arbitrary machine M , define the list which is false
in the n-th place if M does not halt after n steps, and true otherwise.
Despite these drawbacks, strong decidability proved useful for writing our
implementation of Deflate.

6.3 Relational Combinators
If a relation satisfies both properties, it is well-suited for parsing. We can
combine such relations in a way similar to parser monads. When some of the
relations we defined became very complicated and hard to read, we decided
to use such monadic combinators. The advantage, besides readability, is that
we could prove lemmata about those combinators which greatly simplified
proving properties of our relations. We provide the functions Combine
and nTimes and the corresponding lemmata in StrongDec.v. The main
difference is that we do not have a disjunctive connective: There must be
at most one possibility to decode a bit sequence, therefore, branches of a
grammar need to be mutually exclusive. Proving mutual exclusivity is the
main issue. Otherwise, we tried to use combinations of other relations as
far as possible.
Inductive Combine {A BQ BR BS}
(Q : BQ −> list A −> Prop)
(R : BQ −> BR −> list A −> Prop)
(c : BQ −> BR −> BS) : BS −> list A −> Prop :=

| doCombine : forall bq br aq ar,
Q bq aq −> R bq br ar −>

Combine Q R c (c bq br) (aq ++ ar).



60 CHAPTER 6. PARSERS FROM CONSTRUCTIVE PROOFS

Notation ”A >>[ B ]= C” := (Combine A C B) (at level 0).
Notation ”A >>= B” := (Combine A B pi2) (at level 0).

We try to make the intuition behind this relations clearer. Assume you
already have functions q : list A -> option (list A * BQ) and
r : BQ -> list A -> option (list A * BR), which realize strong
decidability for Q and R, respectively. Then the following function realizes
strong decidability in the same way for Q >>[ c ]= R:
Function qr (l : list A) : option (list A * BS) :=
match q l with
| None => None
| Some (lq, bq) => match r bq lq with

| None => None
| Some (lr, br) =>

Some (lr, c bq br)
end

end.

The function pi2 is the projection on the second argument. The Q
argument is a relation that takes some input of type list A, and relates
it to some output of type BQ, much like the relations we defined in Section
7.2. R is a function that maps some BQ to a relation between BR and list
A – it will take the output of Q as a parameter, and produce itself some
output of type BR. Finally, c combines these intermediate outputs to some
common output type BS. Usually, c = pi2 and BR = BS, that is, the
intermediate result of type BQ is just dropped. The resulting relation first
consumes some input using the first relation Q, then passes its output to
the function R, which in turn consumes more of the input and produces
some output BR. The final relation will be between the concatenation of the
consumed lists and the intermediate results combined by c.

Admittedly, this relation is not trivial. But the pattern to read a small
portion of the input, relate it to something, and make the rest dependent
on that, frequently occurs, especially when reading format headers. So it
seemed reasonable to abstract it out, so at least it only has to be understood
once.

In many cases, it will occur that one just has to read something n times,
and combine the results in some way, that is, iteratively use the Combine
function. In StrongDec.v we therefore define
Fixpoint nTimes {A B C} (n : nat) (null : C)

(comb : A −> C −> C)
(rel : A −> list B −> Prop)

: C −> list B −> Prop :=
match n with
| 0 => fun c L => c = null /\ L = nil
| (S n ') => rel >>[ comb ]= fun _ =>

(nTimes n ' null comb rel)



6.4. STREAMABLE STRONG DECIDABILITY 61

end.

We usually do not need the full generality of this function, but defining it
once in a most general manner makes us only having to prove its properties
once. Special cases we use are appending or consing the outputs.
Definition nTimesApp {A B} (n : nat)

(rel : list A −> list B −> Prop) :=
nTimes n nil (@app A) rel.

Definition nTimesCons {A B} (n : nat)
(rel : A −> list B −> Prop) :=
nTimes n nil (@cons A) rel.

For definitions like nTimes, we need a base case, a “null” relation. While
the output would not really matter, and we could just require L = @nil
B, the resulting relation would not be unique anymore. To make it strong
unique, we must define a default value (fun n L => n = null /\ L =
@nil B).

We also need a relation that applies a function to the first argument of
the relation, prior to relating it:
Definition AppCombine {A BQ BR : Set }

(Q : BQ −> list A −> Prop)
(f : BQ −> BR) : BR −> list A −> Prop :=
Combine Q (fun n (m : unit) L => m = () /\ L = @nil A)

(fun a b => f a).

Since we can prove several properties about strong uniqueness and strong
decidability, and since these combinators reflect common patterns that fre-
quently occur, they are universal and should be usable for formally specifying
other data formats, too.

It should be noted that we do not define a disjunctive connective. In
unverified parser grammars, one can just interpret such a disjunctive con-
nective by using the first branch that matches. However, in a formally
verified implementation, we need the property that therer can be at most
one branch that matches. This must be proved in every single case, and
therefore we cannot lift it to this abstraction level. Usually, such branches
correspond directly to the several constructors of a relation.

6.4 Streamable Strong Decidability
It is inevitable to consume stack if we want to have a function that returns
an error if the input stream is malformed but not allow side effects. For
example, it is also possible to write a program in continuation passing style,
as it is done in [77], but this is just a transformation from the exception
monad to the continuation monad, with the same problems. Most parser
combinator libraries do it this way, since mostly the consumed stack is not



62 CHAPTER 6. PARSERS FROM CONSTRUCTIVE PROOFS

relevant for the size of the data which is parsed. For a format like Deflate,
you would normally not use a parser combinator.

A general solution to stack overflows of such libraries, for example in
Java, is to use an own stack-like structure to track the state. For example,
the following is a recursive implementation of Flood Fill.
static void floodFill1 (int[][] image, int x, int y, int color) {

int orig = image[x][y] ;
if (orig == color) return ;
floodFill1_ (image, x, y, color, orig) ;}

static void floodFill1_ (int[][] image, int x, int y,
int color, int orig) {

if ((x >= 0) && (y >= 0) &&
(x < image.length) && (y < image[0].length) &&
image[x][y] == orig) {
image[x][y] = color ;
floodFill1_(image, x−1, y, color, orig) ;
floodFill1_(image, x+1, y, color, orig) ;
floodFill1_(image, x, y−1, color, orig) ;
floodFill1_(image, x, y+1, color, orig) ;}}

This will make result in a stack overflow for larger images. However, it is
not trivially possible to not save the return path. In this case, the iterative
way will use a switch statement:
static class XY {

public int x, y, state ;
public XY(int _x, int _y, int _state) {

x = _x; y = _y; state = _state ;}}

static void floodFill2 (int[][] image, int x, int y, int color) {
int orig = image[x][y] ;
if (orig == color) return ;

Stack<XY> st = new Stack<XY>() ;
st.push(new XY(x, y, 0)) ;

while (true) {
if (st.empty()) return ;
XY c = st.peek() ;
switch (c.state) {
case 0 :

if ((c.x >= 0) && (c.y >= 0) &&
(c.x < image.length) && (c.y < image[0].length) &&
image[c.x][c.y] == orig) {
image[c.x][c.y] = color ;
c.state = 1 ;}

else {
st.pop() ;}break;

case 1 :
st.push(new XY(c.x−1, c.y, 0)) ;
c.state = 2 ;break;



6.4. STREAMABLE STRONG DECIDABILITY 63

case 2 :
st.push(new XY(c.x+1, c.y, 0)) ;
c.state = 3 ;break;

case 3 :
st.push(new XY(c.x, c.y−1, 0)) ;
c.state = 4 ;break;

case 4 :
st.push(new XY(c.x, c.y+1, 0)) ;
c.state = 5 ;break;

case 5 :
st.pop() ;break;};}}

Clearly, this is just a way to put the stack to a higher abstraction level,
which is slower but does not impose us the limitations of the machine-level
stack. It cannot really overflow in the same sense as the machine-level stack
does, but it can overflow in the sense that the machine runs out of memory.
Therefore, this is the same as increasing the stack size.

Another possibility to avoid stack overflows is using exceptions. In
Haskell, you could do the following:

data IncorrectDigit = NewIncorrectDigit deriving Show

instance Exception IncorrectDigit

ternary :: [Bool] −> Integer
ternary [] = 0
ternary (False : False : r) = 3 * ternary r
ternary (False : True : r) = 1 + 3 * ternary r
ternary (True : False : r) = 2 + 3 * ternary r
ternary (True : True : _) = throw NewIncorrectDigit

However, exceptions are impure: The result of a computation depends
on the order of evaluation. Assume we defined an unsafe catch function
using unsafePerformIO:

unsafeCatch :: Exception b => a −> (b −> a) −> a
unsafeCatch d q = unsafePerformIO $

do z <− catch (do x <− evaluate d
return x)

(\e −> do return (q e))
return z

The seq function was made to enforce a certain evaluation order in cases
where it is necessary due to limitations; specifically, the foldl’ function,
which enforces immediate folding of the given list instead of lazy folding
which would potentially waste memory, can be implemented using seq:

foldl ' f z [] = z
foldl ' f z (x:xs) = let z_ = f z x

in z_ ‘seq ‘ (foldl ' f z_ xs)



64 CHAPTER 6. PARSERS FROM CONSTRUCTIVE PROOFS

However, in pure code, the order of evaluation must not matter, and
therefore, seq is not allowed to change the outcome of any function. Now,
if we define
e_x = let x = True

y = error ”Fail”
in unsafeCatch (x ‘seq ‘ Just (x || y))

((\b −> Nothing) :: ErrorCall −> Maybe Bool)

it should be equivalent to
e_y = let x = True

y = error ”Fail”
in unsafeCatch (y ‘seq ‘ Just (x || y))

((\b −> Nothing) :: ErrorCall −> Maybe Bool)

However, it is not. e_x returns Just True, and e_y returns Nothing.
This shows that catching exceptions is impure. Exceptions in dependently
typed programming languages are still under research. In [85] the following
example is given to point out the problem:

PxN :

{
N→ N if (try x catch λε.S0) = 0

N otherwise

Now we have the reduction

P00→ 0

however, we have the reduction

P (throw ε)0→ 00

which is not well-typed. Until these problems are resolved, we mainly
see two possibilities.

One possibility would be to allow for calling a given function if an ex-
ception occurs. This function would formally return a list which would be
the tail of the returned stream, so the type checker is satisfied. On the other
hand, we will mostly embed our verified functions into less strict languages,
so we could make the passed function throw an exception. This would be
possible, but it is not really satisfactory.

Another obvious solution would be to specify “erroneous” results that a
parser can produce. For example, as we produce lists, we could define an
alternative list type which has an additional constructor which indicates an
error:
Inductive EList (A E : Set) : Set :=
NilOK : EList A E

| NilError : E −> EList A E
| ECons : A −> EList A E −> EList A E.



6.4. STREAMABLE STRONG DECIDABILITY 65

This allows us to write an algorithm that can produce an error at every
time, but makes it necessary to read the list entirely before we know whether
there was an error. The following will consume much stack:
Fixpoint EListToExc (A E : Set) (l : EList A E) : (list A + E) :=

match l with
| NilOK _ _ => inl []
| NilError _ _ x => inr x
| ECons _ _ a r =>
match EListToExc A E r with
| inl l_ => inl (a :: l_)
| inr e => inr e
end

end.

This is essentially what we did with strong decidability. What we actu-
ally want to do is to postpone the evaluation of the error as far as possible,
to preserve laziness. We notice that EList A E is isomorphic to list A
* option E:
Fixpoint EListToPair (A E : Set) (e : EList A E)

: (list A * option E) :=
match e with
| NilOK _ _ => ([], None)
| NilError _ _ x => ([], Some x)
| ECons _ _ a r =>
let (l, x) := EListToPair A E r
in (a :: l, x)

end.

To convince ourselves that this code will not break laziness in Haskell, we
wrote the following Haskell-Code:
import System.Environment

lrec :: [Maybe a] −> ([a], Int)
lrec [] = ([], 0)
lrec (Nothing : l) = ([], −1)
lrec (Just a : l) = let (q, r) = lrec l

in (a : q, r + 1)

evald = lrec (map Just [1..])

lazytest :: [Int]
lazytest = let (r, _) = evald

in take 10 r

lazytest2 :: Int
lazytest2 = let (r, b) = evald

in b

main :: IO ()
main =

do args <− getArgs



66 CHAPTER 6. PARSERS FROM CONSTRUCTIVE PROOFS

putStr $ show $
[Left lazytest , Right lazytest2] !!

(read $ args !! 0)

Calling this program with 0 as argument shows a finite list, while calling
it with 1 as argument will result in an endless recursion, meaning that for
computation of the list, the error itself is not evaluated.

We therefore define R : A → [B] → Prop to be streamably strongly
decidable by

SSDE R := ∀l[B]Σ
aA,l

[B]
1 ,l

[B]
2 ,e1+E .

l = l1 ++ l2 ∧ (e = inl()→ Ra l1) ∧
(e ̸= inl()→ ∀b,k1,k2 .l = k1 ++ k2 → Rbk1 → ⊥)

Lemma 10. Formally, strong decidability and streamable strong decidability
are equivalent.
Proof. Let R be streamably strong decidable and an input l[B] be given.
By eliminating SSDE R l, we get aA, l

[B]
1 , l

[B]
2 and e1+E . We eliminate e.

Assuming e = inl(), we know that Ra l1 and l = l1 ++ l2. Thus, by re-
introducing the quantors, we get StrongDecR. Assuming e = inr f , we
know that ∀b,k1,k2 .l = k1 ++ k2 → Rbk1 → ⊥, and thus, StrongDecE R.

Now let R be strongly decidable, and an input l[B] be given. We eliminate
StrongDecE R l. If the left side is satisfied, we get aA, l

[B]
1 , l

[B]
2 and l =

l1 ++ l2 ∧Ra l1, so we can re-introduce the quantors and get SSDE R, with
e = inl(). If the right side is satisfied, we get the error fE , and so we set
e = inr f . We furthermore can set l1 = [ ] and l2 = l to get the guarantee
that l = l1++l2. We can then re-introduce the quantors and get SSDE R.

As we proved strong decidability for all relations already, for the simple
cases, we will just apply Lemma 10 to our old proofs. This shows how our
flexible and modular approach pays off when changing definitions later. We
proved the directions of this lemma separately in the file EncodingRela-
tionProperties2.v as SD_imp_SSD and SSD_imp_SD.

For example, for OneBitSSD, the definition is
Lemma OneBitSSD : StreamableStrongDec string OneBit.
Proof.
apply (SD_imp_SSD false).
apply OneBitStrongDec.

Defined.

It does only require a neglegible amount of stack to parse, which is why
it is sufficient to use this lemma instead of proving it directly.

Due to the lack of time, we did not finish proving all relevant streamable
strong decidabilities. Our implementation therefore still consumes lots of
memory. We regard this as further work.



Chapter 7

The Encoding Relation

In this section, we want to present the relation we gave in Coq, which is the
core of our implementation. Our implementation is verified against it, and
it is part of the trusted codebase: It is impossible to verify that our relation
is “correct” – it is not even clear what that means, since the standard [41]
is informally stated, and therefore subject to interpretation. However, we
tested our implementation, and it is unlikely that there is a problem.

