
Advanced Algorithms Course.

Lecture Notes. Part 6

A Machine Learning Problem: Image Segmentation

Our aim is to label every pixel of a digital image as foreground (part of an

object) or background. The image is represented as an undirected graph G =

(V,E) where nodes are pixels and edges exist between any two neighbored

pixels (according to some definition of neighbors). For every pixel i we

are also given two numbers ai and bi expressing the strength of belief that

pixel i is foreground or background, respectively. We do not discuss here

in depth how these values are obtained (criteria could be, for example, the

colors and positions of pixels). A further assumption is that the picture

does not comprise too many switches between foreground and background,

that is, it shows a few large and connected objects. Therefore we introduce

penalties for label switches: For each pair of neighbored pixels i, j we charge

a penalty pij if i and j have different labels. Altogether this gives rise to

the following optimization problem: Split V into sets A and B (foreground

and background) so as to maximize

q(A,B) :=
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E,i∈A,j∈B
pij .

That is, the segmentation should respect the classification criteria for the

single pixels, but at the same time it should not need too many switches.

We can reduce this problem to Minimum Cut as follows. First observe

that the problem is equivalent to minimizing

q′(A,B) :=
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E,i∈A,j∈B
pij .

That is, we want to minimize the penalties for both false labels and switches.

As we need a directed graph, we replace every edge (i, j) with two opposite
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directed edges with capacity pij . We insert a source s and sink t, and for

every pixel k we insert edges (s, k) with capacity ak, and (k, t) with capacity

bk. Now any s − t cut (A,B) has capacity q′(A,B). Thus, an optimal

segmentation corresponds to a minimum cut.

Project Selection

Let P be a set of possible projects to choose from. Project i has revenue pi.

A value pi can also be negative, in which case the project is an investment

for other projects: Some projects depend on others. These dependencies are

given as a directed graph G = (P,E) where an edge (i, j) means: if i shall

be done, then j must be done, too (before i can even start). Clearly, G must

be acyclic, since projects in a directed cycle of dependencies can never be

done. We call a set of projects A ⊂ P feasible if A respects these precedence

constraints. The problem is to select a feasible set A that maximizes
∑

i∈A pi.

This is also known as the Open-Pit Mining problem; one can easily imagine

the reason.

We reduce Project Selection (Open-Pit Mining) to Minimum Cut. We

insert a source s and a sink t. Edges are (s, i) with capacity pi, if pi > 0, and

(i, t) with capacity−pi, if pi < 0. Edges in G (for the precedence constraints)

get a huge capacity. Hence none of these edges can go from A to B in a

minimum cut (A ∪ {s}, B ∪ {t}). It follows that A is feasible whenever

(A ∪ {s}, B ∪ {t}) is a minimum cut. Now we can solve the Minimum Cut

problem and need not worry about the feasibilty of A.

It remains to show that minimizing the cut capacity is in fact equivalent

to maximizing the revenue. This is proved in a few lines:

c(A ∪ {s}, B ∪ {t}) =
∑

pi>0,i∈B
pi −

∑
pi<0,i∈A

pi

holds by the definition of capacity. We artificially add zero:

c(A ∪ {s}, B ∪ {t}) =
∑

pi>0,i∈B
pi −

∑
pi<0,i∈A

pi −
∑

pi>0,i∈A
pi +

∑
pi>0,i∈A

pi.

Now we can group the terms in a different way:

c(A ∪ {s}, B ∪ {t}) =
∑
pi>0

pi −
∑
i∈A

pi.

Note that the first term is constant and the second term is the revenue.
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Randomized Algorithms

Basics of Probability Theory

This section is not a full-fledged introduction to probability theory, but only

a recap of the absolute minimum knowledge needed for a real understanding

of randomized algorithms and their analysis.

The mathematical essence of the notion of probability can be described

by Kolmogorov’s axioms, without recurring to any interpretation of proa-

bilities. We deal with a probability space which is a set Ω with a probabil-

ity function. For simplicity we focus on discrete (finite or countably infinite)

sets Ω, which is the most relevant case in algorithmic contexts. Subsets of

Ω are called events. The probability Pr(A) of an event A is a number

from the interval [0, 1], and probabilities have to satisfy the following sim-

ple properties (these are Kolmogorov’s axioms): Pr(∅) = 0; Pr(Ω) = 1; if

A ∩ B = ∅ then Pr(A ∪ B) = Pr(A) + Pr(B). The last property called

additivity must also hold for countably infinite sets of disjoint events, but

this does not matter for finite Ω.

Single-element events A = {ω} are also called elementary events. We

may simply write Pr(ω) instead of Pr(A) = Pr({ω}).
From the axioms it follows immediately that Pr(Ω\A) = 1−Pr(A), and

Pr(A∪B) ≤ Pr(A) +Pr(B) for any events A and B. The latter inequality

is so useful that it deserves an own name: we call it the union bound. One

can use it to bound the probablity of a complicated event which is, however,

the disjunction of simpler events with easily computable probabilities.