7.1 Overview
We give a short informal overview of correct Deflate streams, to show you
the complexity of the format, and in the hope that it will make it easier
to follow our definitions and relations. Notice that we are describing an
existing and widespread standard here. Especially, this standard was not
made by us. We are giving this overview so you do not have to read the
actual standard. There are many parts which seem overcomplicated, but
that is probably due to the fact that this is a grown standard.

We start with a small informal pseudogrammar for Deflate streams for
some clarity:

Deflate ::= (’0’ Block)*
’1’ Block ( ’0’ | ’1’ )*

Block ::= ’00’ UncompressedBlock |
’01’ DynamicallyCompBl |
’10’ StaticallyCompBl

UncompressedBlock ::= length ˜length bytes
StaticallyCompBl ::= CompressedBlock(standard coding)
DynamicallyCompBl ::= header coding

CompressedBlock(coding)
CompressedBlock(c) ::= [ˆ256]* 256 (encoded by c)

A first thing to notice is that a compressed block ends with the number
256 – which means that compressed blocks’ alphabet does not only contain
bytes. This is possible because it is encoded by a prefix-free coding in which
characters may be encoded by more than 8 bits. Notice furthermore that

67



68 CHAPTER 7. THE ENCODING RELATION

this grammar does not in any way give information on how the data is to
be interpreted. More specifically, the whole machinery of resolving backref-
erences and encoding codings is not reflected in this informal grammar.

To clarify our terminology, we say a character is an element from an
alphabet, a codepoint is a number that is encoded in some dataset and may
stand for either a character or some instructional control structure, a coding
is a function that assigns bit sequences to codepoints, and a code is a bit
sequence which is associated with some codepoint through a coding.

Deflate streams can make use of three techniques of compression: prefix-
free coding (as in Huffman codes), run length encoding and backreferences as
found in Lempel-Ziv-compression. The latter two use the same mechanism,
as described in Section 7.4. Furthermore, Deflate streams are byte streams,
which are streams of values from 0 to 255. With such byte streams, one
associates bit streams by concatenating the bytes LSB (least significant bit
first), regardless of how they are actually sent. This is necessary, because
most Deflate modes operate conceptually on the bit level.

On top of this bit stream, the data is sliced into blocks which may be
compressed. A block starts with a bit that indicates whether it is the last
block, and two further bits indicating whether the block is “statically” com-
pressed, that is, with fixed codings defined in the standard, or “dynamically”
compressed, where the codings must be saved, or uncompressed.

For an uncompressed block, the bits up to the next byte boundary are
ignored, then a 16 bit integer followed by its bitwise complement are saved
byte aligned. It denotes the number of bytes the block contains. Uncom-
pressed blocks cannot contain backreferences. The advantage of the byte
aligned layout of uncompressed blocks is that it allows for the use of byte-
wise access, e.g. sendfile(2). On the formal level this brings the extra
difficulty that Deflate streams cannot be described as a formal grammar on
a bit sequence without knowing the byte boundaries.

Compressed blocks start immediately after the three header bits. Stat-
ically compressed blocks have predefined codings, and therefore, the com-
pressed data immediately follows the header bits. Even when the actual com-
pression does not utilize Huffman codings to save memory directly (which
will usually be the case for statically compressed blocks), two prefix-free
codings are needed to encode backreferences: A coding does not only en-
code the 256 byte-values, but up to 286 (288 with 2 forbidden) characters,
of which one, 256, is used as end mark, and the values above 256 are used
to denote backreferences. If the decoder encounters a code for such a char-
acter, a certain number of additional bits is read, from which the length of
this backreference is calculated. Then, using another coding, a value from
0 to 29 is read, and additional bits, which determine the distance of that
backreference. The numbers of actual bits for characters can be looked up
in a table specified in the standard [41].

Dynamically compressed blocks get another header defining the two De-



7.1. OVERVIEW 69

flate codings. The codings are saved as sequences of numbers, as formalized
in Section 5. This way is similar to other compression standards that utilize
prefix-free codings, like BZip2. These sequences are themselves compressed,
and another header is needed to save their coding.

For clarity, let us consider a small example. As we have to deal with
three layers of compression, it is not always clear what a code, a coding
and a character is. For this example, we add indices to the words to denote
which layer they are from. A coden is a sequence of bits for a codepointn.
A codepointn is a number assigned to either a charactern or some special
instruction on that level. A codingn is a deflate coding for codepointsn. Raw
bytes are characters0. We want to compress the string

ananas_banana_batata

Firstly, as we want to compress, we need an end sign (which gets the
codepoint0 256), which we will denote as ∅. Since this string has a lot of
repetitions, we can use backreferences. A backreference is a pair ⟨l, d⟩ of
length and distance, which can be seen as an instruction to copy l bytes
from a backbuffer of decompressed data, beginning at the d-th last position,
to the front, in ascending order, such that the copied bytes may be bytes
that are written during the resolution of this backreference, hence allowing
for both deduplication and run length encoding. In our case, we can add
two backreferences.

an ⟨3, 2⟩ s_b ⟨5, 8⟩ ⟨3, 7⟩ t ⟨3, 2⟩ ∅

The codepoint0 for length 3 is 257, and for 5 it is 259. They do not have
suffixes. The codepoint0 for the distance 2 is 1 with no suffix, for 7 and 8
it is 5, and it has a single bit as suffix, which indicates whether it stands
for 7 or 8. We write al to denote that a is a literal/length codepoint0, with
an index denoting the corresponding character0 if any, and ad to denote
that it is a distance codepoint0. We furthermore put suffix bit sequences in
brackets. Then we get

97la 110ln 257l1d 115ls 95l_ 98lb 259
l5d(1) 257l 5d(0) 116lt 257

l1d 256l∅

The frequencies of literal/length codepoints0 are

95× 1; 97× 1; 98× 1; 110× 1; 115× 1; 116× 1; 256× 1; 257× 3; 259× 1

The frequencies of distance codepoints0 are

1× 2; 5× 2

The optimal deflate codings0 (as defined in Section 5) are

95→ 1100; 97→ 010; 98→ 011; 110→ 100; 115→ 1101



70 CHAPTER 7. THE ENCODING RELATION

116→ 101; 256→ 1110; 257→ 00; 259→ 1111

and
1→ 0; 5→ 1

To clarify the terminology, note that e.g. character0 a has codepoint0
010 under the given coding0. The reason for introducing the concept of
“codepoints0” is that the alphabets for lengths and characters0 are merged:
Every character0 has an assigned codepoint0, but not every codepoint0 has
a character0, e.g. the codepoint0 257 indicates a backreference, but still
has the code0 00. Our message can therefore be encoded by the following
sequence of bits (spaces are included for clarity):
010 100 00 0 1101 1100 011 1111 1 1 00 1 0 101 00 0 1110

As proved in Section 5, it is sufficient to save the lengths, which is done
as a run length encoded list, where length 0 means that the corresponding
codepoint0 does not occur. We use a semicolon to separate the literal/length
coding0 from the distance coding0. Both lists are not separated in the ac-
tual file, and it is even allowed that run-length-encoding-instructions spread
across their border. What part of the unfolded list belongs to which coding
is specified in another header defined later.

0, . . . , 0︸ ︷︷ ︸
95×

, 4, 0, 3, 3, 0, . . . , 0︸ ︷︷ ︸
11×

, 3, 0, 0, 0, 4, 3, 0, . . . , 0︸ ︷︷ ︸
138×

, 0, 4, 2, 0, 4; 0, 1, 0, 0, 0, 1

This list will itself be compressed, thus, the lengths of codes0 become characters1.
Notice that due to a header described later, we can cut off all characters1
after the last nonzero character1 of both sequences. The maximum length
that is allowed for a code0 in deflate is 15. Deflate uses the codepoints1
16, 17, 18 for its run length encoding. Specifically, 17 and 18 are for re-
peated zeroes. 17 gets a 3 bit suffix ranging from 3 to 10, and 18 gets a 7 bit
suffix, ranging from 11 to 138. These suffixes are least-significant-bit first.
The former sequence therefore becomes

18(0010101), 4, 0, 3, 3, 18(0000000), 3, 17(100),

4, 3, 18(1111111), 0, 4, 2, 0, 4; 0, 1, 17(000), 1

Now, the frequencies of codepoints1 are

0× 4; 1× 2; 2× 1; 3× 4; 4× 4; 17× 1; 18× 2

Therefore, the optimal coding1 is

0→ 100; 1→ 1110; 2→ 1111; 3→ 00; 4→ 01; 17→ 101; 18→ 110

The sequence of code0 lengths can therefore be saved as



7.1. OVERVIEW 71

110 0010101 01 100 00 00 110 0000000 00 101 100 01 00
110 1111111 100 01 1111 100 01 100 1110 101 000 1110

We now have to save the coding1, and again, it is sufficient to save the
code1 lengths. These code1 lengths for the 19 codepoints1 are saved as 3 bit
least-significant-bit first numbers, but in the following order: 16, 17, 18, 0, 8,
7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15. Again, the codepoint2 0 denotes that
the corresponding codepoint1 does not occur. We can furthermore cut off
the codepoint2 for the last code1 length (in the given order), 15, which is 0 in
our example, due to a header described later. The sequence of codepoints2
therefore becomes

000 110 110 110 000 000 000 000 000
000 000 010 000 010 000 001 000 001

We now come to the aforementioned header that in particular allows us to
economize trailing zeroes. We need the number of literal/length codepoints0
and distance codepoints0 saved in the former sequence, and the number of
saved codepoints1. These are 260, 6 and 18, respectively. The first one is
saved as a 5 bit number ranging from 257 to 286 (the values 287 and 288 are
forbidden), the second one is saved as a 5 bit number ranging from 1 to 32,
the third one is saved as a 4 bit number ranging from 4 to 19. Therefore,
this header becomes

11000 10100 0111

With three additional header bits, denoting that what follows is the last
block, and that it is a dynamically compressed block, (and with 7 additional
bits to fill up the byte in the last line) we get

1 0 1
11000 10100 0111

000 110 110 110 000 000 000 000 000
000 000 010 000 010 000 001 000 001

110 0010101 01 100 00 00 110 0000000 00 101 100 01 00
110 1111111 100 01 1111 100 01 100 1110 101 000 1110

010 100 00 0 1101 1100 011 1111 1 1 00 1 0 101 00 0 1110

0000000

Of course, this example is constructed for instructional purposes, and the
compressed message is longer than the original text. However, Deflate also
supports statically compressed blocks, which are good for repetitive files.
Those use a fixed coding0 which is completely described in the standard [41].



72 CHAPTER 7. THE ENCODING RELATION

Its relevant part for our example is the following:

95l → 10001111; 97l → 10010001; 98l → 10010010; 110l → 10011110;

115l → 10100011; 116l → 10100100; 256l → 0000000; 257l → 0000001;

259l → 0000011; 1d → 00001; 5d → 00101

With the three header bits, and 4 additional padding bits to fill the byte,
the compressed file is
1 1 0

10010001 10011110 0000001 00001 10100011 10001111 10010010
0000011 00101 1 0000001 00101 0 10100100 0000001 00001
0000000

0000

which is, in fact, slightly shorter than the original string.

7.2 The Toplevel Relation
The toplevel relation is
Inductive DeflateEncodes (out : LByte) (inp : LB) : Prop :=
| deflateEncodes : forall swbr,

ManyBlocks 0 swbr inp −>
ResolveBackReferences swbr out −>
DeflateEncodes out inp.

where inp is a list of bits, out is a list of output bytes. This relation
relates a compressed data stream to its cleartext. Firstly, it refers to Many-
Blocks, which has a bit list as an input, and a SequenceWithBackRefs
as its output: All other block relations produce such sequences with back-
references, because the resolution of backreferences is not bound to block
boundaries. These Backreferences must be resolved, and then one gets the
correct output.
Inductive ManyBlocks : nat −> SequenceWithBackRefs Byte

−> LB −> Prop :=
| lastBlock : forall n inp out,

OneBlockWithPadding out (n + 1) inp −>
ManyBlocks n out (true :: inp)

| middleBlock : forall n inp1 inp2 out1 out2,
OneBlockWithPadding out1 (n + 1) inp1 −>
ManyBlocks (n + 1 + ll inp1) out2 inp2 −>
ManyBlocks n (out1 ++ out2) (false :: inp1 ++ inp2).

This relation has an additional first argument. It is a natural number. It
tracks the number of bits that have been read from the compressed input. It
is increased at every recursive call by the respective number of bits that have



7.3. UNCOMPRESSED BLOCKS 73

been consumed. The reason is that while the two kinds of compressed blocks
can start at any bit position, uncompressed blocks cannot: They have to
start at a byte boundary. Our way of reflecting this is tracking the number
of consumed bits and use this information in the respective relation to only
allow it at multiples of 8. This relation is called by DeflateEncodes with
the argument 0, obviously. Besides that, this relation distinguishes between
lastBlock and middleBlock and adds a header bit accordingly. This is
the bit called BFINAL in [41].
Inductive OneBlockWithPadding

(out : SequenceWithBackRefs Byte) : nat −> LB −> Prop :=
| obwpDCB : forall dcb n,

DynamicallyCompressedBlock out dcb −>
OneBlockWithPadding out n (false :: true :: dcb)

| obwpSCB : forall scb n, StaticallyCompressedBlock out scb −>
OneBlockWithPadding out n (true :: false :: scb)

| obwpUCB : forall ucb n m pad,
UncompressedBlockDirect out ucb −>
n + ll (false :: false :: pad) = 8 * m −>
ll pad < 8 −>
OneBlockWithPadding out n (false :: false :: pad ++ ucb).

All the branches of this relation add the two header bits that indicate
the type of block that follows, according to [41]. Furthermore, like Many-
Blocks, this relation has a natural argument which is the number of bits
that have been consumed. Only the branch obwpUCB, which is for un-
compressed blocks, actually uses this argument, and takes care that the
data begins at a byte-boundary, by adding an arbitrarily choosable padding
string (which will usually consist of zeroes).

7.3 Uncompressed Blocks
It might seem trivial to read uncompressed blocks, but the input argument
of our relations is – for practical reasons – always a bit list, while the output
is a sequence of backreferences and bytes. That is, we disassemble the bytes
into a bit list first, and for the case of uncompressed blocks, we have to
combine the bits into bytes again. We originally tried to solve this problem
differently, by having a byte list or some more sophisticated structure as
input.

For example, one such idea was to utilize lazyness and graph reduction
and define a structure
data BitsAndBytes =

Bit Bool Word8 BitsAndBytes BitsAndBytes |
End deriving Show

toBitsAndBytes :: [Word8] −> BitsAndBytes
toBitsAndBytes [] = End



74 CHAPTER 7. THE ENCODING RELATION

toBitsAndBytes (byte : rest) =
let toBits :: Word8 −> [Bool]

toBits w = map (testBit w) [0..7]
toBB :: [Bool] −> Word8 −> BitsAndBytes −> BitsAndBytes
toBB [] _ bb = bb
toBB (b : r) w bb = Bit b w (toBB r w bb) bb

in toBB (toBits byte) byte (toBitsAndBytes rest)

therefore, saving a pointer to the next byte at every cell. This would proba-
bly have been an elegant way for a Haskell implementation doing Lazy I/O.
However, it is formally hard to capture the semantics of this structure, and
it will result in a massive blowup in the absence of graph reduction. In the
end, we decided to have a bit list as input, and count the number of bits
that have been consumed, as shown in Section 7.2. This leaves us with some
extra work for uncompressed blocks, but it greatly simplifies the relations
that do work on the bit level.

The problem when reading a byte is that we defined bytes to be bit-
vectors. We need to assure Coq that these vectors are indeed of length 8,
which is a bit tedious.

For reading a single bit and just return it, we have the relation
Inductive OneBit : bool −> LB −> Prop :=
| oneBit : forall b, OneBit b [b].

We then simply use our combinator function to read n bits into a list
Definition nBits (n : nat) : LB −> LB −> Prop :=
nTimesCons n OneBit.

Using this relation, we can define a relation that reads n bits into a
vector
Definition nBitsVec (n : nat) (vb : vec bool n) (l : LB)
: Prop := nBits n (to_list vb) l.

We use vec bool 8 as representation for bytes:
Notation Byte := (vec bool 8).

and can then define
Definition OneByte : (Byte + nat*nat)%type −> LB −> Prop :=
AppCombine (nBitsVec 8) inl.

We can now specify reading multiple bytes:
Definition nBytesDirect (n : nat)
: SequenceWithBackRefs Byte −> LB −> Prop :=
nTimesCons n OneByte.

Uncompressed blocks start with two 16 bit numbers, where the second
one is the complement of the first one, and the first one denotes the length.
We can therefore define:



7.4. BACKREFERENCES 75

Definition UncompressedBlockDirect
: SequenceWithBackRefs Byte −> LB −> Prop :=
(readBitsLSB 16) >>=
fun len => (readBitsLSB 16) >>=
fun nlen =>
(fun swbr lb => len + nlen = 2 ^ 16 − 1 /\

nBytesDirect len swbr lb).

7.4 Backreferences
Compressed blocks can make use of run length encoding and backreferences
as found in Lempel-Ziv-compression, being merged into one mechanism,
which we will refer to as backreferences. In Backreferences.v we made
the definition
Function SequenceWithBackRefs A := (list (A+(nat*nat))%type).

An element is therefore either an element of some abstract alphabet A, or
a backreference, which is a pair ⟨l, d⟩ of a length l and a distance d. The
length is the number of bytes to be copied, the distance is the number of
bytes in the backbuffer that has to be skipped before copying. Assuming we
wanted to compress the string

ananas_banana_batata (7.1)

we could shorten it with backreferences to

ananas_b ⟨5, 8⟩ ⟨3, 7⟩ tata (7.2)

An intuitive algorithm to resolve such a backreference would be a loop that
decreases the length and copies one byte from the backbuffer to the front
each time (the example is written in Java):
int resolve (int len, int dist, int pointer, byte[] output) {
while (len > 0) {
output[pointer] = output[pointer−dist] ;
pointer = pointer + 1 ;
len = len − 1 ;}

return pointer ;}

This intuitive algorithm would also work when l > d, and result in a repe-
tition of already written bytes – which is what run length encoding would
do. Therefore, Deflate explicitly allows l > d, allowing us to shorten (7.2)
even further:

an ⟨3, 2⟩ s_b ⟨5, 8⟩ ⟨3, 7⟩ t ⟨3, 2⟩ (7.3)
More directly, the string aaaaaaaargh! can be compressed as a ⟨7, 1⟩ rgh!,
which essentially is run length encoding.

For resolution, we inductively define



76 CHAPTER 7. THE ENCODING RELATION

Inductive nthLast {A : Set}
: forall (n : nat) (L : list A) (a : A), Prop :=
| makeNthLast : forall L M a, nthLast (ll (a :: M))(L ++ a :: M) a.

It is easy to see that this relation formalizes a step of our above algorithm
(ll stands for list length). The relation ResolveBackReference uses
it to resolve a single backreference, and is used by ResolveBackRefer-
ences for complete resolution of backreferences. As a Lemma, we proved
an example from [41] in Backreferences.v:
(** Example from RFC Page 10 with X = 1 and Y = 2*)
Goal ResolveBackReference 5 2 [1; 2] [1; 2; 1; 2; 1; 2; 1]

(** = [1; 2] ++ [1; 2; 1; 2; 1] *).

7.5 Compressed Blocks
There are two types of compressed blocks: One with fixed codings, and
one where the coding is given in an additional header. They share a lot
of definitions, and we put some patterns that frequently occur in common
definitions.

7.5.1 Compressed Code with Extra Bits

Having some element of a coding being followed by a sequence of bits with
a defined length is a pattern that occurs in multiple places. This pattern is
hard to formalize in a readable fashion. So we decided to define one relation
that can handle this pattern in every case that occurs, which made it even
less readable, but is only one relation – we decided that one less readable
definition is better than four of them. We give the relation first, and then
explain its various parts:

1 Inductive CompressedWithExtraBits
2 {m : nat} (coding : deflateCoding m)
3 (mincode : nat) (xbitnums bases maxs : list nat)
4 : nat −> LB −> Prop :=
5 | complength
6 : forall (base extra code max xbitnum : nat) (bbits xbits : LB),
7 dc_enc coding (mincode + code) bbits −> (* code >= mincode *)
8 nth_error xbitnums code = Some xbitnum−>(* # of addit. bits *)
9 nth_error bases code = Some base −> (* base *)

10 nth_error maxs code = Some max −> (* maximum *)
11 ll xbits = xbitnum −> (* addit. bits have specified length *)
12 LSBnat xbits extra −> (* binary number made by xbits *)
13 base + extra <= max −>
14 CompressedWithExtraBits coding mincode xbitnums
15 bases maxs (base + extra) (bbits ++ xbits).



7.5. COMPRESSED BLOCKS 77

During usual compressed blocks, the alphabets of bytes and backreference
instructions are merged. Our relation only wants to handle the codepoints
that can have a suffix and are not just encoding an alphabet. That is, there
is a minimal code that we want to accept. It is the mincode parameter
of our relation. In line 7, you can see the dc_enc relation which says that
the given coding encodes the given codepoint with the given bits. It uses
mincode + code, which makes it impossible to match a code less than
mincode. This also explains the code variable: It is the difference between
the actual codepoint and the minimal code.

It is used as an index for the lists xbitnums, bases and maxs. The
(n - mincode)-th element of the list xbitnums contains the number of
extra bits that the given codepoint n gets. In line 8, this number is read
into xbitnum, which then contains the number of extra bits for the given
code that was encoded by bbits. The actual bits that are in the suffix are
in the list xbits, and in line 11, it is assured that it has apropriate length.

The relation LSBnat relates a bit list to a natural number, by inter-
preting it as binary least-significant-bit-first number. In line 12, it is used
to define extra to be the number encoded by the additional bits. This
number is usually not the actual number that one wants to encode: There
is a base for every codepoint, defined in the list bases, which is read. The
actual number that is encoded is then base + extra, as it is specified in
line 15. As an additional gotcha, it is not always allowed to use the entire
range of values: The codepoint 284 in the usual literal alphabet, see [41],
page 11, gets 5 additional bits, which would make it possible to encode 32
values; however, it can only encode 30 values. As we need to be able to for-
bid the other values, we have the maxs list, which saves the upper bounds
of encoded numbers. The maximum is looked up in line 10, and checked in
line 13.

This relation, though complicated, reflects all the needs for this pattern
in any place it occurs. We will use it multiple times in the following, so
make sure you understood it.

7.5.2 Compressed Data

If you look at the RFC [41], Page 11, you will find the following table:



78 CHAPTER 7. THE ENCODING RELATION

Extra Extra Extra
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66

After a brief look, one could think that the range of encoded lengths is
always 2 to the power of the number of bits. Therefore, one might have the
idea to use some clever function to calculate these bounds. However, a closer
look at code 284 shows that here, for some reason we do not know, only 30
encoded lengths are allowed. We therefore refrained from using any formula
to directly calculate the value, and just copied the min- and max-values
from the tables. We initially did not have such a max-value that limits
the allowed encoded lengths, because we did not notice this non-continuity.
This is one example of a possible source of bugs and the strangeness of the
standard.

We now look at the data part of the compressed blocks, that is, every-
thing besides the headers. This part is common to all compressed blocks.
Function CompressedLength (litlen : deflateCoding 288) :=
CompressedWithExtraBits
litlen 257 repeatCodeExtraBits repeatCodeBase repeatCodeMax.

Function CompressedDist (dist : deflateCoding 32) :=
CompressedWithExtraBits
dist 0 distCodeExtraBits distCodeBase distCodeMax.

These are helper relations that define when a length and a distance are
compressed. The lists of extra bit numbers, bases and maximally allowed
encoded numbers are defined in EncodingRelation.v, they were directly
taken from the lists in [41].
Inductive CompressedSWBR
(litlen : deflateCoding 288) (dist : deflateCoding 32)
: SequenceWithBackRefs Byte −> LB −> Prop :=
| cswbr_end : forall l, dc_enc litlen 256 l −>

CompressedSWBR litlen dist [] l
| cswbr_direct : forall prev_swbr prev_lb l n,

dc_enc litlen (ByteToNat n) l −>
CompressedSWBR litlen dist prev_swbr prev_lb −>
CompressedSWBR litlen dist ((inl n):: prev_swbr)

(l ++ prev_lb)
| cswbr_backref : forall prev_swbr prev_lb l d lbits dbits,

CompressedSWBR litlen dist prev_swbr prev_lb −>
CompressedLength litlen l lbits −>



7.5. COMPRESSED BLOCKS 79

CompressedDist dist d dbits −>
CompressedSWBR litlen dist

((inr (l, d)):: prev_swbr)
(lbits ++ dbits ++ prev_lb).

Two codings, a literal/length coding and a distance coding, are associated
with this relation. The first constructor cswbr_end just expresses that if
the input encodes 256 according to the literal/length coding, the encoded
list is just the empty list, because the codepoint 256 means that the block
ends here. The second constructor cswbr_direct says that if the liter-
al/length coding encodes a number below 256, that is, it encodes a byte
n, we have no backreference at this point, and can add inl n to the list.
The third constructor cswbr_backref uses our above helper relation to
express a length/distance-pair. This relation may be long, but it should be
straightforward.

7.5.3 Statically Compressed Blocks
Statically compressed blocks have fixed literal/length and distance codes.
We define these according to [41],
(** See RFC 1951, section 3.2.6. *)
Definition vector_for_fixed_lit_code : vec nat 288 :=

of_list ((repeat 144 8) ++ (repeat (255 − 143) 9) ++
(repeat (279 − 255) 7) ++ (repeat (287 − 279) 8)).

(** See RFC 1951, section 3.2.6. *)
Definition vector_for_fixed_dist_code : vec nat 32 :=

of_list (repeat 32 5).

and using our constructive existence proof from Section 5 we get codings
from them, fixed_lit_code and fixed_dist_code. See Encoding-
Relation.v for details. With these, defining the parsing relation for stat-
ically compressed blocks is straightforward:
Inductive StaticallyCompressedBlock

(output : SequenceWithBackRefs Byte) : LB −> Prop :=
| makeSCB :

forall input,
CompressedSWBR fixed_lit_code fixed_dist_code output input −>
StaticallyCompressedBlock output input.

7.5.4 Dynamically Compressed Blocks
One of the most complicated parts of the standard are the headers of dynam-
ically compressed blocks. The codings of the compressed data are themselves
compressed by a third coding, and can additionally contain instructions for
a crude form of run length encoding. The third coding is a (possibly trun-
cated) list of bit-triples in a strange order specified in [41]. An additional



80 CHAPTER 7. THE ENCODING RELATION

header of three numbers is used to indicate how many elements every cod-
ing has. This is the problem when trying to give a readable specification:
Everything is interconnected.

The Code-length-code Header We start with the “raw” form of the
first coding, which is just a relation that gets a numeric parameter hclen
and reads that number of bit triples into a list of natural numbers.
Inductive CLCHeaderRaw
: forall (hclen : nat) (input : LB) (output : list nat), Prop :=

| zeroCLCHeaderRaw : CLCHeaderRaw 0 nil nil
| succCLCHeaderRaw : forall n i o j m, CLCHeaderRaw n i o −>

ll m = 3 −> LSBnat m j −> CLCHeaderRaw (S n) (m ++ i) (j :: o).

This is the header that is actually read from the file. It can be at most of
length 19, but if hclen < 19, it is truncated, and the remaining codepoints
are regarded as 0. We therefore add a relation that pads the list we get from
the former relation:
Inductive CLCHeaderPadded
(hclen : nat) (input : LB) (output : list nat) : Prop :=

| makeCLCHeaderPadded : forall m output1,
CLCHeaderRaw hclen input output1 −>
output = output1 ++ repeat m 0 −>
ll output = 19 −>
CLCHeaderPadded hclen input output.

For the next relation, we need the permutation that is specified in [41]:
(** See RFC 1951, section 3.2.7. *)
Definition HCLensNat :=
[16; 17; 18; 0; 8; 7; 9; 6; 10; 5;
11; 4; 12; 3; 13; 2; 14; 1; 15].

With it, we can define a relation that permutes the sequence into the right
order:
Inductive CLCHeaderPermuted

(hclen : nat) (input : LB) (output : list nat) : Prop :=
| makeCLCHeaderPermuted :

forall output1,
CLCHeaderPadded hclen input output1 −>
(forall m, nth_error output (nth m HCLensNat 19) =

nth_error output1 m) −>
CLCHeaderPermuted hclen input output.

Finally, we can give a relation between the input and a Deflate coding, the
code-length-coding, in which the two other codings are then encoded:
Inductive CLCHeader
(hclen : nat) (output : deflateCoding 19) (input : LB) : Prop :=

| makeCLCHeader : forall cooked,
CLCHeaderPermuted hclen input cooked −>



7.5. COMPRESSED BLOCKS 81

CodingOfSequence cooked output −>
CLCHeader hclen output input.

where the relation CodingOfSequence relates a list of code lengths to a
coding with these lengths:
Inductive CodingOfSequence {n : nat} (l : list nat)

(dc : deflateCoding n) :=
| makeCodingOfSequence : forall (eq : ll l = n),

Vmap lb (C _ dc) = vec_id eq (of_list l) −>
CodingOfSequence l dc.

Of course, this relation is only satisfiable under the conditions elaborated
in Section 5, and it is enforced by the dependent record deflateCoding.
Our CLCHeader relation has a parameter hclen which comes from another
header we describe later.