Sometimes we know already that some event B occurs, and we want to

know the probability of A, given this additional knowledge. This condi-

tional probability is Pr(A|B) := Pr(A∩B)/Pr(B). Pronounce Pr(A|B)

as “probability of A given B” or “probability of A conditional on B”. We

call an event A independent of an event B if Pr(A|B) = Pr(A). In that

case we obviously get Pr(A ∩ B) = Pr(A)Pr(B), hence the independence

relation is symmetric, and we can simply say “A and B are independent”. It

is not always intuitive whether two events are independent; then we have to

check independence using the definition. Also, do not confuse independent

and disjoint events (A ∩B = ∅) – these are totally different things!

A random variable is a function X from a probability space into, e.g.,

the real numbers. (We only consider the case of real-valued X and discrete

Ω.) Formally: X : Ω −→ R. Every possible value x of X gets a probability

3



in an obvious way: Pr(X = x) = Pr(X(ω) = x). The distribution of

X is Pr(X = x) viewed as a function of x. Note that a random variable

and its distribution are two different objects. Two random variables with

equal distributions are not necessarily the same function on Ω. This distinc-

tion is important when we combine several random variables by algebraic

operations (see below).

The expected value or expectation of a random variable X is defined

as E[X] :=
∑

ω∈Ω Pr(ω)X(ω). Note that E[X] =
∑

x Pr(X = x) · x, that

is, the expectation depends only on the distribution of X. Intuitively, E[X]

is the long-term average of X when we observe the random variable many

times independently.

A frequent misunderstanding is that Pr(X > E[X]) = 1/2, or similar.

This is far from being true in general. For instance, let X be the random

variable that describes a win in a lottery (where the stake is not considered in

X). The expected win is some (small) positive amount, but the probability

of winning anything is very small, certainly not 1/2. A “probability-free”

formulation of this insight is: The average of a set of values is in general

distinct from the median!

Random variables X and Y on the same probability space are called

independent if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y) for all values

x and y. In the same way as for random events we could instead define

independence by the property that knowing the value of X has no impact

on the distribution of Y , and then this “product rule” comes out.

Random variables, without loss of generality defined on the same proba-

bility space, can be combined by arbitrary algebraic operations: We simply

apply the operation to their random values. For instance, the sum X +Y of

random variables X and Y is given by (X+Y )(ω) = X(ω)+Y (ω). Similarly

we can define the product, and so on.

A useful and powerful property is the linearity of expectation. It says

that E is a linear operator, that means, E[X + Y ] = E[X] + E[Y ]. Note

that this holds for arbitrary random variables, not only for independent

ones. The proof is a straighforward calculation:

E[X + Y ] =
∑
ω∈Ω

Pr(ω)(X + Y )(ω) =
∑
ω∈Ω

Pr(ω)(X(ω) + Y (ω))

=
∑
ω∈Ω

Pr(ω)X(ω) +
∑
ω∈Ω

Pr(ω)Y (ω) = E[X] + E[Y ].
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A similar property for the product does not hold in general. We have

E[XY ] = E[X]E[Y ] in special cases only. The most important sufficient

condition is that X and Y are independent. Again, the proof is a straigh-

forward calculation, but this time it is easier to work on the range of values

rather than on Ω. Also note carefully in which step independence is used:

E[XY ] =
∑
z

Pr(XY = z)z =
∑
z

∑
x,y:xy=z

Pr(X = x, Y = y)xy

=
∑
z

∑
x,y:xy=z

Pr(X = x)xPr(Y = y)y =
∑
x,y

Pr(X = x)xPr(Y = y)y

=
∑
x

Pr(X = x)x +
∑
y

Pr(Y = y)y = E[X]E[Y ].

An important “algorithm” is to repeat a random experiment until suc-

cess: Suppose that we have a 0, 1-valued random variable that attains value

1 with probability p. We observe this variable many times independently,

until result 1 appears for the first time. What is the expected number of

iterations needed? Intuitively one would think 1/p, but intuition is often

misleading, therefore we’d better derive this result by calculation. Although

this is still a basic exercise, a strict formal treatment would already be a bit

laborious: Our probability space is the Cartesian product of infinitely many

copies of a probability space with two events. However we may skip some

technicalities and think in a semi-formal way. Let Ei be the event that the

ith iteration is successful. Then Pr(Ei) = (1 − p)i−1p. Note that the first

i− 1 iterations have failed, and the probabilities can be multiplied, because

the trials are independent. Hence our expected value is

∞∑
i=1

Pr(Ei) · i =
∞∑
i=1

(1− p)i−1pi.

Now some standard algebra (that we omit here) confirms the result 1/p.
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