Having read that code, we use it to read the combined code lengths of
the literal/length and distance coding, which are encoded by the code length
coding. The problem is that the codepoints 16, 17 and 18 have a special
meaning. Firstly, they come with suffix bits, for which we use the relation
from Section 7.5.1 to realize this. Secondly, they stand for repetitions of
either zeroes, for 17 and 18, or the last given byte, for 16. The codepoints
17 and 18 can therefore be at the beginning of the sequence, but 16 cannot,
as it depends on a previously given code length. Instead of controlling
this directly, we generate a sequence with backreferences, and then use our
already given mechanism of backreference resolution from Section 7.4, where
we insert trailing zeroes for 17 and 18, and therefore decrease the length by
1. Furthermore, a parameter to the relation counts the number of code
length codes.
Inductive CommonCodeLengthsSWBR (clc : deflateCoding 19)

: nat −> SequenceWithBackRefs nat −> LB −> Prop :=
| cswbr0 : CommonCodeLengthsSWBR clc 0 [] []
| cswbrc :

forall m n brs lb1 input,
CommonCodeLengthsSWBR clc n brs lb1 −>
m < 16 −>
dc_enc clc m input −>
CommonCodeLengthsSWBR clc (n + 1) (inl m :: brs)

(input ++ lb1)
| cswbr16 :

forall m n brs lb1 input,
CommonCodeLengthsSWBR clc n brs lb1 −>
CompressedWithExtraBits clc 16 [2] [3] [6] m input −>
CommonCodeLengthsSWBR clc (n + m) (inr (m, 1) :: brs)

(input ++ lb1)
| cswbr17 :

forall m n brs lb1 input,
CommonCodeLengthsSWBR clc n brs lb1 −>
CompressedWithExtraBits clc 17 [3] [3 − 1] [10 − 1]

m input −>



82 CHAPTER 7. THE ENCODING RELATION

CommonCodeLengthsSWBR clc (n + m + 1)
(inl 0 :: inr (m, 1) :: brs)
(input ++ lb1)

| cswbr18 :
forall m n brs lb1 input,

CommonCodeLengthsSWBR clc n brs lb1 −>
CompressedWithExtraBits clc 18 [7] [11 − 1] [138 − 1]

m input −>
CommonCodeLengthsSWBR clc (n + m + 1)

(inl 0 :: inr (m, 1) :: brs)
(input ++ lb1).

This might be seen controversial, because it is less direct than other
relations. On the other hand, we decided to do it this way, so we can rely on
the correctness of the already given relations, rather than rewriting them.
Inductive CommonCodeLengthsN (clc : deflateCoding 19) (n : nat)

(B : list nat) (A : LB) : Prop :=
| ccl : forall C, CommonCodeLengthsSWBR clc n C A −>

ResolveBackReferences C B −>
CommonCodeLengthsN clc n B A.

Now, the given code lengths must be split into the code lengths of the
literal/length coding, and the code lengths of the distance coding. Addi-
tional headers which we will introduce later will define the numbers of code
lengths belonging to each of them. The rest must be padded by zeroes.
Hence, the following relation:
Inductive SplitCodeLengths (clc : deflateCoding 19)

(hlit hdist : nat) (litlen : vec nat 288)
(dist : vec nat 32) (input : LB)

: Prop :=
| makeSplitCodeLengths :

forall litlenL distL lm ld,
ll litlenL = hlit −>
ll distL = hdist −>
to_list litlen = litlenL ++ repeat lm 0 −>
to_list dist = distL ++ repeat ld 0 −>
CommonCodeLengthsN

clc (hlit + hdist) (litlenL ++ distL) input −>
SplitCodeLengths clc hlit hdist litlen dist input.

This part is an example for a source of confusion: Though the standard
states it, it is easy to overread that the repetition codes may define repeti-
tions that go over the boundary between the literal/length coding and the
code length coding.

Finally, we relate the inputs to their respective codings:
Inductive LitLenDist (clc : deflateCoding 19) (hlit hdist : nat)

(litlen : deflateCoding 288) (dist : deflateCoding 32)
(input : LB) : Prop :=

| makeLitLenDist :
SplitCodeLengths clc hlit hdist



7.6. REFACTORING 83

(Vmap lb (C 288 litlen))
(Vmap lb (C 32 dist)) input −>

LitLenDist clc hlit hdist litlen dist input.

Now, we add the three headers determining the respective lengths of the
particular codings, using our monadic combinator from Section 6.3:
Definition DynamicallyCompressedHeader

: (deflateCoding 288 * deflateCoding 32) −> LB −> Prop :=
(readBitsLSB 5)
>>= fun hlit => (readBitsLSB 5)
>>= fun hdist => (readBitsLSB 4)
>>= fun hclen => (CLCHeader (hclen + 4))
>>= fun clc lld =>

LitLenDist
clc (hlit + 257) (hdist + 1) (fst lld) (snd lld).

As a final step, we can use our CompressedSWBR relation, which we already
used for the statically compressed blocks:
Definition DynamicallyCompressedBlock

: SequenceWithBackRefs Byte −> LB −> Prop :=
DynamicallyCompressedHeader
>>= fun lld => CompressedSWBR (fst lld) (snd lld).

7.6 Refactoring
By adding new abstractions, we could later change some of the definitions
we already made. The problem with changing the specification is, of course,
that it might introduce new bugs. That is why we keep the old definitions
(and suffix them _old), and prove their equivalence with the new definition.
This way, we cannot introduce new bugs. Some examples can be found in
the file EncodingRelationProperties.v.

This is not just theory: We accidentally defined the OneBit relation in
the following way:
Inductive OneBit : bool −> LB −> Prop :=
| oneBit : forall l b, OneBit b (b :: l).

This definition is wrong. We noticed this when we tried to prove the newer
definition of nBytesDirect to be equivalent with the older definition, and
it was not possible.



84 CHAPTER 7. THE ENCODING RELATION



Chapter 8

Efficiency

Our primary goal was to make the specification as simple as possible. We use
very simple data structures in our definitions. More sophisticated structures
would have to be proven correct first.

8.1 Natural Numbers
We mostly used the nat type for numbers, with recursively defined arith-
metic functions. They are natively supported by Coq and are easy to work
with. Unfortunately, Coq does not provide builtins to map the nat type to
bigints internally, as for example Agda does:
data Nat : Set where
zero : Nat
suc : (n : Nat) −> Nat

_+_ : Nat −> Nat −> Nat
zero + m = m
suc n + m = suc (n + m)

_*_ : Nat −> Nat −> Nat
zero * m = zero
suc n * m = m + (n * m)

{−# BUILTIN NATURAL Nat #−}
{−# BUILTIN NATPLUS _+_ #−}
{−# BUILTIN NATTIMES _*_ #−}

Of course, such optimizations enlarge the trusted codebase. Other types like
N which define binary numbers are more efficient, but still not as efficient
as Haskell’s bigints. And while tactics like omega can handle them, they
can be tedious to work with. A generalization that might make things
similar to builtins possible would be to allow substitution of “compatible”
subexpressions in proof trees and recheck them, for some suitable concept of
“compatibility”. One possibility would be to use the typeclass mechanism of

85



86 CHAPTER 8. EFFICIENCY

Coq: Instead of using an algebraic datatype nat, we could define our own
typeclass that defines methods zero, succ and recur and some axioms,
in which we then could embed any definition of natural numbers. But then
again, the standard library contains theorems and functions for raw lists
and natural numbers only, and one would have to rewrite large parts of it.
Another approach might be using Voevodsky’s univalence axiom [100], as
considered in homotopy type theory [97], which makes it possible to replace
a type by an isomorphic one. To this point, however, there is no elegant
way of doing this. Two problems arise from this.

The first problem is that when Coq encounters a large natural number,
it crashes. The following line will crash Coq:

Definition A := 65535%nat.

However, the following line will not:
Definition A := (2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2)%nat.

Our solution uses a technique described in [25]; we define a function that
parses a decimal string into a natural number if possible, and raise a type
error otherwise:
Definition forceOption A Err (o : option A) (err : Err) :
match o with
| Some _ => A
| None => Err

end :=
match o with
| Some a => a
| None => err

end.

Inductive parseError := ParseError.

Fixpoint strToNat (strn : string) : option nat :=
(fix rc str n :=
match str with

| EmptyString => Some n
| String ”0” str => rc str ((10 * n) + 0)
| String ”1” str => rc str ((10 * n) + 1)
| String ”2” str => rc str ((10 * n) + 2)
| String ”3” str => rc str ((10 * n) + 3)
| String ”4” str => rc str ((10 * n) + 4)
| String ”5” str => rc str ((10 * n) + 5)
| String ”6” str => rc str ((10 * n) + 6)
| String ”7” str => rc str ((10 * n) + 7)
| String ”8” str => rc str ((10 * n) + 8)
| String ”9” str => rc str ((10 * n) + 9)
| _ => None

end) strn 0.

Definition d (s : string) :=



8.2. SINGLY-LINKED LISTS 87

forceOption nat parseError (strToNat s) ParseError.

Example e1 : (d”22” : nat) = 22.
Proof. reflexivity. Qed.

Example e3 : (d”1x” : parseError) = ParseError.
Proof. reflexivity. Qed.

The second problem is that in extracted code, the inefficient representa-
tion is reflected. We can, however, give our own interpretations for extracted
types via the Extract Inductive command. For example
Extract Inductive nat =>
”Prelude.Int” [ ”0” ”(1 Prelude.+)” ]
”(let r z s n = case n of { 0 −> z 0 ; ” ++

”q −> s (q Prelude.− 1)} in r)”.

However, the arithmetic functions will still be extracted to their recursive
definitions, and there does not appear to be a designated way of overloading
them. It is possible to abuse another mechanism which realizes axioms to
overload our definition, the Extract Constant command:
Extract Constant plus => ”(Prelude.+)”.
Extract Constant mult => ”(Prelude.*)”.

We use several such commands to optimize our extracted code. In most
cases, it is just a simple optimization; however, it enlarges the trusted code-
base.

Newer versions of Coq have a native int31 type. However, it is only
“native” in Coq: It is defined as a binary number with 31 bits and some rules,
and we would still have to manually add Extract Constant instructions.
We think that extracting from nat and trusting the efficient big-integer
implementations from the target language is a better design choice.

8.2 Singly-linked Lists
Lists are well-understood and simple, therefore we use them in our speci-
fication. Our first extracted algorithm used concatenation a lot, which is
particularly slow with singly-linked lists. Since we thought that concatena-
tion was a major bottleneck, we tried to optimize this using fast catenable
deques [65].

In a purely functional environment like Coq, it is very convenient to
use lazy lists for streamed file-i/o. With Haskell, it is no problem to load
a file into a bit list, because it will lazily build this list, consume this list,
consume the output list and write the output list to the output file. When
we overloaded lists with catenable deques using Extract Constant, it
broke laziness, resulting in the whole file being loaded bitwise into a deque,



88 CHAPTER 8. EFFICIENCY

consuming a lot of memory, while concatenation turned out not to be the
major bottleneck.

8.3 Backreferences
The resolution of backreferences turned out to be the major bottleneck in our
implementation. Our benchmarks in Section 9.3 show that even though we
did not really optimize our implementation much, most of the decompression
algorithm performs well, and gets the job done in seconds.

In an imperative language, one possible intuitive algorithm uses a 32
KiB array ring buffer, in which it saves the last 32 KiB that have been
decompressed:
static class BackRef {

public int length, distance ;
public BackRef() {}}

public static ArrayDeque<Character>
resolve (Deque<Object> input, int buflen) {

ArrayDeque<Character> ret = new ArrayDeque<Character>() ;
Character[] buffer = new Character[buflen] ;
int cptr = 0 ;
Object c ;
while ((c = input.pollFirst()) != null) {

if (c instanceof BackRef) {
int length = ((BackRef)c).length ;
int distance = ((BackRef)c).distance ;
while (length−− > 0) {

Character q =
buffer[ (buflen + cptr − distance) % buflen ] ;

buffer[cptr] = q ;
cptr = (cptr + 1) % buflen ;
ret.addLast(q) ;}}

else if (c instanceof Character) {
buffer[cptr] = (Character) c ;
cptr = (cptr + 1) % buflen ;
ret.addLast((Character)c) ;}}

return ret ;}

This algorithm is fast. However, its invariants are rather complicated. Fur-
thermore, verifying imperative algorithms with Coq is still an active research
topic. We tried to formalize simple state monads with arrays, but it turned
out that this quickly results in a reproduction of separation logic, making it
not easier than using some implementation of it directly [26].

In the presence of uniqueness types, one could reproduce the algorithm
recursively, using a unique array. Neither Haskell nor Coq has uniqueness
types. However, something similar can be done with DiffArrays [10]. We
implemented a function that uses DiffArrays and tested it, see Section 8.4.
Of course, this uses a trick, and increases the trusted codebase. Thoughts on



8.3. BACKREFERENCES 89

how to make this kind of trick typesafe can be found in [98]. Still, having a
really purely functional backreference resolver, without using tricks, seemed
like a desirable goal.

The naïve way of resolving backreferences in a purely functional way is
to save a reverse list of the decompressed data and access it:

resolve :: [Either a (Int , Int)] −> [a] −> [a]
resolve [] _ = []
resolve ((Left b) : r) x = b : resolve r (b : x)
resolve (Right (0, _) : r) x = resolve r x
resolve (Right (l, d) : r) x = (x !! (d − 1)) :

resolve (Right (l−1, d) : r) ((x !! (d − 1)) : x)

This algorithm has two disadvantages. On the one hand, accessing the
n-th element of a list, which it frequently does, takes O(n) time. We can
solve this problem using ExpLists instead of lists:

Inductive ExpList (A : Set) : Set :=
| Enil : ExpList A
| Econs1 : A −> ExpList (A * A) −> ExpList A
| Econs2 : A −> A −> ExpList (A * A) −> ExpList A.

The access time of the n-th element is O(logn); specifically the elements
that have a small distance can be accessed faster, which takes into account
that – in our experience – most backreferences tend to be “near”, that is,
have small distances, and such elements can be accessed faster.

On the other hand, this algorithm will save a reversed version of all of the
decompressed data, so it will waste memory, because it only needs to save
32 KiB. We use another technique which we call Queue of Doom: We save
two ExpLists and memorize how many elements are in them. The front
ExpList is filled until it contains 32 KiB. If a backreference is resolved, and
its distance is larger than the amount of bytes saved in the front ExpList,
it is looked up in the back ExpList. Now, if the front ExpList is 32 KiB
large, the front ExpList becomes the new back ExpList, a new empty
front ExpList is allocated, and the former back ExpList will be doomed
to be eaten by the garbage collector. The following is an illustration of filling
such a queue of doom, the ExpLists are denoted as lists, and their size is



90 CHAPTER 8. EFFICIENCY

– for illustration – only 3:

start [ ] [ ]

push 1 [1] [ ]

push 2 [2; 1] [ ]

push 3 [3; 2; 1] [ ]

push 4 [4] [3; 2; 1] [ ]→A
push 5 [5; 4] [3; 2; 1]

push 6 [6; 5; 4] [3; 2; 1]

push 7 [7] [6; 5; 4] [3; 2; 1]→A

The advantage of this algorithm is that we have a fully verified imple-
mentation in ExpList.v. The disadvantage is that while it does not per-
form badly, it still does not have satisfactory performance, taking several
minutes.

8.4 Using DiffArrays
Our main bottleneck is the resolution of backreferences. While in Section
8.5, we show how to do it efficiently in a purely functional manner, this
specific problem appears to be inherently imperative: it is extremely easy
and fast using a mutable array as a ring buffer. Mutable arrays have the
advantage of O(1) access and modification.

There are several possibilities to utilize arrays in a purely functional
environment, the most popular currently being state monads. A way of
easily getting stateful operations is to use adjustable references [99]. In
some sense, this appears to be the most natural thing to do, since in the
end, every runtime just abstracts away the stateful operations on the actual
hardware. We use our own definition of adjustable arrays in Coq.

We adapted the code from our purely functional implementation with
ExpLists from Section 8.3, rewrote some functions to use the structure in
a more linear fashion, and defined the following axioms the structure needs
to satisfy (we call the structure DiffStack for reasons that will become
apparent later in this chapter):
Axiom DiffStack : Set −> Set.

The structure has a nil value:
Axiom DSNil : forall (A : Set), DiffStack A.
Arguments DSNil [_].

The structure can be converted into a list:



8.4. USING DIFFARRAYS 91

Axiom DStoL : forall (A : Set) (ds : DiffStack A),
list A * DiffStack A.

Arguments DStoL [_].

The structure has a push-operation:
Axiom DSPush : forall (A : Set) (a : A) (ds : DiffStack A),

DiffStack A.
Arguments DSPush [_].

The structure has an n-th operation:
Axiom DSNth : forall (A : Set) (n : nat)

(ds : DiffStack A) (default : A), A * DiffStack A.
Arguments DSNth [_].

The nil-, push- and n-th-operations are compatible with the conversion
to a list:
Axiom NilNil : forall (A : Set), DStoL (@DSNil A) = ([], DSNil).

Axiom PushLst : forall (A : Set) (a : A) b,
fst (DStoL (DSPush a b)) = a :: fst (DStoL b).

Axiom DSNth_nth : forall {A : Set} (x : DiffStack A)
(a : A) (n : nat),

fst (DSNth n x a) = nth n (fst (DStoL x)) a.

These are the most important operations. They can be realized using a
DiffArray and a few simple operations on top. Using these axioms looks like
using a linear type, but the operations are just “faked” linear operations, so
we add add FakeLinear axioms, which tell that the returned structure is
unchanged:
Axiom DSNthFakeLinear : forall {A : Set} n ds d,

snd (@DSNth A n ds d) = ds.

For efficiency, we add an operation to return a reversed list, and a reset-
operation. This is optional, but it should save memory. To extract an
algorithm, we need to add extraction directives:
Extract Constant DiffStack ”q” => ”DiffStackT.DiffStack q”.
Extract Constant DSPush => ”DiffStackT.push”.
Extract Constant DSNth => ”DiffStackT.nth”.
Extract Constant DSNil => ”DiffStackT.newDiffStack”.
Extract Constant DStoL => ”DiffStackT.toList”.
Extract Constant DStoR => ”DiffStackT.toReverseList”.
Extract Constant ResetDS => ”DiffStackT.reset”.

The definition is the structure
data DiffStack a = DiffStack

{ size :: Int



92 CHAPTER 8. A FUNCTIONAL RESOLVER

, sp :: Int
, array :: D.DiffArray Int (Maybe a)
}

As an example, we give the definition of the conversion to list, which is
the most complicated function we need in our trusted codebase:
readArray arr index = (arr D.! index , arr)

toList ' :: D.DiffArray Int (Maybe a) −> Int −> Int −>
[a] −> ([a], D.DiffArray Int (Maybe a))

toList ' ds n sp l =
if n < sp
then case DiffStackT.readArray ds n of

(Nothing , ds_) −> toList ' ds_ (n+1) sp l
(Just x, ds_) −> toList ' ds_ (n+1) sp (x : l)

else (l, ds)

toList :: DiffStack a −> ([a], DiffStack a)
toList ds = let (l, narr) = toList ' (array ds) 0 (sp ds) []

in (l, DiffStack { size = size ds
, sp = sp ds
, array = narr
})

8.5 A Purely Functional, Efficient Backreference-
resolver

All approaches so far save the actually produced output in some structure
which they read afterwards. However, we can use the fact that our window
of backreferences is limited by 32 KiB. The algorithm we present now uses
a “look ahead” approach and reads the sequence in advance, memorizing
the possible backreferences. It uses priority queues to memorize them in the
proper order. We will show this algorithm in multiple steps, where we refine
the intermediate algorithms - which might not be efficient at all - until we
get a purely functional and efficient algorithm.

Due to the lack of time, we did not produce a verified implementation
of this algorithm. However, we tested an unverified implementation in our
benchmarks, see Section 9.3. The part of the implementation we have so
far can be found in DecompressWithPheap.v. However, we will give an
informal proof with a Coq implementation in mind. It should be possible
to translate it to Coq.

The input of the algorithm is a sequence with backreferences, that is, of
type [A + N × N], where the pair of natural numbers encodes a length and
a distance. A trivial transformation we can do is to replace a subsequence
[(Sl, d)] by [(1, d); (l, d)]. Repeating this, and removing possible backrefer-
ences of length 0, we can reduce such a sequence to a sequence in which the



93

length of every backreference is 1. We can then just save it in a sequence of
type [A+ N], only saving the actual distance of this backreference.
Fixpoint BackRefsLengthOne {A : Set}

(swbr : SequenceWithBackRefs A) :=
match swbr with
| [] => []
| (inl x :: r) => inl x :: BackRefsLengthOne r
| (inr (l, d) :: r) => repeat l (inr d) ++

(BackRefsLengthOne r)
end.

This can be done lazily, thus not requiring us to use additional memory.
Notice that after transforming our sequence this way entirely, the input
sequence and the output sequence have the same length.

In the following, we will regard this transformed sequence as our input,
and a sequence with backreferences will be a sequence of type [A+N] rather
than [A + N × N] as before. For the sake of simplicity, we will call the
elements of A “bytes”. Our motivating example would become

an
←
2
←
2
←
2 s_b

←
8
←
8
←
8
←
8
←
8
←
7
←
7
←
7 t
←
2
←
2
←
2

8.5.1 Pairing Heaps
Pairing heaps [16] are purely functional priority queues which are – except
for decrease-key – easy to implement, and have good amortized runtime
behavior. We do not need the decrease-key operation, so we do not
implement it.

Our implementation can be found in Pheap.v. Since we want to be able
to temporarily violate invariants, we decided not to define pairing heaps as
a dependent data structure, but define external properties about it. The
definition of the structure is, besides the declaration of implicit arguments,
the same as in Wikipedia [16].
Inductive pheap A : Type :=
| Empty : pheap A
| Heap : A −> list (pheap A) −> pheap A.

Arguments Empty [_].
Arguments Heap [_] _ _.

We then define some set-theoretic predicates pheap_in, pheap_sub-
seteq, pheap_subsetneq. Since both Heap 1 [Heap 2 [], Heap 3
[]] and Heap 1 [Heap 2 [Heap 3 []]] contain the same elements
{1, 2, 3}, but are clearly not equal, we define an extensional equality
Inductive pheap_in {A} : A −> pheap A −> Prop :=
| H_in : forall a l, pheap_in a (Heap a l)
| L_in : forall a b h l, In h l −> pheap_in a h

−> pheap_in a (Heap b l).



94 CHAPTER 8. A FUNCTIONAL RESOLVER

Definition pheap_subseteq {A} a b :=
forall (x : A), pheap_in x a −> pheap_in x b.

Definition pheap_subsetneq {A} a b :=
@pheap_subseteq A a b /\ exists x, pheap_in x b /\ ~ pheap_in x a.

Definition pheap_ext_eq {A} a b :=
@pheap_subseteq A a b /\ @pheap_subseteq A b a.

which states that both heaps contain the same elements. The main invariant
for pairing heaps is defined as
Inductive pheap_correct {A} (cmp : A −> A −> bool) : pheap A −>

Prop :=
| E_correct : pheap_correct cmp Empty
| H_correct : forall b l, Forall (pheap_correct cmp) l −>

(forall c, pheap_in c (Heap b l)
−> cmp b c = true) −>

pheap_correct cmp (Heap b l).

which states that all subheaps are correct, and that the first element is
smaller, with respect to cmp, than the later elements. Of course, at this
point, we do not have any constraints on cmp. We define this externally,
and only use it when we need it:
Definition cmp_ordering {A} (cmp : A −> A −> bool) :=
(forall a, cmp a a = true) /\
(forall a b c, cmp a b = true −> cmp b c = true

−> cmp a c = true) /\
(forall a b, cmp a b = true −> cmp b a = true −> a = b) /\
(forall a b, cmp a b = true \/ cmp b a = true).

We implement the find_min function and prove its specification:
Lemma find_min_spec : forall {A} (b : A) cmp h,

cmp_ordering cmp −>
pheap_correct cmp h −>
pheap_in b h −>
exists a,

Some a = find_min h /\
cmp a b = true.

Similar for merge
Lemma merge_spec : forall {A} cmp (b : A) g h,

(pheap_in b g \/ pheap_in b h) <−>
pheap_in b (merge cmp g h).

and for insert
Lemma insert_spec :
forall {A} (cmp : A −> A −> bool) (a b : A) (h : pheap A),
cmp_ordering cmp −>
(pheap_in a (insert cmp b h) <−> (a = b \/ pheap_in a h)).



95

For delete_min, the specifications are a little more complicated, as we
need an additional helper function merge_pairs. We will not discuss it
here. We then define a function pheap_num which counts the number of
elements of a heap, and several properties about it, like subadditivity for
merging. We need this to apply well-founded recursion over the number of
elements in a heap, which we use in our algorithms and lemmata.

8.5.2 General Idea
We will first introduce a simpler algorithm to motivate the ideas. The
most important idea of the algorithm is to work with absolute positions of
characters in the list, rather than relative positions, that is, regarding the
input- and output-list as function N → A. This way, we can talk about a
specific backreference which has a unique absolute source and destination.
Obviously, if a backreference ←n is at position t, then t is its destination, and
n− d is its source position.

As a first step of of our simpler algorithm, we collect all the backref-
erences in our input stream into a list of source-destination-pairs, and sort
this list lexicographically:
collect :: SWBR1 a −> [(Int , Int)]
collect s = sort [ (n−d, n) | (Backref_ d, n) <− zip s [0..] ]

Notice that now, the backreferences are sorted according to their source
position. We can resolve the backreferences from such a list with the follow-
ing algorithm:

Let m be some generic map structure, initially empty. The current
absolute position in the input list is saved in a variable n, initially 0.

1. If the sorted backreference list is not empty, remove its first element
and store it as (s, d). Otherwise, proceed at step 4.

2. If s ̸= n, proceed at step 4.

3. If s = n, there is a backreference to the current position n. Peek an
element from the input.

3a. If it is Char_ c, then set m[d] = c, and recur at step 1.
3b. If it is Backref_ _, then set m[d] = m[n], and recur at step 1.

4. Read an element from the input.

4a. If we are at the end of the input, end.
4b. If we read a character Char_ c, write c to the output.
4c. If we read a backreference Backref_ _, write m[n] to the output.

5. Set n = n+ 1 and recur at step 1.



96 CHAPTER 8. A FUNCTIONAL RESOLVER

In Haskell, we could implement it in the following way:
resolve_ :: [BR_ a] −> [(Int , Int)] −> Int −> Map Int a −> [a]
resolve_ l r n m =

let res l r n m =
case l of

[] −> []
(Char_ c : l ') −> c : resolve_ l ' r (n + 1) m
(Backref_ _ : l ') −> (m ! n) : resolve_ l ' r (n+1) m

in case r of
[] −> res l r n m
((s, d) : r ') −>
if (s == n)
then
case l of
(Char_ c : l ') −> resolve_ l r ' n (insert d c m)
(Backref_ _ : l ')−>resolve_ l r ' n(insert d (m ! n) m)

else res l r n m

As can be seen in the highlighted parts of the code, we only ever use the
table to look up the current position. We never look at anything smaller
than the current position afterwards. Therefore, the structure of choice
is a priority queue of destination-character-pairs sorted according to their
destination:
resolve_ :: Ord a => [BR_ a] −> [(Int , Int)] −> Int −>

MinQueue (Int , a) −> [a]
resolve_ l r n m =

let res l r n m =
case l of

[] −> []
(Char_ c : l ') −> c : resolve_ l ' r (n + 1) m
(Backref_ _ : l ') −>

let (_, nm) = findMin m
in nm : resolve_ l ' r (n + 1) (deleteMin m)

in case r of
[] −> res l r n m
((s, d) : r ') −>
if (s == n)
then
case l of
(Char_ c : l ') −> resolve_ l r ' n (insert (d, c) m)
(Backref_ _ : l ') −>

let (_, nm) = findMin m
in resolve_ l r ' n (insert (d, nm) m)

else res l r n m

We sorted the list of pairs in advance. We could as well replace it by a
priority queue which returns the pairs in the right order:
resolve_ l r n m =

let res l r n m =
case l of



97

[] −> []
(Char_ c : l ') −> c : resolve_ l ' r (n + 1) m
(Backref_ _ : l ') −>

let (_, nm) = findMin m
in nm : resolve_ l ' r (n + 1) (deleteMin m)

in case minView r of
Nothing −> res l r n m
Just ((s, d), r ') −>
if (s == n)
then
case l of
(Char_ c : l ') −> resolve_ l r ' n (insert (d, c) m)
(Backref_ _ : l ') −>

let (_, nm) = findMin m
in resolve_ l r ' n (insert (d, nm) m)

else res l r n m

In the highlighted pair, notice that s− d ≤ 32768. Since only pairs with
the current source position are needed, it is sufficient to read 32768 input
characters in advance and make sure that all references are in.

8.5.3 A Formal Proof
This is a proof which is given with the actual verified algorithm in mind,
that is, a proof that is given in a way that should be reproducible in Coq.
Due to the lack of time, we did not manage to implement it in Coq entirely.

Let us call the front position we have m, and the back position n. We call
the two queues b and c. We call the sets of elements of b and c respectively
b and c (so it will be easier to talk about it informally). Let us call i the
input sequence with backreferences of length 1, and r the result with the
resolved backreferences. As we proved strong uniqueness of our relation, r
is unique, so this notion is well-defined. We write o2 7→ o1 to express that
i !! o2 is a backreference to o1, where o1, o2 are absolute positions in i.

Firstly, we have the following two invariants for our priority queues:

b = {(o2, r !! o1) | o1 < n ≤ o2 ∧ o2 7→ o1} (8.1)
c = {(o1, o2) | n ≤ o1 < o2 < m ∧ o2 7→ o1} (8.2)

We furthermore want that n and m have at least distance D if possible:

m− n ≥ D ∨ n = 0 ∨m = len i (8.3)

The algorithm has essentially three phases:

• The start phase, where n = 0 but m− n < D and m ̸= len i.

• The interim phase, where m ̸= len i, and m− n ≥ D.



98 CHAPTER 8. A FUNCTIONAL RESOLVER

• The end phase, where m = len i.

It is a further invariant that:

we will always be in one of these phases (8.4)

Notice that if the data size is ≤ D, then there will be no interim phase.
We have intermediate lists lm and ln, which are truncations of i, respec-

tively, with the invariants

lm = dropm i (8.5)
ln = dropn i (8.6)

where

dropk l =


l for k = 0
[ ] for l = [ ]

dropk′ l
′ for k = k′ + 1 and l = _ :: l′

Therefore, i !! n = ln !! 0 and i !!m = lm !! 0, which means that we can easily
destructure lm and ln at every step.

The state is entirely described by the tuple (n,m, ln, lm, b, c).
In the beginning, n = 0 and m = 0, lm = ln = i, and the priority queues

are empty. The invariants are trivially satisfied at this point, and we are in
the start phase.

As a first subprocedure m_inc, we show that given a tuple (n,m, ln, lm, b, c),
if lm = x :: lm+1, and all the invariants hold, we can increase m consistently,
and modify the other values appropriately, such that the resulting tuple
(n,m+ 1, ln, lm+1, b, c

′) still satisfies all the invariants.

1. If lm = inl _ :: lm+1, we can just return the tuple (n,m+1, ln, lm, b, c).
Invariant (8.2) is preserved: All former elements are still in c, and
the only possible additional element is not a backreference. Invariant
(8.3) is also preserved, since m − n ≥ D implies m + 1 − n ≥ D, and
m = len i cannot hold if lm = inl _ :: lm+1. The other invariants do
not talk about m and can therefore not be violated.

2. If lm = inr d :: lm+1, we first check whether d > m.

(a) If so, this is a format error: A backreference that goes too far.
(b) Otherwise, we have to add (m − d,m) to c. Invariant (8.2) is

preserved: All former elements are still in c, and there can only
be an additional one, which we just added. As in the first case,
replacing m by m+ 1 will not violate any invariant.

We proved this part in DecompressWithPheap.v. Notice that if ini-
tially m−n ≥ D, after the m_inc we have the sharp inequality m−n > D.



99

We need this for the second subprocedure n_inc: We show that if m−n > D
or m = len i and n ̸= len i, and all the invariants hold, we can increase n
consistently, and the resulting tuple will also satisfy all invariants. Trivially,
ln ̸= [ ], therefore, ln = x :: ln+1.

1. If x = inl c, we know that r !! n = c.

2. If x = inr d, by (8.1), we know that (n, r !! n) ∈ b, and furthermore,
this must be the lexicographically smallest element in b, because there
can only be one element with n in the first component, and there can
be no pair with first element < n due to (8.1). Therefore, we can use
find-min and delete-min on b to find this element. We now know
r !! n. Invariant (8.1) may be violated for b′ and n+ 1, but we restore
it in the next step.

We now need to determine all elements of c which have n as their first
component. In this intermediate step, invariant (8.2) will temporarily be
violated. Instead, the following invariant holds:

o2 7→ n→ (o2, r !! n) ∈ b ∨ (n, o2) ∈ c (8.7)

In the beginning, the right side of the disjunction will always hold. We
check with find-min for the minimal element of c and whether it has n
as first component. As long as this is true, we use delete-min, and add
(o2, r !! n) to b. At every step, (8.7) will hold. At every step, c gets smaller,
therefore, at some point, this algorithm terminates. Since then, (n, o2) ∈ c
cannot hold anymore for any o2, we know that for every o2, (o2, r !! n) ∈ b.
Therefore, our new b satisfies the invariant (8.1) for n + 1. Our new c also
trivially satisfies the invariant (8.2) for n+ 1. Also trivially, after applying
this, either m = len i, or m−n ≥ D, since before we had m−n > D and m
increased by one, so invariant (8.3) holds.

Now that we have m_inc and n_inc, we can write the actual algorithm:

• If m = len i

– If n < m, we are in the end phase, and apply n_inc until n = m.
– If n = m, we are done.

• If m ̸= len i

– If m − n < D, then we are in the start phase. Hence, we know
that n = 0 by (8.4). We apply m_inc repeatedly, until m−n ≥ D
or m = len i.



100 CHAPTER 8. A FUNCTIONAL RESOLVER

– If m − n ≥ D we are in the interim phase. We want to increase
both m and n. Since m ≥ n, we know that both ln = xn :: ln+1

and lm = xm :: lm+1. We first apply m_inc, and then n_inc. As
(m+1)− (n+1) = m−n ≥ D, this is allowed. We do this, until
m = len i.



Chapter 9

Extraction and Testing

We depend on some specific Haskell libraries and the specific Coq version
8.6. To make our results reproducable in the future, we decided to provide a
Dockerfile which only depends on Debian Stretch packages. We expect
the Debian Stretch repositories to be archived in the future, as current old
stable versions are, and therefore, our work should be runnable in the future,
even when the software is deprecated.

9.1 Extraction

We chose to name our project “DampFnudeL”. You can download the source
from the GitHub-repository https://github.com/dasuxullebt/DampFnudeL.
This work is about revision 6b04 96d0 ed5a f231 99bf 0a03 e04d
bb9b b037 3873, which you can download via

git clone https://github.com/dasuxullebt/DampFnudeL
cd DampFnudeL
git reset −−hard 6b0496d0ed5af23199bf0a03e04dbb9bb0373873

Notice that it depends on CpdtTactics [38].
In Extraction.v, we define some constants for extraction, like map-

ping Coq strings to Haskell strings. We furthermore overload arithmetic
operations with Haskell’s native operations, which are part of the trusted
codebase. Instead of inlining, we wrote a Haskell module Extraction which
can be found in Extraction.hs, which defines functions that we use.

We define a function DeflateTest that essentially uses our strong
decidability proof to decide whether a given dataset can be decompressed.
It is then called with the given files and command line arguments by the
main method of the respective Haskell module.

To make it easier to reproduce our benchmarks, as well as install the
several dependencies, we define a Docker container which bases on Debian
Stretch.

101

https://github.com/dasuxullebt/DampFnudeL


102 CHAPTER 9. EXTRACTION AND TESTING

9.1.1 Compatibility
Originally, we aimed to be compatible with a range of Coq versions. How-
ever, Coq changes its library names and syntax throughout the versions we
like to support. For example, version 8.7 requires a package FunInd to be
imported to use functional induction, but this package is not recognized by
former versions.

One way of coping with this is given in [39]: Using the eRuby template
engine, it is possible to match on the current Coq version, and insert code
depending on it. We tried this, but as the tool support is not yet given, we
decided to only support Coq version 8.6.1 for now.

9.1.2 Makefile
We require GNU Make for building. We define tests with names of the form
NoRBR-alice29.txt, which contain the test name, and the name of the
file.

The build process involves compiling the Coq files, for which we wrote
a simple Ruby script which detects the dependencies of our Coq files, and
generates a file coqfiles.mak, which we include in our Makefile. We had
to manually delete the entries that actually create extracted Haskell-files,
and put them in the main makefile. Then, the extracted Haskell-files are
patched with AWK, so they include our Extraction package and several
dependencies. This is necessary, since the program extraction facility of
Coq does not allow adding dependencies directly.

9.2 Testing Unverified Algorithms
Since writing a verified algorithm is usually a lot harder than writing an
algorithm without verification, it is desirable to know whether the approach
of that algorithm is worthwile. Using our modular approach, it was possible
to test different algorithms, before actually verifying them.

The bottleneck of our current implementation, namely the resolution
of backreferences, was a natural candidate for applying this technique. In
Section 9.3.4, we will discuss an example.

9.3 Benchmarks
While we verified the correctness of our program, we did not verify its space
and time requirements. To get exact boundaries, we would require a clear
order of evaluation, and the speed of all elementary evaluations, while the
asymptotic behavior of the algorithms is clear in most cases. There are
approaches to get such boundaries automatically, like Resource Aware ML
[58]. We chose to test the requirements directly.



9.3. BENCHMARKS 103

Since decompression usually means doing the same thing very often,
there is lots of potential for optimization at almost every level. We followed
the usual top-down approach, and profiled our implementation, and it turned
out that the resolution of backreferences (see Section 7.4) was the major
bottleneck, lifting the time of execution from seconds to minutes (See Section
9.3).

We did not optimize for space yet, and our implementation uses lots of
memory, but in Section 6.4, we suggest how to lower the space requirements
(we mainly use stack space because of exception propagation).

We wrote a tool that uses time(1) to measure the runtime and memory
consumption, and save it to an SQLite database. We use the Canterbury
Corpus [5]. As most of our examples are about decompression, we compress
it with gzip beforehand, except for our compression algorithm.

Some common functions, like converting the internal representation of
bytes to Haskell’s bytes, can be found in DecompressHelper.hs.

The benchmarks have been made on an Intel(R) Core(TM) i5-
2520M CPU @ 2.50GHz with 2 cores á 2 threads.

9.3.1 No Backreferences

To test the bottleneck of our implementation, we removed several parts and
tested how fast the rest is. Leaving out the resolution of backreferences
shows that this is actually the part that takes most time, and while the rest
is still several magnitudes worse than the ZLib, it only takes seconds, which
is satisfactory at this point.

Memory (KiB) Time (s) File
62900 0.96 alice29.txt
53224 0.96 asyoulik.txt
17540 0.17 cp.html
11332 0.1 fields.c
9268 0.06 grammar.lsp
273524 5.93 kennedy.xls
168032 2.94 lcet10.txt
210048 4.09 plrabn12.txt
81048 1.66 ptt5
21560 0.4 sum
10220 0.05 xargs.1

9.3.2 With ExpLists

These are the benchmarks for the implementation we described in Section
8.3, which uses exponential lists. It is comparably slow. The memory foot-
print is, however, comparable to the other implementations. Still, this is a



104 CHAPTER 9. EXTRACTION AND TESTING

purely functional and fully verified decompression mechanism that does not
use any additional axioms whatsoever.

Memory (KiB) Time (s) File
93276 727.25 alice29.txt
76952 628.5 asyoulik.txt
18488 86.73 cp.html
11368 4.22 fields.c
9268 0.27 grammar.lsp
590924 3540.27 kennedy.xls
251992 1958.08 lcet10.txt
284760 2177.95 plrabn12.txt
296036 2241.7 ptt5
24672 177.54 sum
10352 0.42 xargs.1

9.3.3 With DiffArrays

Our implementation with DiffArrays, as described in Section 8.4, takes more
memory than expected. We assume that some optimization process destroys
linearity, and makes it necessary to copy the array at some point. However,
the runtime is satisfactory.

Memory (KiB) Time (s) File
62936 1.69 alice29.txt
57812 1.52 asyoulik.txt
17868 0.31 cp.html
12756 0.15 fields.c
9232 0.08 grammar.lsp
422320 9.96 kennedy.xls
166312 4.65 lcet10.txt
210352 6.12 plrabn12.txt
186848 3.96 ptt5
24912 0.63 sum
9644 0.09 xargs.1

9.3.4 Unverified Functional Resolver

Here, we used the algorithm described in Section 8.5, but did not verify
it. This implementation can compete with the former implementation with
DiffArrays regarding runtime, but the memory footprint is much larger.



9.3. BENCHMARKS 105

Memory (KiB) Time (s) File
149652 4.05 alice29.txt
122012 3.43 asyoulik.txt
28796 0.56 cp.html
14448 0.25 fields.c
9348 0.11 grammar.lsp
949392 17.42 kennedy.xls
423100 10.72 lcet10.txt
474220 12.78 plrabn12.txt
476308 7.5 ptt5
42136 0.85 sum
10272 0.14 xargs.1

9.3.5 Compression

For compression, we wrote a helper function gzclad which adds a GZip
header and the required CRC32 checksum to the compressed deflate stream.
Our compression algorithm is purely functional, and only finds repetitions
for possible backreferences, but does not utilize dynamic Huffman codings.
In the following table, the memory sizes are given in KiB:

File Original Compressed Time (s) Memory
alice29.txt 152 116 458.91 187640
asyoulik.txt 124 96 311.93 150748
cp.html 28 16 9.1 40124
fields.c 12 8 1.76 21592
grammar.lsp 4 4 0.31 10316
kennedy.xls 1008 432 4483.02 1004784
lcet10.txt 420 320 2478.75 479324
plrabn12.txt 472 384 3045.61 568528
ptt5 504 264 3444.06 612544
sum 40 24 21.71 51384
xargs.1 8 4 0.28 10404

The best compression ratio is gained for kennedy.xls, since this file
contains lots of repetitions. However, this comes at the cost of memory
and runtime. Though the runtime and memory costs of our compression
program are not good, they are satisfactory, since we did not optimize the
compression algorithm yet, and it only uses purely functional structures.
In this thesis, we focused on decompression; writing a better compression
algorithm is further work.



106 CHAPTER 9. EXTRACTION AND TESTING

9.4 Building and Running
In this section we describe how to build the Docker container which con-
tains our project, and run the benchmarks. Another thing we had to test
was whether our specification is conformant with what other implementa-
tions understand as “Deflate” – the specification is axiomatic, and while it
definitely describes a data compression format, there is no way of formally
verifying that it really conforms to the informal specification. We there-
fore also describe how to test our algorithms with real-life data, using bind
mounts.

We hope that in the future, it will still be possible to build the Docker
container this way. However, there might be adaptations necessary, which
we cannot foresee at the time of writing.

To build the Docker container, cd into the software directory, and run
$ docker build .

This should result in a prompt of a successfully built container, which
has an ID that might be different from the ID we use here, so just substitute
the ID from your output prompt
Successfully built 66ef0ea29d8d

We assume that we have a directory /tmp/gztest in which there is
a file decomp.gz and a file comp.txt which we want to decompress and
compress. We bindmount this to /mnt, and start the container with the
argument -it to get a command prompt:
$ docker run −v /tmp/gztest:/mnt −it 66ef0ea29d8d

The contents of our project are in the directory /var/deflate, and
the benchmark process can be run using make Benchmarks; you can pass
-j $(nproc) to utilize multiple cores.
# cd /var/deflate
# make −j $(nproc) Benchmarks

The benchmarks will take a while. The command builds the executables
from our code, and runs the benchmarks on the Canterbury Corpus, and
generates an SQLite file benchs.db which can be accessed using SQLite3:
# sqlite3 benchs.db
sqlite> .mode column
sqlite> .header on
sqlite> select max_mem_ki_bs,runtime_secs,arguments from benchmark

...> where command = './CompressMain ';

gives an overview over the benchmarks for the compression, for example.
Notice that the argument strings start with “s”, which is a type indicator
for the Haskell database framework.



9.4. BUILDING AND RUNNING 107

To decompress the file we bind-mounted using the DiffArray method,
use
# ./DiffStackMain /mnt/decomp.gz /mnt/decomp

To compress, use
# ./CompressMain /mnt/comp.txt /mnt/comp.txt.gz



108 CHAPTER 9. EXTRACTION AND TESTING



Chapter 10

Conclusion

Our contribution is a complete mathematical formalization of Deflate. We
formalized the proofs in Coq, such that an implementation of a decompres-
sion algorithm in Haskell can be extracted. We tested this implementation
against some datasets, and observed that it is compatible with other imple-
mentations of Deflate.

10.1 Further Work

10.1.1 Streamable Strong Decidability

As we showed in Section 6.4, it should be possible to rapidly decrease mem-
ory consumption by switching from strong decidability to streamable strong
decidability. This seems to be a worthwile next step for making the project
more useful.

10.1.2 Fast Compression

The compression algorithm is still slow. We hope to be able to make it
faster, with the knowledge we gained by optimizing the other algorithms.
Probably, using a DiffArray-based hashtable as a heuristic for backreferences
instead of an AVL-based hashtable which we did in our implementation will
bring a lot of speedup.

10.1.3 Trusted Codebase

The trusted codebase of our project is still large. In this section, we will
discuss to what extent we could reduce it, and how this could be achieved.
Of course, to this point, it is inevitable to trust the underlying hardware
and operating system, so we will focus on things above that level.

109



110 CHAPTER 10. CONCLUSION

Coq We have to trust Coq itself. Coq is an LCF-Style theorem prover,
meaning that we do not have to trust its tactics, but only the Kernel which
checks proofs. This kernel is a short Ocaml program, but it might still
contain bugs. In one case, a bug was introduced by an optimization, and it
was possible to derive False [44].

However, this bug required explicit crafting. Of the proofs we give,
only trivial parts are computer generated, and the main ideas are thought
through. Hence, it seems extremely unlikely, that such a bug would invali-
date the derived guarantees.

Another danger comes from the theory itself, which might be inconsis-
tent. However, we only use a small fragment of the actual type universe,
and our relations and proofs should be portable into any other commonly
used theory.

Hence, this part of the codebase is probably the most trustworthy we
will work with. It is not possible to remove this part of the trusted code-
base. There are efforts like the Coq in Coq project [29], that try to verify
Coq inside itself. However, this is not entirely possible, which follows from
Gödel’s incompleteness theorem.

Extraction Besides Coq itself, we trust the program extraction mecha-
nism which is itself not verified. It might be possible that extracted programs
do not reflect the given proofs. To prove this, we would need a semantic of
the language we extract to. There are efforts for a verified extraction mech-
anism [62], but these are outside the scope of this work. Program extraction
is – for the largest part – straightforward, and we do not believe that there
are major bugs that can invalidate our results.

Ocaml As Coq is written in Ocaml, we have to trust the Ocaml compiler
and runtime. Ocaml is a widely used industrial quality programming lan-
guage, and the Coq proofchecker’s code does only use simple terminology
every other sophisticated program uses, and hence, is trustworthy in the
sense that all relevant bugs have probably been found. There are projects
like CakeML [4] which try to cope with this problem, but at the time we
wrote our project, these were not developed far enough to be used.

GHC, big integers Finally, we trust the Glasgow Haskell Compiler. This
is probably the most critical part, as GHC does a lot of optimization and
has a sophisticated runtime.

We rely on its big integer implementation. This dependency could be
removed, by rewriting parts of the implementation using Coq’s binary in-
tegers or native integers. However, we do not think that this is worthwile,
since big integers and the parts we use – mostly addition and comparison –
are not complicated or hard to implement.



10.1. FURTHER WORK 111

We could at least replace these parts with Ocaml, so we would not have to
trust two programming languages. However, we also rely on lazy evaluation.

Lazy Evaluation As we explicitly rely on lazy evaluation for I/O, we
cannot just switch to Ocaml, which uses eager evaluation. An alternative
that looks suitable are iteratees and enumeratees as defined in [68]; these
are one possible alternative that would also work in Ocaml. However, inside
Coq, there is no ready to use library for them. At this point, we do not have
time to implement one ourselves.

Memory We trust the automatic memory management of GHC. For ex-
ample, our queues of doom from Section 8.3 require them. In a purely
functional setting, it seems impossible not to rely on it.

10.1.4 Imperative Implementation
In Section 1 we already pointed out an easy way to get a verified compression
algorithm from an unverified compression algorithm. While we also pointed
out why this is not the way to go, it is a benchmark that an implementation
should always keep in mind. Though our implementation behaves well and
we could get the runtime behavior down to a useful level, it is still slower
than this implementation applied to the Zlib would be, and it is probably
possible to optimize the code even further in a purely functional fashion,
which would be interesting for its own sake.

However, for improvements into that direction, one should note that the
Deflate standard was probably made with imperative low-level programming
techniques rather than functional programming in mind. To give an imper-
ative algorithm and verify it in Coq, there are several possibilities. One is
the technique of using a Hoare state monad [92], and axiomatizing Haskell’s
ST monads or using the stateful operations from OCaml. This is probably
the least intrusive technique, but the trusted codebase will remain large.
The same goes for Ynot [22], which is a framework for simple imperative
programs, which are then extracted to Ocaml.

The usual tool being used for the desired level of efficiency is the C
programming language. And in fact, it has a complete toolchain which is
already verified, the CompCert compiler, as well as the Verified Software
Toolchain [26], everything already formalized in Coq. It should therefore be
possible to use our specification to verify a C implementation of Deflate.

Another System is Frama C [12] with its Jessie plugin that allows the use
of the Ansi/C specification language (ACSL). It can utilize many automatic
provers and proof assistants, also Coq. However, it is not formalized in Coq
itself.

While these tools are still quite complicated, they make the implementa-
tion of a fast verified ZLib replacement realistic, especially since it has to be



112 CHAPTER 10. CONCLUSION

programmed only once, and could then be used everywhere. Such an imple-
mentation would be both of practical use, and it would show the strengths
and weaknesses of the said tools, and could lead to an improvement of those.

As a more general approach, one could use the Verified Software Toolchain
to write a formally verified program extraction mechanism to C.

10.1.5 Usage In Other Projects
After the aforementioned natural next steps, like the formalization to gain
a complete implementation of a verified compression and expansion tool
with competitive runtime and memory requirements, we could furthermore
think of embedding it into other projects, as Deflate is used in many other
standards; for example, the Quark browser [63] or MiTLS [32].

10.1.6 Other System Components
Of course, besides optimizing this specific project, there are other middle-
ware system components that can be verified in a similar manner. Firstly,
there are the many other compression formats like BZip2, Zip and XZ. Then,
there are archive formats like tar and zip. Several formats that are using
Deflate internally could be verified too, for example, the PNG format en-
codes graphics. Formats like PNG and FLAC produce lossless compression
of graphics and sound, which means that one should be able to give a rela-
tion between a pixel matrix or sample sequence and the data stream. An
interesting other problem would be using lossy compression schemes, where
one would have to find apropriate relaxations of this strict scheme. Further-
more, one could think of a verified parser for more high-level formats like
XML, which allows for validation, and on which many other formats base.
Then, similarly to lossy compression, tag soup parsers, which are not exact,
but relaxed, are an interesting problem for verification.

Then, there are several protocols that can be verified, like SMTP, HTTP,
XMPP. Also, a verified content management system would be useful, which
guarantees that only authenticated persons can access respective content.
In that context, a verified implementation of the CommonMark standard
[8] sounds interesting. A verified revision control system which guarantees
not to lose old versions and gives some guarantees for merging also sounds
like a reasonable goal.

10.2 Lessions Learned
While we tried to use low-level direct proving in the beginning, with as few
tactics as possible, we quickly learned that the use of tactics improves the
readability of proofs and often makes them self-documenting. Documenta-
tion on parts that are less clear helps, especially in cases where Coq version



10.2. LESSIONS LEARNED 113

changes break compatibility. While program extraction was a very good
way of prototyping, this special kind of problem appears to be better solved
imperatively, especially the resolution of backreferences. Our successful use
of DiffArrays shows that linear types would be a nice feature that would
enable us to do such a thing directly and without tricks.



114 CHAPTER 10. CONCLUSION



Bibliography

[1] Agda, http://wiki.portal.chalmers.se/agda/pmwiki.php, accessed:
2017-11-17

[2] Alte und neue Blindenschriften, http://www.fakoo.de/
blindenschriften.html#zeitleiste, accessed: 2017-11-15

[3] Brailleschrift, https://de.wikipedia.org/wiki/Brailleschrift, accessed:
2017-11-15

[4] Cakeml – a verified implementation of ml, https://cakeml.org, ac-
cessed: 2017-11-17

[5] The canterbury corpus, http://corpus.canterbury.ac.nz/g, accessed:
2017-11-17

[6] Certicrypt: Computer-aided cryptographic proofs in coq, http://
certicrypt.gforge.inria.fr/

[7] Chicken scheme, http://www.call-cc.org/, accessed: 2017-11-17

[8] Commonmark – a strongly defined, highly compatible specification of
markdown, http://commonmark.org/, accessed: 2017-11-27

[9] Data structure is extracted twice, https://coq.inria.fr/bugs/show_
bug.cgi?id=5754, accessed: 2017-11-17

[10] The diffarray package, https://hackage.haskell.org/package/diffarray,
accessed: 2017-11-17

[11] Emscripten, https://en.wikipedia.org/wiki/Emscripten, accessed:
2017-11-17

[12] Frama C, http://frama-c.com/, accessed: 2017-11-17

[13] Idris | a language with dependent types, http://www.idris-lang.org/,
accessed: 2017-11-17

[14] Jeffrey mark siskind’s software, https://engineering.purdue.edu/
~qobi/software.html, accessed: 2017-11-17

115

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.fakoo.de/blindenschriften.html#zeitleiste
http://www.fakoo.de/blindenschriften.html#zeitleiste
https://de.wikipedia.org/wiki/Brailleschrift
https://cakeml.org
http://corpus.canterbury.ac.nz/g
http://certicrypt.gforge.inria.fr/
http://certicrypt.gforge.inria.fr/
http://www.call-cc.org/
http://commonmark.org/
https://coq.inria.fr/bugs/show_bug.cgi?id=5754
https://coq.inria.fr/bugs/show_bug.cgi?id=5754
https://hackage.haskell.org/package/diffarray
https://en.wikipedia.org/wiki/Emscripten
http://frama-c.com/
http://www.idris-lang.org/
https://engineering.purdue.edu/~qobi/software.html
https://engineering.purdue.edu/~qobi/software.html


116 BIBLIOGRAPHY

[15] Morse code, https://en.wikipedia.org/wiki/Morse_code, accessed:
2017-11-15

[16] Pairing heap, https://en.wikipedia.org/wiki/Pairing_heap, accessed:
2017-11-17

[17] The reference implementation of the linux fuse (filesystem in
userspace) interface, https://github.com/libfuse/libfuse, accessed:
2017-11-17

[18] Three examples of problems with lazy i/o, http://newartisans.com/
2013/05/three-examples-of-problems-with-lazy-io/, accessed: 2017-
11-17

[19] Using the ring solver, http://wiki.portal.chalmers.se/agda/%5C?n=
Libraries.UsingTheRingSolver, accessed: 2017-11-17

[20] Vellvm: Verifying the llvm, http://www.cis.upenn.edu/~stevez/
vellvm/, accessed: 2017-11-17

[21] Welcome to native client, https://developer.chrome.com/
native-client, accessed: 2017-11-17

[22] The Ynot project, http://ynot.cs.harvard.edu/, accessed: 2017-11-17

[23] Ackermann, W.: Zum hilbertschen Aufbau der reellen Zahlen. Math-
ematische Annalen 99(1), 118–133 (1928)

[24] Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of shannon’s
theorems. Journal of Automated Reasoning 53(1), 63–103 (2014), http:
//dx.doi.org/10.1007/s10817-013-9298-1

[25] de Amorim, A.A.: Parse errors as type errors, http://poleiro.info/
posts/2013-04-03-parse-errors-as-type-errors.html, accessed: 2017-11-
17

[26] Appel, A.W.: Program Logics for Certified Compilers. Cambridge
University Press (April 2014)

[27] Avigad, J., Feferman, S.: Gödel’s functional (“dialectica”) interpreta-
tion. Handbook of proof theory 137, 337–405 (1998)

[28] Bailey, D.: Raising lazarus - the 20 year old bug that
went to mars, http://blog.securitymouse.com/2014/06/
raising-lazarus-20-year-old-bug-that.html, accessed: 2017-11-17

[29] Barras, B.: A formalisation of the calculus of constructions, https:
//github.com/coq-contribs/coq-in-coq, accessed: 2017-11-17

https://en.wikipedia.org/wiki/Morse_code
https://en.wikipedia.org/wiki/Pairing_heap
https://github.com/libfuse/libfuse
http://newartisans.com/2013/05/three-examples-of-problems-with-lazy-io/
http://newartisans.com/2013/05/three-examples-of-problems-with-lazy-io/
http://wiki.portal.chalmers.se/agda/%5C?n=Libraries.UsingTheRingSolver
http://wiki.portal.chalmers.se/agda/%5C?n=Libraries.UsingTheRingSolver
http://www.cis.upenn.edu/~stevez/vellvm/
http://www.cis.upenn.edu/~stevez/vellvm/
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client
http://ynot.cs.harvard.edu/
http://dx.doi.org/10.1007/s10817-013-9298-1
http://dx.doi.org/10.1007/s10817-013-9298-1
http://poleiro.info/posts/2013-04-03-parse-errors-as-type-errors.html
http://poleiro.info/posts/2013-04-03-parse-errors-as-type-errors.html
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
https://github.com/coq-contribs/coq-in-coq
https://github.com/coq-contribs/coq-in-coq


BIBLIOGRAPHY 117

[30] Berger, U., Jones, A., Seisenberger, M.: Program extraction applied to
monadic parsing. Journal of Logic and Computation p. exv078 (2015)

[31] Berger, U., Schwichtenberg, H., Seisenberger, M.: The warshall algo-
rithm and dickson’s lemma: Two examples of realistic program ex-
traction. Journal of Automated Reasoning 26(2), 205–221 (2001)

[32] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.:
Implementing tls with verified cryptographic security (2013), http:
//www.mitls.org/downloads/miTLS-report.pdf, accessed: 2017-11-17

[33] Blanchette, J.C.: Proof pearl: Mechanizing the textbook proof of
huffman’s algorithm. J. Autom. Reason. 43(1), 1–18 (Jun 2009), http:
//dx.doi.org/10.1007/s10817-009-9116-y

[34] Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression
algorithm (1994)

[35] Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zel-
dovich, N.: Using crash hoare logic for certifying the fscq file system.
In: Proceedings of the 25th Symposium on Operating Systems Prin-
ciples. pp. 18–37. ACM (2015)

[36] Chlipala, A.: The bedrock tutorial, http://plv.csail.mit.edu/bedrock/
tutorial.pdf, accessed: 2017-11-17

[37] Chlipala, A.: Certified programming with dependent types (2011)

[38] Chlipala, A.: Certified Programming with Dependent Types: A Prag-
matic Introduction to the Coq Proof Assistant. MIT Press (2013)

[39] Claret, G.: Why and how to write code compati-
ble with many coq versions, http://coq-blog.clarus.me/
why-and-how-to-write-code-compatible-with-many-coq-versions.
html, accessed: 2017-11-17

[40] Danielsson, N.A.: Total parser combinators. In: ACM Sigplan Notices.
vol. 45, pp. 285–296. ACM (2010)

[41] Deutsch, P.: DEFLATE Compressed Data Format Specification ver-
sion 1.3. RFC 1951 (Informational) (May 1996), http://www.ietf.org/
rfc/rfc1951.txt

[42] Deutsch, P.: GZIP file format specification version 4.3. RFC 1952
(Informational) (May 1996), http://www.ietf.org/rfc/rfc1952.txt

[43] Deutsch, P., Gailly, J.L.: ZLIB Compressed Data Format Specification
version 3.3. RFC 1950 (Informational) (May 1996), http://www.ietf.
org/rfc/rfc1950.txt

http://www.mitls.org/downloads/miTLS-report.pdf
http://www.mitls.org/downloads/miTLS-report.pdf
http://dx.doi.org/10.1007/s10817-009-9116-y
http://dx.doi.org/10.1007/s10817-009-9116-y
http://plv.csail.mit.edu/bedrock/tutorial.pdf
http://plv.csail.mit.edu/bedrock/tutorial.pdf
http://coq-blog.clarus.me/why-and-how-to-write-code-compatible-with-many-coq-versions.html
http://coq-blog.clarus.me/why-and-how-to-write-code-compatible-with-many-coq-versions.html
http://coq-blog.clarus.me/why-and-how-to-write-code-compatible-with-many-coq-versions.html
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1950.txt


118 BIBLIOGRAPHY

[44] Dénès, M., Pédrot, P.M.: A proof of false, https://github.com/clarus/
falso, accessed: 2017-11-17

[45] Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A.,
Smaus, J.G.: A Fully Verified Executable LTL Model Checker, pp.
463–478. Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http:
//dx.doi.org/10.1007/978-3-642-39799-8_31

[46] Fano, R.M.: The transmission of information. Massachusetts Institute
of Technology, Research Laboratory of Electronics Cambridge, Mass,
USA (1949)

[47] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,
P., Berners-Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC
2616 (Draft Standard) (Jun 1999), http://www.ietf.org/rfc/rfc2616.
txt, obsoleted by RFCs 7230, 7231, 7232, 7233, 7234, 7235, updated
by RFCs 2817, 5785, 6266, 6585

[48] Floyd, R.: Assigning meanings to programs. In: Proceedings of the
American Mathematical Society Symposia on Applied Mathematics.
vol. 19, pp. 19–31 (1967)

[49] Fonseca, P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical
study on the correctness of formally verified distributed systems. In:
Proceedings of the Twelfth European Conference on Computer Sys-
tems. pp. 328–343. EuroSys ’17, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3064176.3064183

[50] Gennari, J.: The zlib compression library is vulnerable to a denial-of-
service condition, http://www.kb.cert.org/vuls/id/238678, accessed:
2017-11-17

[51] Gennari, J.: zlib inflate() routine vulnerable to buffer overflow, http:
//www.kb.cert.org/vuls/id/680620, accessed: 2017-11-17

[52] Godefroid, P.: dynamic software model checking (sep 2014), https://
patricegodefroid.github.io/public_psfiles/talk-emc2014.pdf, accessed:
2017-11-17

[53] Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme i. Monatshefte für mathematik und
physik 38(1), 173–198 (1931)

[54] Gödel, V.K.: Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunktes. dialectica 12(3-4), 280–287 (1958)

[55] Gonthier, G.: Formal proof–the four-color theorem. Notices of the
AMS 55(11), 1382–1393 (2008)

https://github.com/clarus/falso
https://github.com/clarus/falso
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://doi.acm.org/10.1145/3064176.3064183
http://www.kb.cert.org/vuls/id/238678
http://www.kb.cert.org/vuls/id/680620
http://www.kb.cert.org/vuls/id/680620
https://patricegodefroid.github.io/public_psfiles/talk-emc2014.pdf
https://patricegodefroid.github.io/public_psfiles/talk-emc2014.pdf


BIBLIOGRAPHY 119

[56] Google Inc.: Zopfli compression algorithm, https://github.com/
google/zopfli, accessed: 2017-11-17

[57] Hoare, C.A.R.: An axiomatic basis for computer programming. Com-
munications of the ACM 12(10), 576–580 (1969)

[58] Hoffmann, J.: Resource aware ml, http://www.raml.co/, accessed:
2017-11-17

[59] Hollenbeck, S.: Transport Layer Security Protocol Compression Meth-
ods. RFC 3749 (Proposed Standard) (May 2004), http://www.ietf.
org/rfc/rfc3749.txt

[60] Howard, W.A.: The formulae-as-types notion of construction (1969)

[61] Huffman, D.: A method for the construction of minimum-redundancy
codes. Proceedings of the IRE 40(9), 1098–1101 (Sept 1952)

[62] Hupel, L.: private communication (2016)

[63] Jang, D., Tatlock, Z., Lerner, S.: Establishing browser security guar-
antees through formal shim verification. In: Proceedings of the 21st
USENIX conference on Security symposium. pp. 8–8. USENIX Asso-
ciation (2012)

[64] Kanav, S., Lammich, P., Popescu, A.: A conference management sys-
tem with verified document confidentiality. In: International Confer-
ence on Computer Aided Verification. pp. 167–183. Springer (2014)

[65] Kaplan, H., Tarjan, R.E.: Purely functional representations of caten-
able sorted lists. In: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing. pp. 202–211. ACM (1996)

[66] Kaplan, H., Tarjan, R.E.: Purely functional, real-time deques with
catenation. J. ACM 46(5), 577–603 (Sep 1999), http://doi.acm.org/
10.1145/324133.324139

[67] Kelsey, J.: Compression and information leakage of plaintext. In:
Fast Software Encryption, 9th International Workshop, FSE 2002,
Leuven, Belgium, February 4-6, 2002, Revised Papers. Lecture Notes
in Computer Science, vol. 2365, pp. 263–276. Springer (2002), http:
//www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf

[68] Kiselyov, O.: Iteratees. Functional and Logic Programming pp. 166–
181 (2012)

[69] Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T.,
Kolanski, R., Heiser, G.: Comprehensive formal verification of an OS

https://github.com/google/zopfli
https://github.com/google/zopfli
http://www.raml.co/
http://www.ietf.org/rfc/rfc3749.txt
http://www.ietf.org/rfc/rfc3749.txt
http://doi.acm.org/10.1145/324133.324139
http://doi.acm.org/10.1145/324133.324139
http://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
http://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf


120 BIBLIOGRAPHY

microkernel. ACM Transactions on Computer Systems 32(1), 2:1–2:70
(feb 2014)

[70] Lawrence, A., Berger, U., Seisenberger, M.: Extracting a dpll algo-
rithm (2012)

[71] Leroy, X.: Formal verification of a realistic compiler. Communications
of the ACM 52(7), 107–115 (2009), http://gallium.inria.fr/~xleroy/
publi/compcert-CACM.pdf

[72] Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a
verified relational database management system. In: Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 237–248. POPL ’10, ACM, New York,
NY, USA (2010), http://doi.acm.org/10.1145/1706299.1706329

[73] Martin-Löf, P.: Constructive mathematics and computer program-
ming. In: L. Jonathan Cohen, Jerzy Łoś, H.P., Podewski, K.P. (eds.)
Logic, Methodology and Philosophy of Science VIProceedings of the
Sixth International Congress of Logic, Methodology and Philosophy
of Science, Studies in Logic and the Foundations of Mathematics, vol.
104, pp. 153 – 175. Elsevier (1982), https://www.sciencedirect.com/
science/article/pii/S0049237X09701892

[74] McCarthy, J.: A basis for a mathematical theory of computation.
Studies in Logic and the Foundations of Mathematics 35, 33–70 (1963)

[75] McMillan, B.: Two inequalities implied by unique decipherability.
Information Theory, IRE Transactions on 2(4), 115–116 (December
1956)

[76] Miyamoto, K.: The minlog system, http://minlog-system.de/, ac-
cessed: 2017-11-17

[77] Monin, J.F.: A toolkit to reason with programs raising exceptions,
https://github.com/coq-contribs/continuations, accessed: 2017-11-17

[78] Moravec, H.: Mind children: The future of robot and human intelli-
gence. Harvard University Press (1988)

[79] Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: Rocksalt:
better, faster, stronger sfi for the x86. In: ACM SIGPLAN Notices.
vol. 47, pp. 395–404. ACM (2012)

[80] Naumowicz, A., Korniłowicz, A.: A Brief Overview of Mizar, pp. 67–
72. Springer Berlin Heidelberg, Berlin, Heidelberg (2009), http://dx.
doi.org/10.1007/978-3-642-03359-9_5

http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://doi.acm.org/10.1145/1706299.1706329
https://www.sciencedirect.com/science/article/pii/S0049237X09701892
https://www.sciencedirect.com/science/article/pii/S0049237X09701892
http://minlog-system.de/
https://github.com/coq-contribs/continuations
http://dx.doi.org/10.1007/978-3-642-03359-9_5
http://dx.doi.org/10.1007/978-3-642-03359-9_5


BIBLIOGRAPHY 121

[81] Nogin, A.: Writing constructive proofs yielding efficient extracted pro-
grams. Electronic Notes in Theoretical Computer Science 37, 1–17
(2000)

[82] Postel, J.: DoD standard Transmission Control Protocol. RFC 761
(Jan 1980), http://www.ietf.org/rfc/rfc761.txt, obsoleted by RFC 793

[83] Ricketts, D., Robert, V., Jang, D., Tatlock, Z., Lerner, S.: Automating
formal proofs for reactive systems. In: O’Boyle, M.F.P., Pingali, K.
(eds.) ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014. p. 47. ACM (2014), http://doi.acm.org/10.1145/2594291.
2594338

[84] Roelofs, G., Gailly, J., Adler, M.: A massively spiffy yet delicately un-
obtrusive compression library, http://www.zlib.net/, accessed: 2017-
11-17

[85] Sacchini, J.L.: Exceptions in dependent type theory, https://www.
irif.fr/~letouzey/types2014/abstract-18.pdf, accessed: 2017-11-17

[86] Schwichtenberg, H., Senjak, C.: Minimal from classical proofs. Annals
of Pure and Applied Logic 164(6), 740–748 (2013)

[87] Scott, D.S.: A type-theoretical alternative to iswim, cuch, owhy. The-
oretical Computer Science 121, 411–440 (1993), annotated version of
the 1969 manuscript

[88] Senjak, C.S.: Minimal from classical proofs, https://uxul.de/
akademisches/diplom.pdf, accessed: 2017-11-17

[89] Senjak, C.S., Hofmann, M.: An implementation of deflate in coq. In:
FM 2016: Formal Methods: 21st International Symposium, Limassol,
Cyprus, November 9-11, 2016, Proceedings 21. pp. 612–627. Springer
(2016)

[90] Senjak, C., Hofmann, M.: An implementation of deflate in coq. CoRR
abs/1609.01220 (2016), http://arxiv.org/abs/1609.01220

[91] Storer, J.A., Szymanski, T.G.: Data compression via textual substitu-
tion. J. ACM 29(4), 928–951 (Oct 1982), http://doi.acm.org/10.1145/
322344.322346

[92] Swierstra, W.: The hoare state monad, http://www.cs.ru.nl/
~wouters/Publications/HoareLogicStateMonad.pdf, accessed: 2017-
11-17

http://www.ietf.org/rfc/rfc761.txt
http://doi.acm.org/10.1145/2594291.2594338
http://doi.acm.org/10.1145/2594291.2594338
http://www.zlib.net/
https://www.irif.fr/~letouzey/types2014/abstract-18.pdf
https://www.irif.fr/~letouzey/types2014/abstract-18.pdf
https://uxul.de/akademisches/diplom.pdf
https://uxul.de/akademisches/diplom.pdf
http://arxiv.org/abs/1609.01220
http://doi.acm.org/10.1145/322344.322346
http://doi.acm.org/10.1145/322344.322346
http://www.cs.ru.nl/~wouters/Publications/HoareLogicStateMonad.pdf
http://www.cs.ru.nl/~wouters/Publications/HoareLogicStateMonad.pdf


122 BIBLIOGRAPHY

[93] The Coq Development Team: The coq proof assistant reference man-
ual, https://coq.inria.fr/distrib/current/refman/, accessed: 2017-11-
17

[94] Thery, L.: Formalising huffman’s algorithm. Tech. rep., Tech. report
TRCS 034, Dept. of Informatics, Univ. of L’Aquila (2004)

[95] Turing, A.M.: On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London mathematical soci-
ety 2(1), 230–265 (1937)

[96] Turing, A.: Checking a large routine. EDSAC Inaugural Conference
(1949)

[97] Univalent Foundations Program, T.: Homotopy Type Theory: Univa-
lent Foundations of Mathematics. https://homotopytypetheory.org/
book, Institute for Advanced Study (2013)

[98] Vafeiadis, V.: Adjustable references. In: Proceedings of the 4th In-
ternational Conference on Interactive Theorem Proving. pp. 328–337.
ITP’13, Springer-Verlag, Berlin, Heidelberg (2013), http://dx.doi.org/
10.1007/978-3-642-39634-2_24

[99] Vafeiadis, V.: Adjustable references. In: International Conference on
Interactive Theorem Proving. pp. 328–337. Springer (2013)

[100] Voevodsky, V.: Notes on homotopy lambda calculus (2006), https://
github.com/vladimirias/2006_03_Homotopy_lambda_calculus, ac-
cessed: 2017-11-17

[101] der Wiskunde, T.H.E.O., Dijkstra, E.W.: Notes on structured pro-
gramming (1969)

[102] Zakharov, I.S., Mandrykin, M.U., Mutilin, V.S., Novikov, E., Pe-
trenko, A.K., Khoroshilov, A.V.: Configurable toolset for static veri-
fication of operating systems kernel modules. Programming and Com-
puter Software 41(1), 49–64 (2015)

[103] Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formalizing
the llvm intermediate representation for verified program transforma-
tions. In: ACM SIGPLAN Notices. vol. 47, pp. 427–440. ACM (2012)

[104] Ziv, J., Lempel, A.: A universal algorithm for sequential data compres-
sion. IEEE Transactions on information theory 23(3), 337–343 (1977)

https://coq.inria.fr/distrib/current/refman/
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
http://dx.doi.org/10.1007/978-3-642-39634-2_24
http://dx.doi.org/10.1007/978-3-642-39634-2_24
https://github.com/vladimirias/2006_03_Homotopy_lambda_calculus
https://github.com/vladimirias/2006_03_Homotopy_lambda_calculus

	Introduction
	Historical Overview
	Formal Verification
	Data Compression

	Notation
	Reasons for Deflate
	Related Work
	Similar Goals
	Formal Methods in General
	Similar Methodology


	Technical Overview
	Design Decisions
	Trusted Codebase
	Module Overview

	Program Extraction
	Motivation
	Formalizing
	Classical Reasoning
	Phases of Extraction
	Moravec's Paradox
	Practical Applications

	An Introduction To Coq
	Set and Prop
	Gauss formula
	Square Pyramidal Numbers

	Deflate Codings
	Parsers from Constructive Proofs
	Strong Uniqueness
	Strong Decidability
	Relational Combinators
	Streamable Strong Decidability

	The Encoding Relation
	Overview
	The Toplevel Relation
	Uncompressed Blocks
	Backreferences
	Compressed Blocks
	Compressed Code with Extra Bits
	Compressed Data
	Statically Compressed Blocks
	Dynamically Compressed Blocks

	Refactoring

	Efficiency
	Natural Numbers
	Singly-linked Lists
	Backreferences
	Using DiffArrays
	A Purely Functional, Efficient Backreference-resolver
	Pairing Heaps
	General Idea
	A Formal Proof


	Extraction and Testing
	Extraction
	Compatibility
	Makefile

	Testing Unverified Algorithms
	Benchmarks
	No Backreferences
	With ExpLists
	With DiffArrays
	Unverified Functional Resolver
	Compression

	Building and Running

	Conclusion
	Further Work
	Streamable Strong Decidability
	Fast Compression
	Trusted Codebase
	Imperative Implementation
	Usage In Other Projects
	Other System Components

	Lessions Learned


